github.com/hashicorp/terraform-plugin-sdk@v1.17.2/internal/plans/objchange/normalize_obj.go (about) 1 package objchange 2 3 import ( 4 "github.com/hashicorp/terraform-plugin-sdk/internal/configs/configschema" 5 "github.com/zclconf/go-cty/cty" 6 ) 7 8 // NormalizeObjectFromLegacySDK takes an object that may have been generated 9 // by the legacy Terraform SDK (i.e. returned from a provider with the 10 // LegacyTypeSystem opt-out set) and does its best to normalize it for the 11 // assumptions we would normally enforce if the provider had not opted out. 12 // 13 // In particular, this function guarantees that a value representing a nested 14 // block will never itself be unknown or null, instead representing that as 15 // a non-null value that may contain null/unknown values. 16 // 17 // The input value must still conform to the implied type of the given schema, 18 // or else this function may produce garbage results or panic. This is usually 19 // okay because type consistency is enforced when deserializing the value 20 // returned from the provider over the RPC wire protocol anyway. 21 func NormalizeObjectFromLegacySDK(val cty.Value, schema *configschema.Block) cty.Value { 22 if val == cty.NilVal || val.IsNull() { 23 // This should never happen in reasonable use, but we'll allow it 24 // and normalize to a null of the expected type rather than panicking 25 // below. 26 return cty.NullVal(schema.ImpliedType()) 27 } 28 29 vals := make(map[string]cty.Value) 30 for name := range schema.Attributes { 31 // No normalization for attributes, since them being type-conformant 32 // is all that we require. 33 vals[name] = val.GetAttr(name) 34 } 35 for name, blockS := range schema.BlockTypes { 36 lv := val.GetAttr(name) 37 38 // Legacy SDK never generates dynamically-typed attributes and so our 39 // normalization code doesn't deal with them, but we need to make sure 40 // we still pass them through properly so that we don't interfere with 41 // objects generated by other SDKs. 42 if ty := blockS.Block.ImpliedType(); ty.HasDynamicTypes() { 43 vals[name] = lv 44 continue 45 } 46 47 switch blockS.Nesting { 48 case configschema.NestingSingle, configschema.NestingGroup: 49 if lv.IsKnown() { 50 if lv.IsNull() && blockS.Nesting == configschema.NestingGroup { 51 vals[name] = blockS.EmptyValue() 52 } else { 53 vals[name] = NormalizeObjectFromLegacySDK(lv, &blockS.Block) 54 } 55 } else { 56 vals[name] = unknownBlockStub(&blockS.Block) 57 } 58 case configschema.NestingList: 59 switch { 60 case !lv.IsKnown(): 61 vals[name] = cty.ListVal([]cty.Value{unknownBlockStub(&blockS.Block)}) 62 case lv.IsNull() || lv.LengthInt() == 0: 63 vals[name] = cty.ListValEmpty(blockS.Block.ImpliedType()) 64 default: 65 subVals := make([]cty.Value, 0, lv.LengthInt()) 66 for it := lv.ElementIterator(); it.Next(); { 67 _, subVal := it.Element() 68 subVals = append(subVals, NormalizeObjectFromLegacySDK(subVal, &blockS.Block)) 69 } 70 vals[name] = cty.ListVal(subVals) 71 } 72 case configschema.NestingSet: 73 switch { 74 case !lv.IsKnown(): 75 vals[name] = cty.SetVal([]cty.Value{unknownBlockStub(&blockS.Block)}) 76 case lv.IsNull() || lv.LengthInt() == 0: 77 vals[name] = cty.SetValEmpty(blockS.Block.ImpliedType()) 78 default: 79 subVals := make([]cty.Value, 0, lv.LengthInt()) 80 for it := lv.ElementIterator(); it.Next(); { 81 _, subVal := it.Element() 82 subVals = append(subVals, NormalizeObjectFromLegacySDK(subVal, &blockS.Block)) 83 } 84 vals[name] = cty.SetVal(subVals) 85 } 86 default: 87 // The legacy SDK doesn't support NestingMap, so we just assume 88 // maps are always okay. (If not, we would've detected and returned 89 // an error to the user before we got here.) 90 vals[name] = lv 91 } 92 } 93 return cty.ObjectVal(vals) 94 } 95 96 // unknownBlockStub constructs an object value that approximates an unknown 97 // block by producing a known block object with all of its leaf attribute 98 // values set to unknown. 99 // 100 // Blocks themselves cannot be unknown, so if the legacy SDK tries to return 101 // such a thing, we'll use this result instead. This convention mimics how 102 // the dynamic block feature deals with being asked to iterate over an unknown 103 // value, because our value-checking functions already accept this convention 104 // as a special case. 105 func unknownBlockStub(schema *configschema.Block) cty.Value { 106 vals := make(map[string]cty.Value) 107 for name, attrS := range schema.Attributes { 108 vals[name] = cty.UnknownVal(attrS.Type) 109 } 110 for name, blockS := range schema.BlockTypes { 111 switch blockS.Nesting { 112 case configschema.NestingSingle, configschema.NestingGroup: 113 vals[name] = unknownBlockStub(&blockS.Block) 114 case configschema.NestingList: 115 // In principle we may be expected to produce a tuple value here, 116 // if there are any dynamically-typed attributes in our nested block, 117 // but the legacy SDK doesn't support that, so we just assume it'll 118 // never be necessary to normalize those. (Incorrect usage in any 119 // other SDK would be caught and returned as an error before we 120 // get here.) 121 vals[name] = cty.ListVal([]cty.Value{unknownBlockStub(&blockS.Block)}) 122 case configschema.NestingSet: 123 vals[name] = cty.SetVal([]cty.Value{unknownBlockStub(&blockS.Block)}) 124 case configschema.NestingMap: 125 // A nesting map can never be unknown since we then wouldn't know 126 // what the keys are. (Legacy SDK doesn't support NestingMap anyway, 127 // so this should never arise.) 128 vals[name] = cty.MapValEmpty(blockS.Block.ImpliedType()) 129 } 130 } 131 return cty.ObjectVal(vals) 132 }