github.com/hbdrawn/golang@v0.0.0-20141214014649-6b835209aba2/src/crypto/rsa/rsa.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package rsa implements RSA encryption as specified in PKCS#1. 6 package rsa 7 8 import ( 9 "crypto" 10 "crypto/rand" 11 "crypto/subtle" 12 "errors" 13 "hash" 14 "io" 15 "math/big" 16 ) 17 18 var bigZero = big.NewInt(0) 19 var bigOne = big.NewInt(1) 20 21 // A PublicKey represents the public part of an RSA key. 22 type PublicKey struct { 23 N *big.Int // modulus 24 E int // public exponent 25 } 26 27 var ( 28 errPublicModulus = errors.New("crypto/rsa: missing public modulus") 29 errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") 30 errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") 31 ) 32 33 // checkPub sanity checks the public key before we use it. 34 // We require pub.E to fit into a 32-bit integer so that we 35 // do not have different behavior depending on whether 36 // int is 32 or 64 bits. See also 37 // http://www.imperialviolet.org/2012/03/16/rsae.html. 38 func checkPub(pub *PublicKey) error { 39 if pub.N == nil { 40 return errPublicModulus 41 } 42 if pub.E < 2 { 43 return errPublicExponentSmall 44 } 45 if pub.E > 1<<31-1 { 46 return errPublicExponentLarge 47 } 48 return nil 49 } 50 51 // A PrivateKey represents an RSA key 52 type PrivateKey struct { 53 PublicKey // public part. 54 D *big.Int // private exponent 55 Primes []*big.Int // prime factors of N, has >= 2 elements. 56 57 // Precomputed contains precomputed values that speed up private 58 // operations, if available. 59 Precomputed PrecomputedValues 60 } 61 62 // Public returns the public key corresponding to priv. 63 func (priv *PrivateKey) Public() crypto.PublicKey { 64 return &priv.PublicKey 65 } 66 67 // Sign signs msg with priv, reading randomness from rand. If opts is a 68 // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will 69 // be used. This method is intended to support keys where the private part is 70 // kept in, for example, a hardware module. Common uses should use the Sign* 71 // functions in this package. 72 func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { 73 if pssOpts, ok := opts.(*PSSOptions); ok { 74 return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts) 75 } 76 77 return SignPKCS1v15(rand, priv, opts.HashFunc(), msg) 78 } 79 80 type PrecomputedValues struct { 81 Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) 82 Qinv *big.Int // Q^-1 mod P 83 84 // CRTValues is used for the 3rd and subsequent primes. Due to a 85 // historical accident, the CRT for the first two primes is handled 86 // differently in PKCS#1 and interoperability is sufficiently 87 // important that we mirror this. 88 CRTValues []CRTValue 89 } 90 91 // CRTValue contains the precomputed chinese remainder theorem values. 92 type CRTValue struct { 93 Exp *big.Int // D mod (prime-1). 94 Coeff *big.Int // R·Coeff ≡ 1 mod Prime. 95 R *big.Int // product of primes prior to this (inc p and q). 96 } 97 98 // Validate performs basic sanity checks on the key. 99 // It returns nil if the key is valid, or else an error describing a problem. 100 func (priv *PrivateKey) Validate() error { 101 if err := checkPub(&priv.PublicKey); err != nil { 102 return err 103 } 104 105 // Check that the prime factors are actually prime. Note that this is 106 // just a sanity check. Since the random witnesses chosen by 107 // ProbablyPrime are deterministic, given the candidate number, it's 108 // easy for an attack to generate composites that pass this test. 109 for _, prime := range priv.Primes { 110 if !prime.ProbablyPrime(20) { 111 return errors.New("crypto/rsa: prime factor is composite") 112 } 113 } 114 115 // Check that Πprimes == n. 116 modulus := new(big.Int).Set(bigOne) 117 for _, prime := range priv.Primes { 118 modulus.Mul(modulus, prime) 119 } 120 if modulus.Cmp(priv.N) != 0 { 121 return errors.New("crypto/rsa: invalid modulus") 122 } 123 124 // Check that de ≡ 1 mod p-1, for each prime. 125 // This implies that e is coprime to each p-1 as e has a multiplicative 126 // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = 127 // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 128 // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. 