github.com/hbdrawn/golang@v0.0.0-20141214014649-6b835209aba2/src/image/jpeg/scan.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package jpeg
     6  
     7  import (
     8  	"image"
     9  )
    10  
    11  // makeImg allocates and initializes the destination image.
    12  func (d *decoder) makeImg(h0, v0, mxx, myy int) {
    13  	if d.nComp == nGrayComponent {
    14  		m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy))
    15  		d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray)
    16  		return
    17  	}
    18  	var subsampleRatio image.YCbCrSubsampleRatio
    19  	switch {
    20  	case h0 == 1 && v0 == 1:
    21  		subsampleRatio = image.YCbCrSubsampleRatio444
    22  	case h0 == 1 && v0 == 2:
    23  		subsampleRatio = image.YCbCrSubsampleRatio440
    24  	case h0 == 2 && v0 == 1:
    25  		subsampleRatio = image.YCbCrSubsampleRatio422
    26  	case h0 == 2 && v0 == 2:
    27  		subsampleRatio = image.YCbCrSubsampleRatio420
    28  	default:
    29  		panic("unreachable")
    30  	}
    31  	m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio)
    32  	d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr)
    33  }
    34  
    35  // Specified in section B.2.3.
    36  func (d *decoder) processSOS(n int) error {
    37  	if d.nComp == 0 {
    38  		return FormatError("missing SOF marker")
    39  	}
    40  	if n < 6 || 4+2*d.nComp < n || n%2 != 0 {
    41  		return FormatError("SOS has wrong length")
    42  	}
    43  	if err := d.readFull(d.tmp[:n]); err != nil {
    44  		return err
    45  	}
    46  	nComp := int(d.tmp[0])
    47  	if n != 4+2*nComp {
    48  		return FormatError("SOS length inconsistent with number of components")
    49  	}
    50  	var scan [nColorComponent]struct {
    51  		compIndex uint8
    52  		td        uint8 // DC table selector.
    53  		ta        uint8 // AC table selector.
    54  	}
    55  	for i := 0; i < nComp; i++ {
    56  		cs := d.tmp[1+2*i] // Component selector.
    57  		compIndex := -1
    58  		for j, comp := range d.comp {
    59  			if cs == comp.c {
    60  				compIndex = j
    61  			}
    62  		}
    63  		if compIndex < 0 {
    64  			return FormatError("unknown component selector")
    65  		}
    66  		scan[i].compIndex = uint8(compIndex)
    67  		scan[i].td = d.tmp[2+2*i] >> 4
    68  		if scan[i].td > maxTh {
    69  			return FormatError("bad Td value")
    70  		}
    71  		scan[i].ta = d.tmp[2+2*i] & 0x0f
    72  		if scan[i].ta > maxTh {
    73  			return FormatError("bad Ta value")
    74  		}
    75  	}
    76  
    77  	// zigStart and zigEnd are the spectral selection bounds.
    78  	// ah and al are the successive approximation high and low values.
    79  	// The spec calls these values Ss, Se, Ah and Al.
    80  	//
    81  	// For progressive JPEGs, these are the two more-or-less independent
    82  	// aspects of progression. Spectral selection progression is when not
    83  	// all of a block's 64 DCT coefficients are transmitted in one pass.
    84  	// For example, three passes could transmit coefficient 0 (the DC
    85  	// component), coefficients 1-5, and coefficients 6-63, in zig-zag
    86  	// order. Successive approximation is when not all of the bits of a
    87  	// band of coefficients are transmitted in one pass. For example,
    88  	// three passes could transmit the 6 most significant bits, followed
    89  	// by the second-least significant bit, followed by the least
    90  	// significant bit.
    91  	//
    92  	// For baseline JPEGs, these parameters are hard-coded to 0/63/0/0.
