github.com/guyezi/gofrontend@v0.0.0-20200228202240-7a62a49e62c0/libgo/runtime/proc.c (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 #include <errno.h> 6 #include <limits.h> 7 #include <signal.h> 8 #include <stdlib.h> 9 #include <pthread.h> 10 #include <unistd.h> 11 12 #include "config.h" 13 14 #ifdef HAVE_DL_ITERATE_PHDR 15 #include <link.h> 16 #endif 17 18 #include "runtime.h" 19 #include "arch.h" 20 #include "defs.h" 21 22 #ifdef USING_SPLIT_STACK 23 24 /* FIXME: These are not declared anywhere. */ 25 26 extern void __splitstack_getcontext(void *context[10]); 27 28 extern void __splitstack_setcontext(void *context[10]); 29 30 extern void *__splitstack_makecontext(size_t, void *context[10], size_t *); 31 32 extern void * __splitstack_resetcontext(void *context[10], size_t *); 33 34 extern void __splitstack_releasecontext(void *context[10]); 35 36 extern void *__splitstack_find(void *, void *, size_t *, void **, void **, 37 void **); 38 39 extern void __splitstack_block_signals (int *, int *); 40 41 extern void __splitstack_block_signals_context (void *context[10], int *, 42 int *); 43 44 #endif 45 46 #ifndef PTHREAD_STACK_MIN 47 # define PTHREAD_STACK_MIN 8192 48 #endif 49 50 #if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK) 51 # define StackMin PTHREAD_STACK_MIN 52 #else 53 # define StackMin ((sizeof(char *) < 8) ? 2 * 1024 * 1024 : 4 * 1024 * 1024) 54 #endif 55 56 uintptr runtime_stacks_sys; 57 58 void gtraceback(G*) 59 __asm__(GOSYM_PREFIX "runtime.gtraceback"); 60 61 static void gscanstack(G*); 62 63 #ifdef __rtems__ 64 #define __thread 65 #endif 66 67 __thread G *g __asm__(GOSYM_PREFIX "runtime.g"); 68 69 #ifndef SETCONTEXT_CLOBBERS_TLS 70 71 static inline void 72 initcontext(void) 73 { 74 } 75 76 static inline void 77 fixcontext(__go_context_t *c __attribute__ ((unused))) 78 { 79 } 80 81 #else 82 83 # if defined(__x86_64__) && defined(__sun__) 84 85 // x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs 86 // register to that of the thread which called getcontext. The effect 87 // is that the address of all __thread variables changes. This bug 88 // also affects pthread_self() and pthread_getspecific. We work 89 // around it by clobbering the context field directly to keep %fs the 90 // same. 91 92 static __thread greg_t fs; 93 94 static inline void 95 initcontext(void) 96 { 97 ucontext_t c; 98 99 getcontext(&c); 100 fs = c.uc_mcontext.gregs[REG_FSBASE]; 101 } 102 103 static inline void 104 fixcontext(ucontext_t* c) 105 { 106 c->uc_mcontext.gregs[REG_FSBASE] = fs; 107 } 108 109 # elif defined(__NetBSD__) 110 111 // NetBSD has a bug: setcontext clobbers tlsbase, we need to save 112 // and restore it ourselves. 113 114 static __thread __greg_t tlsbase; 115 116 static inline void 117 initcontext(void) 118 { 119 ucontext_t c; 120 121 getcontext(&c); 122 tlsbase = c.uc_mcontext._mc_tlsbase; 123 } 124 125 static inline void 126 fixcontext(ucontext_t* c) 127 { 128 c->uc_mcontext._mc_tlsbase = tlsbase; 129 } 130 131 # elif defined(__sparc__) 132 133 static inline void 134 initcontext(void) 135 { 136 } 137 138 static inline void 139 fixcontext(ucontext_t *c) 140 { 141 /* ??? Using 142 register unsigned long thread __asm__("%g7"); 143 c->uc_mcontext.gregs[REG_G7] = thread; 144 results in 145 error: variable ‘thread’ might be clobbered by \ 146 ‘longjmp’ or ‘vfork’ [-Werror=clobbered] 147 which ought to be false, as %g7 is a fixed register. */ 148 149 if (sizeof (c->uc_mcontext.gregs[REG_G7]) == 8) 150 asm ("stx %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7])); 151 else 152 asm ("st %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7])); 153 } 154 155 # elif defined(_AIX) 156 157 static inline void 158 initcontext(void) 159 { 160 } 161 162 static inline void 163 fixcontext(ucontext_t* c) 164 { 165 // Thread pointer is in r13, per 64-bit ABI. 166 if (sizeof (c->uc_mcontext.jmp_context.gpr[13]) == 8) 167 asm ("std 13, %0" : "=m"(c->uc_mcontext.jmp_context.gpr[13])); 168 } 169 170 # else 171 172 # error unknown case for SETCONTEXT_CLOBBERS_TLS 173 174 # endif 175 176 #endif 177 178 // ucontext_arg returns a properly aligned ucontext_t value. On some 179 // systems a ucontext_t value must be aligned to a 16-byte boundary. 180 // The g structure that has fields of type ucontext_t is defined in 181 // Go, and Go has no simple way to align a field to such a boundary. 182 // So we make the field larger in runtime2.go and pick an appropriate 183 // offset within the field here. 184 static __go_context_t* 185 ucontext_arg(uintptr_t* go_ucontext) 186 { 187 uintptr_t p = (uintptr_t)go_ucontext; 188 size_t align = __alignof__(__go_context_t); 189 if(align > 16) { 190 // We only ensured space for up to a 16 byte alignment 191 // in libgo/go/runtime/runtime2.go. 192 runtime_throw("required alignment of __go_context_t too large"); 193 } 194 p = (p + align - 1) &~ (uintptr_t)(align - 1); 195 return (__go_context_t*)p; 196 } 197 198 // We can not always refer to the TLS variables directly. The 199 // compiler will call tls_get_addr to get the address of the variable, 200 // and it may hold it in a register across a call to schedule. When 201 // we get back from the call we may be running in a different thread, 202 // in which case the register now points to the TLS variable for a 203 // different thread. We use non-inlinable functions to avoid this 204 // when necessary. 205 206 G* runtime_g(void) __attribute__ ((noinline, no_split_stack)); 207 208 G* 209 runtime_g(void) 210 { 211 return g; 212 } 213 214 M* runtime_m(void) __attribute__ ((noinline, no_split_stack)); 215 216 M* 217 runtime_m(void) 218 { 219 if(g == nil) 220 return nil; 221 return g->m; 222 } 223 224 // Set g. 225 void 226 runtime_setg(G* gp) 227 { 228 g = gp; 229 } 230 231 void runtime_newosproc(M *) 232 __asm__(GOSYM_PREFIX "runtime.newosproc"); 233 234 // Start a new thread. 235 void 236 runtime_newosproc(M *mp) 237 { 238 pthread_attr_t attr; 239 sigset_t clear, old; 240 pthread_t tid; 241 int tries; 242 int ret; 243 244 if(pthread_attr_init(&attr) != 0) 245 runtime_throw("pthread_attr_init"); 246 if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0) 247 runtime_throw("pthread_attr_setdetachstate"); 248 249 // Block signals during pthread_create so that the new thread 250 // starts with signals disabled. It will enable them in minit. 251 sigfillset(&clear); 252 253 #ifdef SIGTRAP 254 // Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux. 255 sigdelset(&clear, SIGTRAP); 256 #endif 257 258 sigemptyset(&old); 259 pthread_sigmask(SIG_BLOCK, &clear, &old); 260 261 for (tries = 0; tries < 20; tries++) { 262 ret = pthread_create(&tid, &attr, runtime_mstart, mp); 263 if (ret != EAGAIN) { 264 break; 265 } 266 runtime_usleep((tries + 1) * 1000); // Milliseconds. 267 } 268 269 pthread_sigmask(SIG_SETMASK, &old, nil); 270 271 if (ret != 0) { 272 runtime_printf("pthread_create failed: %d\n", ret); 273 runtime_throw("pthread_create"); 274 } 275 276 if(pthread_attr_destroy(&attr) != 0) 277 runtime_throw("pthread_attr_destroy"); 278 } 279 280 // Switch context to a different goroutine. This is like longjmp. 