129 congruence := new(big.Int) 130 de := new(big.Int).SetInt64(int64(priv.E)) 131 de.Mul(de, priv.D) 132 for _, prime := range priv.Primes { 133 pminus1 := new(big.Int).Sub(prime, bigOne) 134 congruence.Mod(de, pminus1) 135 if congruence.Cmp(bigOne) != 0 { 136 return errors.New("crypto/rsa: invalid exponents") 137 } 138 } 139 return nil 140 } 141 142 // GenerateKey generates an RSA keypair of the given bit size using the 143 // random source random (for example, crypto/rand.Reader). 144 func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) { 145 return GenerateMultiPrimeKey(random, 2, bits) 146 } 147 148 // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit 149 // size and the given random source, as suggested in [1]. Although the public 150 // keys are compatible (actually, indistinguishable) from the 2-prime case, 151 // the private keys are not. Thus it may not be possible to export multi-prime 152 // private keys in certain formats or to subsequently import them into other 153 // code. 154 // 155 // Table 1 in [2] suggests maximum numbers of primes for a given size. 156 // 157 // [1] US patent 4405829 (1972, expired) 158 // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf 159 func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) { 160 priv = new(PrivateKey) 161 priv.E = 65537 162 163 if nprimes < 2 { 164 return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") 165 } 166 167 primes := make([]*big.Int, nprimes) 168 169 NextSetOfPrimes: 170 for { 171 todo := bits 172 // crypto/rand should set the top two bits in each prime. 173 // Thus each prime has the form 174 // p_i = 2^bitlen(p_i) × 0.11... (in base 2). 175 // And the product is: 176 // P = 2^todo × α 177 // where α is the product of nprimes numbers of the form 0.11... 178 // 179 // If α < 1/2 (which can happen for nprimes > 2), we need to 180 // shift todo to compensate for lost bits: the mean value of 0.11... 181 // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 182 // will give good results. 183 if nprimes >= 7 { 184 todo += (nprimes - 2) / 5 185 } 186 for i := 0; i < nprimes; i++ { 187 primes[i], err = rand.Prime(random, todo/(nprimes-i)) 188 if err != nil { 189 return nil, err 190 } 191 todo -= primes[i].BitLen() 192 } 193 194 // Make sure that primes is pairwise unequal. 195 for i, prime := range primes { 196 for j := 0; j < i; j++ { 197 if prime.Cmp(primes[j]) == 0 { 198 continue NextSetOfPrimes 199 } 200 } 201 } 202 203 n := new(big.Int).Set(bigOne) 204 totient := new(big.Int).Set(bigOne) 205 pminus1 := new(big.Int) 206 for _, prime := range primes { 207 n.Mul(n, prime) 208 pminus1.Sub(prime, bigOne) 209 totient.Mul(totient, pminus1) 210 } 211 if n.BitLen() != bits { 212 // This should never happen for nprimes == 2 because 213 // crypto/rand should set the top two bits in each prime. 214 // For nprimes > 2 we hope it does not happen often. 215 continue NextSetOfPrimes 216 } 217 218 g := new(big.Int) 219 priv.D = new(big.Int) 220 y := new(big.Int) 221 e := big.NewInt(int64(priv.E)) 222 g.GCD(priv.D, y, e, totient) 223 224 if g.Cmp(bigOne) == 0 { 225 if priv.D.Sign() < 0 { 226 priv.D.Add(priv.D, totient) 227 } 228 priv.Primes = primes 229 priv.N = n 230 231 break 232 } 233 } 234 235 priv.Precompute() 236 return 237 } 238 239 // incCounter increments a four byte, big-endian counter. 240 func incCounter(c *[4]byte) { 241 if c[3]++; c[3] != 0 { 242 return 243 } 244 if c[2]++; c[2] != 0 { 245 return 246 } 247 if c[1]++; c[1] != 0 { 248 return 249 } 250 c[0]++ 251 } 252 253 // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function 254 // specified in PKCS#1 v2.1. 