    93  	zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0)
    94  	if d.progressive {
    95  		zigStart = int32(d.tmp[1+2*nComp])
    96  		zigEnd = int32(d.tmp[2+2*nComp])
    97  		ah = uint32(d.tmp[3+2*nComp] >> 4)
    98  		al = uint32(d.tmp[3+2*nComp] & 0x0f)
    99  		if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd {
   100  			return FormatError("bad spectral selection bounds")
   101  		}
   102  		if zigStart != 0 && nComp != 1 {
   103  			return FormatError("progressive AC coefficients for more than one component")
   104  		}
   105  		if ah != 0 && ah != al+1 {
   106  			return FormatError("bad successive approximation values")
   107  		}
   108  	}
   109  
   110  	// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
   111  	h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components.
   112  	mxx := (d.width + 8*h0 - 1) / (8 * h0)
   113  	myy := (d.height + 8*v0 - 1) / (8 * v0)
   114  	if d.img1 == nil && d.img3 == nil {
   115  		d.makeImg(h0, v0, mxx, myy)
   116  	}
   117  	if d.progressive {
   118  		for i := 0; i < nComp; i++ {
   119  			compIndex := scan[i].compIndex
   120  			if d.progCoeffs[compIndex] == nil {
   121  				d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v)
   122  			}
   123  		}
   124  	}
   125  
   126  	d.bits = bits{}
   127  	mcu, expectedRST := 0, uint8(rst0Marker)
   128  	var (
   129  		// b is the decoded coefficients, in natural (not zig-zag) order.
   130  		b  block
   131  		dc [nColorComponent]int32
   132  		// bx and by are the location of the current (in terms of 8x8 blocks).
   133  		// For example, with 4:2:0 chroma subsampling, the block whose top left
   134  		// pixel co-ordinates are (16, 8) is the third block in the first row:
   135  		// bx is 2 and by is 0, even though the pixel is in the second MCU.
   136  		bx, by     int
   137  		blockCount int
   138  	)
   139  	for my := 0; my < myy; my++ {
   140  		for mx := 0; mx < mxx; mx++ {
   141  			for i := 0; i < nComp; i++ {
   142  				compIndex := scan[i].compIndex
   143  				qt := &d.quant[d.comp[compIndex].tq]
   144  				for j := 0; j < d.comp[compIndex].h*d.comp[compIndex].v; j++ {
   145  					// The blocks are traversed one MCU at a time. For 4:2:0 chroma
   146  					// subsampling, there are four Y 8x8 blocks in every 16x16 MCU.
   147  					//
   148  					// For a baseline 32x16 pixel image, the Y blocks visiting order is:
   149  					//	0 1 4 5
   150  					//	2 3 6 7
   151  					//
   152  					// For progressive images, the interleaved scans (those with nComp > 1)
   153  					// are traversed as above, but non-interleaved scans are traversed left
   154  					// to right, top to bottom:
   155  					//	0 1 2 3
   156  					//	4 5 6 7
   157  					// Only DC scans (zigStart == 0) can be interleaved. AC scans must have
   158  					// only one component.
   159  					//
   160  					// To further complicate matters, for non-interleaved scans, there is no
   161  					// data for any blocks that are inside the image at the MCU level but
   162  					// outside the image at the pixel level. For example, a 24x16 pixel 4:2:0
   163  					// progressive image consists of two 16x16 MCUs. The interleaved scans
   164  					// will process 8 Y blocks:
   165  					//	0 1 4 5
   166  					//	2 3 6 7
   167  					// The non-interleaved scans will process only 6 Y blocks:
   168  					//	0 1 2
   169  					//	3 4 5
   170  					if nComp != 1 {
   171  						bx, by = d.comp[compIndex].h*mx, d.comp[compIndex].v*my
   172  						if h0 == 1 {
   173  							by += j
   174  						} else {
   175  							bx += j % 2
   176  							by += j / 2
   177  						}
   178  					} else {
   179  						q := mxx * d.comp[compIndex].h
   180  						bx = blockCount % q
   181  						by = blockCount / q
   182  						blockCount++
   183  						if bx*8 >= d.width || by*8 >= d.height {
   184  							continue
   185  						}
   186  					}
   187  
   188  					// Load the previous partially decoded coefficients, if applicable.