281 void runtime_gogo(G*) __attribute__ ((noinline)); 282 void 283 runtime_gogo(G* newg) 284 { 285 #ifdef USING_SPLIT_STACK 286 __splitstack_setcontext((void*)(&newg->stackcontext[0])); 287 #endif 288 g = newg; 289 newg->fromgogo = true; 290 fixcontext(ucontext_arg(&newg->context[0])); 291 __go_setcontext(ucontext_arg(&newg->context[0])); 292 runtime_throw("gogo setcontext returned"); 293 } 294 295 // Save context and call fn passing g as a parameter. This is like 296 // setjmp. Because getcontext always returns 0, unlike setjmp, we use 297 // g->fromgogo as a code. It will be true if we got here via 298 // setcontext. g == nil the first time this is called in a new m. 299 void runtime_mcall(FuncVal *) __attribute__ ((noinline)); 300 void 301 runtime_mcall(FuncVal *fv) 302 { 303 M *mp; 304 G *gp; 305 #ifndef USING_SPLIT_STACK 306 void *afterregs; 307 #endif 308 309 // Ensure that all registers are on the stack for the garbage 310 // collector. 311 __builtin_unwind_init(); 312 flush_registers_to_secondary_stack(); 313 314 gp = g; 315 mp = gp->m; 316 if(gp == mp->g0) 317 runtime_throw("runtime: mcall called on m->g0 stack"); 318 319 if(gp != nil) { 320 321 #ifdef USING_SPLIT_STACK 322 __splitstack_getcontext((void*)(&gp->stackcontext[0])); 323 #else 324 // We have to point to an address on the stack that is 325 // below the saved registers. 326 gp->gcnextsp = (uintptr)(&afterregs); 327 gp->gcnextsp2 = (uintptr)(secondary_stack_pointer()); 328 #endif 329 gp->fromgogo = false; 330 __go_getcontext(ucontext_arg(&gp->context[0])); 331 332 // When we return from getcontext, we may be running 333 // in a new thread. That means that g may have 334 // changed. It is a global variables so we will 335 // reload it, but the address of g may be cached in 336 // our local stack frame, and that address may be 337 // wrong. Call the function to reload the value for 338 // this thread. 339 gp = runtime_g(); 340 mp = gp->m; 341 342 if(gp->traceback != 0) 343 gtraceback(gp); 344 if(gp->scang != 0) 345 gscanstack(gp); 346 } 347 if (gp == nil || !gp->fromgogo) { 348 #ifdef USING_SPLIT_STACK 349 __splitstack_setcontext((void*)(&mp->g0->stackcontext[0])); 350 #endif 351 mp->g0->entry = fv; 352 mp->g0->param = gp; 353 354 // It's OK to set g directly here because this case 355 // can not occur if we got here via a setcontext to 356 // the getcontext call just above. 357 g = mp->g0; 358 359 fixcontext(ucontext_arg(&mp->g0->context[0])); 360 __go_setcontext(ucontext_arg(&mp->g0->context[0])); 361 runtime_throw("runtime: mcall function returned"); 362 } 363 } 364 365 // Goroutine scheduler 366 // The scheduler's job is to distribute ready-to-run goroutines over worker threads. 367 // 368 // The main concepts are: 369 // G - goroutine. 370 // M - worker thread, or machine. 371 // P - processor, a resource that is required to execute Go code. 372 // M must have an associated P to execute Go code, however it can be 373 // blocked or in a syscall w/o an associated P. 374 // 375 // Design doc at http://golang.org/s/go11sched. 376 377 extern G* allocg(void) 378 __asm__ (GOSYM_PREFIX "runtime.allocg"); 379 380 bool runtime_isarchive; 381 382 extern void kickoff(void) 383 __asm__(GOSYM_PREFIX "runtime.kickoff"); 384 extern void minit(void) 385 __asm__(GOSYM_PREFIX "runtime.minit"); 386 extern void mstart1() 387 __asm__(GOSYM_PREFIX "runtime.mstart1"); 388 extern void stopm(void) 389 __asm__(GOSYM_PREFIX "runtime.stopm"); 390 extern void mexit(bool) 391 __asm__(GOSYM_PREFIX "runtime.mexit"); 392 extern void handoffp(P*) 393 __asm__(GOSYM_PREFIX "runtime.handoffp"); 394 extern void wakep(void) 