255 func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { 256 var counter [4]byte 257 var digest []byte 258 259 done := 0 260 for done < len(out) { 261 hash.Write(seed) 262 hash.Write(counter[0:4]) 263 digest = hash.Sum(digest[:0]) 264 hash.Reset() 265 266 for i := 0; i < len(digest) && done < len(out); i++ { 267 out[done] ^= digest[i] 268 done++ 269 } 270 incCounter(&counter) 271 } 272 } 273 274 // ErrMessageTooLong is returned when attempting to encrypt a message which is 275 // too large for the size of the public key. 276 var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") 277 278 func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { 279 e := big.NewInt(int64(pub.E)) 280 c.Exp(m, e, pub.N) 281 return c 282 } 283 284 // EncryptOAEP encrypts the given message with RSA-OAEP. 285 // The message must be no longer than the length of the public modulus less 286 // twice the hash length plus 2. 287 func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) { 288 if err := checkPub(pub); err != nil { 289 return nil, err 290 } 291 hash.Reset() 292 k := (pub.N.BitLen() + 7) / 8 293 if len(msg) > k-2*hash.Size()-2 { 294 err = ErrMessageTooLong 295 return 296 } 297 298 hash.Write(label) 299 lHash := hash.Sum(nil) 300 hash.Reset() 301 302 em := make([]byte, k) 303 seed := em[1 : 1+hash.Size()] 304 db := em[1+hash.Size():] 305 306 copy(db[0:hash.Size()], lHash) 307 db[len(db)-len(msg)-1] = 1 308 copy(db[len(db)-len(msg):], msg) 309 310 _, err = io.ReadFull(random, seed) 311 if err != nil { 312 return 313 } 314 315 mgf1XOR(db, hash, seed) 316 mgf1XOR(seed, hash, db) 317 318 m := new(big.Int) 319 m.SetBytes(em) 320 c := encrypt(new(big.Int), pub, m) 321 out = c.Bytes() 322 323 if len(out) < k { 324 // If the output is too small, we need to left-pad with zeros. 325 t := make([]byte, k) 326 copy(t[k-len(out):], out) 327 out = t 328 } 329 330 return 331 } 332 333 // ErrDecryption represents a failure to decrypt a message. 334 // It is deliberately vague to avoid adaptive attacks. 335 var ErrDecryption = errors.New("crypto/rsa: decryption error") 336 337 // ErrVerification represents a failure to verify a signature. 338 // It is deliberately vague to avoid adaptive attacks. 339 var ErrVerification = errors.New("crypto/rsa: verification error") 340 341 // modInverse returns ia, the inverse of a in the multiplicative group of prime 342 // order n. It requires that a be a member of the group (i.e. less than n). 343 func modInverse(a, n *big.Int) (ia *big.Int, ok bool) { 344 g := new(big.Int) 345 x := new(big.Int) 346 y := new(big.Int) 347 g.GCD(x, y, a, n) 348 if g.Cmp(bigOne) != 0 { 349 // In this case, a and n aren't coprime and we cannot calculate 350 // the inverse. This happens because the values of n are nearly 351 // prime (being the product of two primes) rather than truly 352 // prime. 353 return 354 } 355 356 if x.Cmp(bigOne) < 0 { 357 // 0 is not the multiplicative inverse of any element so, if x 358 // < 1, then x is negative. 359 x.Add(x, n) 360 } 361 362 return x, true 363 } 364 365 // Precompute performs some calculations that speed up private key operations 366 // in the future. 367 func (priv *PrivateKey) Precompute() { 368 if priv.Precomputed.Dp != nil { 369 return 370 } 371 372 priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) 373 priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) 374 375 priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) 376 priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) 377 378 priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) 379 380 r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) 381 priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) 382 for i := 2; i < len(priv.Primes); i++ { 383 prime := priv.Primes[i] 384 values := &priv.Precomputed.CRTValues[i-2] 385 386 values.Exp = new(big.Int).Sub(prime, bigOne) 387 values.Exp.Mod(priv.D, values.Exp) 388 389 values.R = new(big.Int).Set(r) 390 values.Coeff = new(big.Int).ModInverse(r, prime) 391 392 r.Mul(r, prime) 393 } 394 } 395 396 // decrypt performs an RSA decryption, resulting in a plaintext integer. If a 397 // random source is given, RSA blinding is used. 398 func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { 399 // TODO(agl): can we get away with reusing blinds? 