github.com/hashicorp/terraform-plugin-sdk@v1.17.2/internal/plans/objchange/lcs.go (about) 1 package objchange 2 3 import ( 4 "github.com/zclconf/go-cty/cty" 5 ) 6 7 // LongestCommonSubsequence finds a sequence of values that are common to both 8 // x and y, with the same relative ordering as in both collections. This result 9 // is useful as a first step towards computing a diff showing added/removed 10 // elements in a sequence. 11 // 12 // The approached used here is a "naive" one, assuming that both xs and ys will 13 // generally be small in most reasonable Terraform configurations. For larger 14 // lists the time/space usage may be sub-optimal. 15 // 16 // A pair of lists may have multiple longest common subsequences. In that 17 // case, the one selected by this function is undefined. 18 func LongestCommonSubsequence(xs, ys []cty.Value) []cty.Value { 19 if len(xs) == 0 || len(ys) == 0 { 20 return make([]cty.Value, 0) 21 } 22 23 c := make([]int, len(xs)*len(ys)) 24 eqs := make([]bool, len(xs)*len(ys)) 25 w := len(xs) 26 27 for y := 0; y < len(ys); y++ { 28 for x := 0; x < len(xs); x++ { 29 eqV := xs[x].Equals(ys[y]) 30 eq := false 31 if eqV.IsKnown() && eqV.True() { 32 eq = true 33 eqs[(w*y)+x] = true // equality tests can be expensive, so cache it 34 } 35 if eq { 36 // Sequence gets one longer than for the cell at top left, 37 // since we'd append a new item to the sequence here. 38 if x == 0 || y == 0 { 39 c[(w*y)+x] = 1 40 } else { 41 c[(w*y)+x] = c[(w*(y-1))+(x-1)] + 1 42 } 43 } else { 44 // We follow the longest of the sequence above and the sequence 45 // to the left of us in the matrix. 46 l := 0 47 u := 0 48 if x > 0 { 49 l = c[(w*y)+(x-1)] 50 } 51 if y > 0 { 52 u = c[(w*(y-1))+x] 53 } 54 if l > u { 55 c[(w*y)+x] = l 56 } else { 57 c[(w*y)+x] = u 58 } 59 } 60 } 61 } 62 63 // The bottom right cell tells us how long our longest sequence will be 64 seq := make([]cty.Value, c[len(c)-1]) 65 66 // Now we will walk back from the bottom right cell, finding again all 67 // of the equal pairs to construct our sequence. 68 x := len(xs) - 1 69 y := len(ys) - 1 70 i := len(seq) - 1 71 72 for x > -1 && y > -1 { 73 if eqs[(w*y)+x] { 74 // Add the value to our result list and then walk diagonally 75 // up and to the left. 76 seq[i] = xs[x] 77 x-- 78 y-- 79 i-- 80 } else { 81 // Take the path with the greatest sequence length in the matrix. 82 l := 0 83 u := 0 84 if x > 0 { 85 l = c[(w*y)+(x-1)] 86 } 87 if y > 0 { 88 u = c[(w*(y-1))+x] 89 } 90 if l > u { 91 x-- 92 } else { 93 y-- 94 } 95 } 96 } 97 98 if i > -1 { 99 // should never happen if the matrix was constructed properly 100 panic("not enough elements in sequence") 101 } 102 103 return seq 104 }