395 __asm__(GOSYM_PREFIX "runtime.wakep"); 396 extern void stoplockedm(void) 397 __asm__(GOSYM_PREFIX "runtime.stoplockedm"); 398 extern void schedule(void) 399 __asm__(GOSYM_PREFIX "runtime.schedule"); 400 extern void execute(G*, bool) 401 __asm__(GOSYM_PREFIX "runtime.execute"); 402 extern void reentersyscall(uintptr, uintptr) 403 __asm__(GOSYM_PREFIX "runtime.reentersyscall"); 404 extern void reentersyscallblock(uintptr, uintptr) 405 __asm__(GOSYM_PREFIX "runtime.reentersyscallblock"); 406 extern G* gfget(P*) 407 __asm__(GOSYM_PREFIX "runtime.gfget"); 408 extern void acquirep(P*) 409 __asm__(GOSYM_PREFIX "runtime.acquirep"); 410 extern P* releasep(void) 411 __asm__(GOSYM_PREFIX "runtime.releasep"); 412 extern void incidlelocked(int32) 413 __asm__(GOSYM_PREFIX "runtime.incidlelocked"); 414 extern void globrunqput(G*) 415 __asm__(GOSYM_PREFIX "runtime.globrunqput"); 416 extern P* pidleget(void) 417 __asm__(GOSYM_PREFIX "runtime.pidleget"); 418 extern struct mstats* getMemstats(void) 419 __asm__(GOSYM_PREFIX "runtime.getMemstats"); 420 421 bool runtime_isstarted; 422 423 // Used to determine the field alignment. 424 425 struct field_align 426 { 427 char c; 428 Hchan *p; 429 }; 430 431 void getTraceback(G*, G*) __asm__(GOSYM_PREFIX "runtime.getTraceback"); 432 433 // getTraceback stores a traceback of gp in the g's traceback field 434 // and then returns to me. We expect that gp's traceback is not nil. 435 // It works by saving me's current context, and checking gp's traceback field. 436 // If gp's traceback field is not nil, it starts running gp. 437 // In places where we call getcontext, we check the traceback field. 438 // If it is not nil, we collect a traceback, and then return to the 439 // goroutine stored in the traceback field, which is me. 440 void getTraceback(G* me, G* gp) 441 { 442 M* holdm; 443 444 holdm = gp->m; 445 gp->m = me->m; 446 447 #ifdef USING_SPLIT_STACK 448 __splitstack_getcontext((void*)(&me->stackcontext[0])); 449 #endif 450 __go_getcontext(ucontext_arg(&me->context[0])); 451 452 if (gp->traceback != 0) { 453 runtime_gogo(gp); 454 } 455 456 gp->m = holdm; 457 } 458 459 // Do a stack trace of gp, and then restore the context to 460 // gp->traceback->gp. 461 462 void 463 gtraceback(G* gp) 464 { 465 Traceback* traceback; 466 467 traceback = (Traceback*)gp->traceback; 468 gp->traceback = 0; 469 traceback->c = runtime_callers(1, traceback->locbuf, 470 sizeof traceback->locbuf / sizeof traceback->locbuf[0], false); 471 runtime_gogo(traceback->gp); 472 } 473 474 void doscanstackswitch(G*, G*) __asm__(GOSYM_PREFIX "runtime.doscanstackswitch"); 475 476 // Switch to gp and let it scan its stack. 477 // The first time gp->scang is set (to me). The second time here 478 // gp is done scanning, and has unset gp->scang, so we just return. 479 void 480 doscanstackswitch(G* me, G* gp) 481 { 482 M* holdm; 483 484 __go_assert(me->entry == nil); 485 me->fromgogo = false; 486 487 holdm = gp->m; 488 gp->m = me->m; 489 490 #ifdef USING_SPLIT_STACK 491 __splitstack_getcontext((void*)(&me->stackcontext[0])); 492 #endif 493 __go_getcontext(ucontext_arg(&me->context[0])); 494 495 if(me->entry != nil) { 496 // Got here from mcall. 497 // The stack scanning code may call systemstack, which calls 498 // mcall, which calls setcontext. 499 // Run the function, which at the end will switch back to gp. 500 FuncVal *fv = me->entry; 501 void (*pfn)(G*) = (void (*)(G*))fv->fn; 502 G* gp1 = (G*)me->param; 503 __go_assert(gp1 == gp); 504 me->entry = nil; 505 me->param = nil; 506 __builtin_call_with_static_chain(pfn(gp1), fv); 507 abort(); 508 } 509 510 if (gp->scang != 0) 511 runtime_gogo(gp); 512 513 gp->m = holdm; 514 } 515 516 // Do a stack scan, then switch back to the g that triggers this scan. 517 // We come here from doscanstackswitch. 