400 if c.Cmp(priv.N) > 0 { 401 err = ErrDecryption 402 return 403 } 404 405 var ir *big.Int 406 if random != nil { 407 // Blinding enabled. Blinding involves multiplying c by r^e. 408 // Then the decryption operation performs (m^e * r^e)^d mod n 409 // which equals mr mod n. The factor of r can then be removed 410 // by multiplying by the multiplicative inverse of r. 411 412 var r *big.Int 413 414 for { 415 r, err = rand.Int(random, priv.N) 416 if err != nil { 417 return 418 } 419 if r.Cmp(bigZero) == 0 { 420 r = bigOne 421 } 422 var ok bool 423 ir, ok = modInverse(r, priv.N) 424 if ok { 425 break 426 } 427 } 428 bigE := big.NewInt(int64(priv.E)) 429 rpowe := new(big.Int).Exp(r, bigE, priv.N) 430 cCopy := new(big.Int).Set(c) 431 cCopy.Mul(cCopy, rpowe) 432 cCopy.Mod(cCopy, priv.N) 433 c = cCopy 434 } 435 436 if priv.Precomputed.Dp == nil { 437 m = new(big.Int).Exp(c, priv.D, priv.N) 438 } else { 439 // We have the precalculated values needed for the CRT. 440 m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) 441 m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) 442 m.Sub(m, m2) 443 if m.Sign() < 0 { 444 m.Add(m, priv.Primes[0]) 445 } 446 m.Mul(m, priv.Precomputed.Qinv) 447 m.Mod(m, priv.Primes[0]) 448 m.Mul(m, priv.Primes[1]) 449 m.Add(m, m2) 450 451 for i, values := range priv.Precomputed.CRTValues { 452 prime := priv.Primes[2+i] 453 m2.Exp(c, values.Exp, prime) 454 m2.Sub(m2, m) 455 m2.Mul(m2, values.Coeff) 456 m2.Mod(m2, prime) 457 if m2.Sign() < 0 { 458 m2.Add(m2, prime) 459 } 460 m2.Mul(m2, values.R) 461 m.Add(m, m2) 462 } 463 } 464 465 if ir != nil { 466 // Unblind. 467 m.Mul(m, ir) 468 m.Mod(m, priv.N) 469 } 470 471 return 472 } 473 474 // DecryptOAEP decrypts ciphertext using RSA-OAEP. 475 // If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks. 476 func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) { 477 if err := checkPub(&priv.PublicKey); err != nil { 478 return nil, err 479 } 480 k := (priv.N.BitLen() + 7) / 8 481 if len(ciphertext) > k || 482 k < hash.Size()*2+2 { 483 err = ErrDecryption 484 return 485 } 486 487 c := new(big.Int).SetBytes(ciphertext) 488 489 m, err := decrypt(random, priv, c) 490 if err != nil { 491 return 492 } 493 494 hash.Write(label) 495 lHash := hash.Sum(nil) 496 hash.Reset() 497 498 // Converting the plaintext number to bytes will strip any 499 // leading zeros so we may have to left pad. We do this unconditionally 500 // to avoid leaking timing information. (Although we still probably 501 // leak the number of leading zeros. It's not clear that we can do 502 // anything about this.) 503 em := leftPad(m.Bytes(), k) 504 505 firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) 506 507 seed := em[1 : hash.Size()+1] 508 db := em[hash.Size()+1:] 509 510 mgf1XOR(seed, hash, db) 511 mgf1XOR(db, hash, seed) 512 513 lHash2 := db[0:hash.Size()] 514 515 // We have to validate the plaintext in constant time in order to avoid 516 // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal 517 // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 518 // v2.0. In J. Kilian, editor, Advances in Cryptology. 519 lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) 520 521 // The remainder of the plaintext must be zero or more 0x00, followed 522 // by 0x01, followed by the message. 523 // lookingForIndex: 1 iff we are still looking for the 0x01 524 // index: the offset of the first 0x01 byte 525 // invalid: 1 iff we saw a non-zero byte before the 0x01. 526 var lookingForIndex, index, invalid int 527 lookingForIndex = 1 528 rest := db[hash.Size():] 529 530 for i := 0; i < len(rest); i++ { 531 equals0 := subtle.ConstantTimeByteEq(rest[i], 0) 532 equals1 := subtle.ConstantTimeByteEq(rest[i], 1) 533 index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) 534 lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) 535 invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) 536 } 537 538 if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { 539 err = ErrDecryption 540 return 541 } 542 543 msg = rest[index+1:] 544 return 545 } 546 547 // leftPad returns a new slice of length size. The contents of input are right 548 // aligned in the new slice. 549 func leftPad(input []byte, size int) (out []byte) { 550 n := len(input) 551 if n > size { 552 n = size 553 } 554 out = make([]byte, size) 555 copy(out[len(out)-n:], input) 556 return 557 }