   189  					if d.progressive {
   190  						b = d.progCoeffs[compIndex][by*mxx*d.comp[compIndex].h+bx]
   191  					} else {
   192  						b = block{}
   193  					}
   194  
   195  					if ah != 0 {
   196  						if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil {
   197  							return err
   198  						}
   199  					} else {
   200  						zig := zigStart
   201  						if zig == 0 {
   202  							zig++
   203  							// Decode the DC coefficient, as specified in section F.2.2.1.
   204  							value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td])
   205  							if err != nil {
   206  								return err
   207  							}
   208  							if value > 16 {
   209  								return UnsupportedError("excessive DC component")
   210  							}
   211  							dcDelta, err := d.receiveExtend(value)
   212  							if err != nil {
   213  								return err
   214  							}
   215  							dc[compIndex] += dcDelta
   216  							b[0] = dc[compIndex] << al
   217  						}
   218  
   219  						if zig <= zigEnd && d.eobRun > 0 {
   220  							d.eobRun--
   221  						} else {
   222  							// Decode the AC coefficients, as specified in section F.2.2.2.
   223  							huff := &d.huff[acTable][scan[i].ta]
   224  							for ; zig <= zigEnd; zig++ {
   225  								value, err := d.decodeHuffman(huff)
   226  								if err != nil {
   227  									return err
   228  								}
   229  								val0 := value >> 4
   230  								val1 := value & 0x0f
   231  								if val1 != 0 {
   232  									zig += int32(val0)
   233  									if zig > zigEnd {
   234  										break
   235  									}
   236  									ac, err := d.receiveExtend(val1)
   237  									if err != nil {
   238  										return err
   239  									}
   240  									b[unzig[zig]] = ac << al
   241  								} else {
   242  									if val0 != 0x0f {
   243  										d.eobRun = uint16(1 << val0)
   244  										if val0 != 0 {
   245  											bits, err := d.decodeBits(int32(val0))
   246  											if err != nil {
   247  												return err
   248  											}
   249  											d.eobRun |= uint16(bits)
   250  										}
   251  										d.eobRun--
   252  										break
   253  									}
   254  									zig += 0x0f
   255  								}
   256  							}
   257  						}
   258  					}
   259  
   260  					if d.progressive {
   261  						if zigEnd != blockSize-1 || al != 0 {
   262  							// We haven't completely decoded this 8x8 block. Save the coefficients.
   263  							d.progCoeffs[compIndex][by*mxx*d.comp[compIndex].h+bx] = b
   264  							// At this point, we could execute the rest of the loop body to dequantize and
   265  							// perform the inverse DCT, to save early stages of a progressive image to the
   266  							// *image.YCbCr buffers (the whole point of progressive encoding), but in Go,
   267  							// the jpeg.Decode function does not return until the entire image is decoded,
   268  							// so we "continue" here to avoid wasted computation.
   269  							continue
   270  						}
   271  					}
   272  
   273  					// Dequantize, perform the inverse DCT and store the block to the image.
   274  					for zig := 0; zig < blockSize; zig++ {
   275  						b[unzig[zig]] *= qt[zig]
   276  					}
   277  					idct(&b)
   278  					dst, stride := []byte(nil), 0
   279  					if d.nComp == nGrayComponent {
   280  						dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride
   281  					} else {
   282  						switch compIndex {
   283  						case 0:
   284  							dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride
   285  						case 1:
   286  							dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride
   287  						case 2:
   288  							dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride
   289  						default:
   290  							return UnsupportedError("too many components")
   291  						}
   292  					}
   293  					// Level shift by +128, clip to [0, 255], and write to dst.