518 static void 519 gscanstack(G *gp) 520 { 521 G *oldg, *oldcurg; 522 523 oldg = (G*)gp->scang; 524 oldcurg = oldg->m->curg; 525 oldg->m->curg = gp; 526 gp->scang = 0; 527 528 doscanstack(gp, (void*)gp->scangcw); 529 530 gp->scangcw = 0; 531 oldg->m->curg = oldcurg; 532 runtime_gogo(oldg); 533 } 534 535 // Called by pthread_create to start an M. 536 void* 537 runtime_mstart(void *arg) 538 { 539 M* mp; 540 G* gp; 541 542 mp = (M*)(arg); 543 gp = mp->g0; 544 gp->m = mp; 545 546 g = gp; 547 548 gp->entry = nil; 549 gp->param = nil; 550 551 // We have to call minit before we call getcontext, 552 // because getcontext will copy the signal mask. 553 minit(); 554 555 initcontext(); 556 557 // Record top of stack for use by mcall. 558 // Once we call schedule we're never coming back, 559 // so other calls can reuse this stack space. 560 #ifdef USING_SPLIT_STACK 561 __splitstack_getcontext((void*)(&gp->stackcontext[0])); 562 #else 563 gp->gcinitialsp = &arg; 564 // Setting gcstacksize to 0 is a marker meaning that gcinitialsp 565 // is the top of the stack, not the bottom. 566 gp->gcstacksize = 0; 567 gp->gcnextsp = (uintptr)(&arg); 568 gp->gcinitialsp2 = secondary_stack_pointer(); 569 gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2); 570 #endif 571 572 // Save the currently active context. This will return 573 // multiple times via the setcontext call in mcall. 574 __go_getcontext(ucontext_arg(&gp->context[0])); 575 576 if(gp->traceback != 0) { 577 // Got here from getTraceback. 578 // I'm not sure this ever actually happens--getTraceback 579 // may always go to the getcontext call in mcall. 580 gtraceback(gp); 581 } 582 if(gp->scang != 0) 583 // Got here from doscanswitch. Should not happen. 584 runtime_throw("mstart with scang"); 585 586 if(gp->entry != nil) { 587 // Got here from mcall. 588 FuncVal *fv = gp->entry; 589 void (*pfn)(G*) = (void (*)(G*))fv->fn; 590 G* gp1 = (G*)gp->param; 591 gp->entry = nil; 592 gp->param = nil; 593 __builtin_call_with_static_chain(pfn(gp1), fv); 594 *(int*)0x21 = 0x21; 595 } 596 597 if(mp->exiting) { 598 mexit(true); 599 return nil; 600 } 601 602 // Initial call to getcontext--starting thread. 603 604 #ifdef USING_SPLIT_STACK 605 { 606 int dont_block_signals = 0; 607 __splitstack_block_signals(&dont_block_signals, nil); 608 } 609 #endif 610 611 mstart1(); 612 613 // mstart1 does not return, but we need a return statement 614 // here to avoid a compiler warning. 615 return nil; 616 } 617 618 typedef struct CgoThreadStart CgoThreadStart; 619 struct CgoThreadStart 620 { 621 M *m; 622 G *g; 623 uintptr *tls; 624 void (*fn)(void); 625 }; 626 627 void setGContext(void) __asm__ (GOSYM_PREFIX "runtime.setGContext"); 628 629 // setGContext sets up a new goroutine context for the current g. 630 void 631 setGContext(void) 632 { 633 int val; 634 G *gp; 635 636 initcontext(); 637 gp = g; 638 gp->entry = nil; 639 gp->param = nil; 640 #ifdef USING_SPLIT_STACK 641 __splitstack_getcontext((void*)(&gp->stackcontext[0])); 642 val = 0; 643 __splitstack_block_signals(&val, nil); 644 #else 645 gp->gcinitialsp = &val; 646 gp->gcstack = 0; 647 gp->gcstacksize = 0; 648 gp->gcnextsp = (uintptr)(&val); 649 gp->gcinitialsp2 = secondary_stack_pointer(); 650 gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2); 651 #endif 652 __go_getcontext(ucontext_arg(&gp->context[0])); 653 654 if(gp->entry != nil) { 655 // Got here from mcall. 656 FuncVal *fv = gp->entry; 657 void (*pfn)(G*) = (void (*)(G*))fv->fn; 658 G* gp1 = (G*)gp->param; 659 gp->entry = nil; 660 gp->param = nil; 661 __builtin_call_with_static_chain(pfn(gp1), fv); 662 *(int*)0x22 = 0x22; 663 } 664 } 665 666 void makeGContext(G*, byte*, uintptr) 667 __asm__(GOSYM_PREFIX "runtime.makeGContext"); 668 669 // makeGContext makes a new context for a g. 670 void 671 makeGContext(G* gp, byte* sp, uintptr spsize) { 672 __go_context_t *uc; 673 674 uc = ucontext_arg(&gp->context[0]); 675 __go_getcontext(uc); 676 __go_makecontext(uc, kickoff, sp, (size_t)spsize); 677 } 678 679 // The goroutine g is about to enter a system call. 680 // Record that it's not using the cpu anymore. 681 // This is called only from the go syscall library and cgocall, 682 // not from the low-level system calls used by the runtime. 683 // 684 // Entersyscall cannot split the stack: the runtime_gosave must 685 // make g->sched refer to the caller's stack segment, because 686 // entersyscall is going to return immediately after. 687 688 void runtime_entersyscall() __attribute__ ((no_split_stack)); 689 static void doentersyscall(uintptr, uintptr) 690 __attribute__ ((no_split_stack, noinline)); 691 692 void 693 runtime_entersyscall() 694 { 695 // Save the registers in the g structure so that any pointers 696 // held in registers will be seen by the garbage collector. 697 if (!runtime_usestackmaps) 698 __go_getcontext(ucontext_arg(&g->gcregs[0])); 699 700 // Note that if this function does save any registers itself, 701 // we might store the wrong value in the call to getcontext. 702 // FIXME: This assumes that we do not need to save any 703 // callee-saved registers to access the TLS variable g. We 704 // don't want to put the ucontext_t on the stack because it is 705 // large and we can not split the stack here. 706 doentersyscall((uintptr)runtime_getcallerpc(), 707 (uintptr)runtime_getcallersp()); 708 } 709 710 static void 711 doentersyscall(uintptr pc, uintptr sp) 712 { 713 // Leave SP around for GC and traceback. 714 #ifdef USING_SPLIT_STACK 715 { 716 size_t gcstacksize; 717 g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize, 718 (void**)(&g->gcnextsegment), 719 (void**)(&g->gcnextsp), 720 &g->gcinitialsp)); 721 g->gcstacksize = (uintptr)gcstacksize; 722 } 723 #else 724 { 725 void *v; 726 727 g->gcnextsp = (uintptr)(&v); 728 g->gcnextsp2 = (uintptr)(secondary_stack_pointer()); 729 } 730 #endif 731 732 reentersyscall(pc, sp); 733 } 734 735 static void doentersyscallblock(uintptr, uintptr) 736 __attribute__ ((no_split_stack, noinline)); 737 738 // The same as runtime_entersyscall(), but with a hint that the syscall is blocking. 739 void 740 runtime_entersyscallblock() 741 { 742 // Save the registers in the g structure so that any pointers 743 // held in registers will be seen by the garbage collector. 744 if (!runtime_usestackmaps) 745 __go_getcontext(ucontext_arg(&g->gcregs[0])); 746 747 // See comment in runtime_entersyscall. 748 doentersyscallblock((uintptr)runtime_getcallerpc(), 749 (uintptr)runtime_getcallersp()); 750 } 751 752 static void 753 doentersyscallblock(uintptr pc, uintptr sp) 754 { 755 // Leave SP around for GC and traceback. 756 #ifdef USING_SPLIT_STACK 757 { 758 size_t gcstacksize; 759 g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize, 760 (void**)(&g->gcnextsegment), 761 (void**)(&g->gcnextsp), 762 &g->gcinitialsp)); 763 g->gcstacksize = (uintptr)gcstacksize; 764 } 765 #else 766 { 767 void *v; 768 769 g->gcnextsp = (uintptr)(&v); 770 g->gcnextsp2 = (uintptr)(secondary_stack_pointer()); 771 } 772 #endif 773 774 reentersyscallblock(pc, sp); 775 } 776 777 // Allocate a new g, with a stack big enough for stacksize bytes. 