   294  					for y := 0; y < 8; y++ {
   295  						y8 := y * 8
   296  						yStride := y * stride
   297  						for x := 0; x < 8; x++ {
   298  							c := b[y8+x]
   299  							if c < -128 {
   300  								c = 0
   301  							} else if c > 127 {
   302  								c = 255
   303  							} else {
   304  								c += 128
   305  							}
   306  							dst[yStride+x] = uint8(c)
   307  						}
   308  					}
   309  				} // for j
   310  			} // for i
   311  			mcu++
   312  			if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
   313  				// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
   314  				// but this one assumes well-formed input, and hence the restart marker follows immediately.
   315  				if err := d.readFull(d.tmp[:2]); err != nil {
   316  					return err
   317  				}
   318  				if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
   319  					return FormatError("bad RST marker")
   320  				}
   321  				expectedRST++
   322  				if expectedRST == rst7Marker+1 {
   323  					expectedRST = rst0Marker
   324  				}
   325  				// Reset the Huffman decoder.
   326  				d.bits = bits{}
   327  				// Reset the DC components, as per section F.2.1.3.1.
   328  				dc = [nColorComponent]int32{}
   329  				// Reset the progressive decoder state, as per section G.1.2.2.
   330  				d.eobRun = 0
   331  			}
   332  		} // for mx
   333  	} // for my
   334  
   335  	return nil
   336  }
   337  
   338  // refine decodes a successive approximation refinement block, as specified in
   339  // section G.1.2.
   340  func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error {
   341  	// Refining a DC component is trivial.
   342  	if zigStart == 0 {
   343  		if zigEnd != 0 {
   344  			panic("unreachable")
   345  		}
   346  		bit, err := d.decodeBit()
   347  		if err != nil {
   348  			return err
   349  		}
   350  		if bit {
   351  			b[0] |= delta
   352  		}
   353  		return nil
   354  	}
   355  
   356  	// Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3.
   357  	zig := zigStart
   358  	if d.eobRun == 0 {
   359  	loop:
   360  		for ; zig <= zigEnd; zig++ {
   361  			z := int32(0)
   362  			value, err := d.decodeHuffman(h)
   363  			if err != nil {
   364  				return err
   365  			}
   366  			val0 := value >> 4
   367  			val1 := value & 0x0f
   368  
   369  			switch val1 {
   370  			case 0:
   371  				if val0 != 0x0f {
   372  					d.eobRun = uint16(1 << val0)
   373  					if val0 != 0 {
   374  						bits, err := d.decodeBits(int32(val0))
   375  						if err != nil {
   376  							return err
   377  						}
   378  						d.eobRun |= uint16(bits)
   379  					}
   380  					break loop
   381  				}
   382  			case 1:
   383  				z = delta
   384  				bit, err := d.decodeBit()
   385  				if err != nil {
   386  					return err
   387  				}
   388  				if !bit {
   389  					z = -z
   390  				}
   391  			default:
   392  				return FormatError("unexpected Huffman code")
   393  			}
   394  
   395  			zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta)
   396  			if err != nil {
   397  				return err
   398  			}
   399  			if zig > zigEnd {
   400  				return FormatError("too many coefficients")
   401  			}
   402  			if z != 0 {
   403  				b[unzig[zig]] = z
   404  			}
   405  		}
   406  	}
   407  	if d.eobRun > 0 {
   408  		d.eobRun--
   409  		if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil {
   410  			return err
   411  		}
   412  	}
   413  	return nil
   414  }
   415  
   416  // refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0,
   417  // the first nz zero entries are skipped over.
   418  func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) {
   419  	for ; zig <= zigEnd; zig++ {
   420  		u := unzig[zig]
   421  		if b[u] == 0 {
   422  			if nz == 0 {
   423  				break
   424  			}
   425  			nz--
   426  			continue
   427  		}
   428  		bit, err := d.decodeBit()
   429  		if err != nil {
   430  			return 0, err
   431  		}
   432  		if !bit {
   433  			continue
   434  		}
   435  		if b[u] >= 0 {
   436  			b[u] += delta
   437  		} else {
   438  			b[u] -= delta
   439  		}
   440  	}
   441  	return zig, nil
   442  }