778 G* 779 runtime_malg(bool allocatestack, bool signalstack, byte** ret_stack, uintptr* ret_stacksize) 780 { 781 uintptr stacksize; 782 G *newg; 783 byte* unused_stack; 784 uintptr unused_stacksize; 785 #ifdef USING_SPLIT_STACK 786 int dont_block_signals = 0; 787 size_t ss_stacksize; 788 #endif 789 790 if (ret_stack == nil) { 791 ret_stack = &unused_stack; 792 } 793 if (ret_stacksize == nil) { 794 ret_stacksize = &unused_stacksize; 795 } 796 newg = allocg(); 797 if(allocatestack) { 798 stacksize = StackMin; 799 if(signalstack) { 800 stacksize = 32 * 1024; // OS X wants >= 8K, GNU/Linux >= 2K 801 #ifdef SIGSTKSZ 802 if(stacksize < SIGSTKSZ) 803 stacksize = SIGSTKSZ; 804 #endif 805 } 806 807 #ifdef USING_SPLIT_STACK 808 *ret_stack = __splitstack_makecontext(stacksize, 809 (void*)(&newg->stackcontext[0]), 810 &ss_stacksize); 811 *ret_stacksize = (uintptr)ss_stacksize; 812 __splitstack_block_signals_context((void*)(&newg->stackcontext[0]), 813 &dont_block_signals, nil); 814 #else 815 // In 64-bit mode, the maximum Go allocation space is 816 // 128G. Our stack size is 4M, which only permits 32K 817 // goroutines. In order to not limit ourselves, 818 // allocate the stacks out of separate memory. In 819 // 32-bit mode, the Go allocation space is all of 820 // memory anyhow. 821 if(sizeof(void*) == 8) { 822 void *p = runtime_sysAlloc(stacksize, &getMemstats()->stacks_sys); 823 if(p == nil) 824 runtime_throw("runtime: cannot allocate memory for goroutine stack"); 825 *ret_stack = (byte*)p; 826 } else { 827 *ret_stack = runtime_mallocgc(stacksize, nil, false); 828 runtime_xadd(&runtime_stacks_sys, stacksize); 829 } 830 *ret_stacksize = (uintptr)stacksize; 831 newg->gcinitialsp = *ret_stack; 832 newg->gcstacksize = (uintptr)stacksize; 833 newg->gcinitialsp2 = initial_secondary_stack_pointer(*ret_stack); 834 #endif 835 } 836 return newg; 837 } 838 839 void stackfree(G*) 840 __asm__(GOSYM_PREFIX "runtime.stackfree"); 841 842 // stackfree frees the stack of a g. 843 void 844 stackfree(G* gp) 845 { 846 #ifdef USING_SPLIT_STACK 847 __splitstack_releasecontext((void*)(&gp->stackcontext[0])); 848 #else 849 // If gcstacksize is 0, the stack is allocated by libc and will be 850 // released when the thread exits. Otherwise, in 64-bit mode it was 851 // allocated using sysAlloc and in 32-bit mode it was allocated 852 // using garbage collected memory. 853 if (gp->gcstacksize != 0) { 854 if (sizeof(void*) == 8) { 855 runtime_sysFree(gp->gcinitialsp, gp->gcstacksize, &getMemstats()->stacks_sys); 856 } 857 gp->gcinitialsp = nil; 858 gp->gcstacksize = 0; 859 } 860 #endif 861 } 862 863 void resetNewG(G*, void **, uintptr*) 864 __asm__(GOSYM_PREFIX "runtime.resetNewG"); 865 866 // Reset stack information for g pulled out of the cache to start a 867 // new goroutine. 868 void 869 resetNewG(G *newg, void **sp, uintptr *spsize) 870 { 871 #ifdef USING_SPLIT_STACK 872 int dont_block_signals = 0; 873 size_t ss_spsize; 874 875 *sp = __splitstack_resetcontext((void*)(&newg->stackcontext[0]), &ss_spsize); 876 *spsize = ss_spsize; 877 __splitstack_block_signals_context((void*)(&newg->stackcontext[0]), 878 &dont_block_signals, nil); 879 #else 880 *sp = newg->gcinitialsp; 881 *spsize = newg->gcstacksize; 882 if(*spsize == 0) 883 runtime_throw("bad spsize in resetNewG"); 884 newg->gcnextsp = (uintptr)(*sp); 885 newg->gcnextsp2 = (uintptr)(newg->gcinitialsp2); 886 #endif 887 }