github.com/hbdrawn/golang@v0.0.0-20141214014649-6b835209aba2/src/strconv/decimal.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Multiprecision decimal numbers. 6 // For floating-point formatting only; not general purpose. 7 // Only operations are assign and (binary) left/right shift. 8 // Can do binary floating point in multiprecision decimal precisely 9 // because 2 divides 10; cannot do decimal floating point 10 // in multiprecision binary precisely. 11 12 package strconv 13 14 type decimal struct { 15 d [800]byte // digits 16 nd int // number of digits used 17 dp int // decimal point 18 neg bool 19 trunc bool // discarded nonzero digits beyond d[:nd] 20 } 21 22 func (a *decimal) String() string { 23 n := 10 + a.nd 24 if a.dp > 0 { 25 n += a.dp 26 } 27 if a.dp < 0 { 28 n += -a.dp 29 } 30 31 buf := make([]byte, n) 32 w := 0 33 switch { 34 case a.nd == 0: 35 return "0" 36 37 case a.dp <= 0: 38 // zeros fill space between decimal point and digits 39 buf[w] = '0' 40 w++ 41 buf[w] = '.' 42 w++ 43 w += digitZero(buf[w : w+-a.dp]) 44 w += copy(buf[w:], a.d[0:a.nd]) 45 46 case a.dp < a.nd: 47 // decimal point in middle of digits 48 w += copy(buf[w:], a.d[0:a.dp]) 49 buf[w] = '.' 50 w++ 51 w += copy(buf[w:], a.d[a.dp:a.nd]) 52 53 default: 54 // zeros fill space between digits and decimal point 55 w += copy(buf[w:], a.d[0:a.nd]) 56 w += digitZero(buf[w : w+a.dp-a.nd]) 57 } 58 return string(buf[0:w]) 59 } 60 61 func digitZero(dst []byte) int { 62 for i := range dst { 63 dst[i] = '0' 64 } 65 return len(dst) 66 } 67 68 // trim trailing zeros from number. 69 // (They are meaningless; the decimal point is tracked 70 // independent of the number of digits.) 71 func trim(a *decimal) { 72 for a.nd > 0 && a.d[a.nd-1] == '0' { 73 a.nd-- 74 } 75 if a.nd == 0 { 76 a.dp = 0 77 } 78 } 79 80 // Assign v to a. 81 func (a *decimal) Assign(v uint64) { 82 var buf [24]byte 83 84 // Write reversed decimal in buf. 85 n := 0 86 for v > 0 { 87 v1 := v / 10 88 v -= 10 * v1 89 buf[n] = byte(v + '0') 90 n++ 91 v = v1 92 } 93 94 // Reverse again to produce forward decimal in a.d. 95 a.nd = 0 96 for n--; n >= 0; n-- { 97 a.d[a.nd] = buf[n] 98 a.nd++ 99 } 100 a.dp = a.nd 101 trim(a) 102 } 103 104 // Maximum shift that we can do in one pass without overflow. 105 // Signed int has 31 bits, and we have to be able to accommodate 9<<k. 106 const maxShift = 27 107 108 // Binary shift right (* 2) by k bits. k <= maxShift to avoid overflow. 109 func rightShift(a *decimal, k uint) { 110 r := 0 // read pointer 111 w := 0 // write pointer 112 113 // Pick up enough leading digits to cover first shift. 114 n := 0 115 for ; n>>k == 0; r++ { 116 if r >= a.nd { 117 if n == 0 { 118 // a == 0; shouldn't get here, but handle anyway. 119 a.nd = 0 120 return 121 } 122 for n>>k == 0 { 123 n = n * 10 124 r++ 125 } 126 break 127 } 128 c := int(a.d[r]) 129 n = n*10 + c - '0' 130 } 131 a.dp -= r - 1 132 133 // Pick up a digit, put down a digit. 134 for ; r < a.nd; r++ { 135 c := int(a.d[r]) 136 dig := n >> k 137 n -= dig << k 138 a.d[w] = byte(dig + '0') 139 w++ 140 n = n*10 + c - '0' 141 } 142 143 // Put down extra digits. 144 for n > 0 { 145 dig := n >> k 146 n -= dig << k 147 if w < len(a.d) { 148 a.d[w] = byte(dig + '0') 149 w++ 150 } else if dig > 0 { 151 a.trunc = true 152 } 153 n = n * 10 154 } 155 156 a.nd = w 157 trim(a) 158 } 159 160 // Cheat sheet for left shift: table indexed by shift count giving 161 // number of new digits that will be introduced by that shift. 162 // 163 // For example, leftcheats[4] = {2, "625"}. That means that 164 // if we are shifting by 4 (multiplying by 16), it will add 2 digits 165 // when the string prefix is "625" through "999", and one fewer digit 166 // if the string prefix is "000" through "624". 167 // 168 // Credit for this trick goes to Ken. 169 170 type leftCheat struct { 171 delta int // number of new digits 172 cutoff string // minus one digit if original < a. 173 } 174 175 var leftcheats = []leftCheat{ 176 // Leading digits of 1/2^i = 5^i. 177 // 5^23 is not an exact 64-bit floating point number, 178 // so have to use bc for the math. 179 /* 180 seq 27 | sed 's/^/5^/' | bc | 181 awk 'BEGIN{ print "\tleftCheat{ 0, \"\" }," } 182 { 183 log2 = log(2)/log(10) 184 printf("\tleftCheat{ %d, \"%s\" },\t// * %d\n", 185 int(log2*NR+1), $0, 2**NR) 186 }' 187 */ 188 {0, ""}, 189 {1, "5"}, // * 2 190 {1, "25"}, // * 4 191 {1, "125"}, // * 8 192 {2, "625"}, // * 16 193 {2, "3125"}, // * 32 194 {2, "15625"}, // * 64 195 {3, "78125"}, // * 128 196 {3, "390625"}, // * 256 197 {3, "1953125"}, // * 512 198 {4, "9765625"}, // * 1024 199 {4, "48828125"}, // * 2048 200 {4, "244140625"}, // * 4096 201 {4, "1220703125"}, // * 8192 202 {5, "6103515625"}, // * 16384 203 {5, "30517578125"}, // * 32768 204 {5, "152587890625"}, // * 65536 205 {6, "762939453125"}, // * 131072 206 {6, "3814697265625"}, // * 262144 207 {6, "19073486328125"}, // * 524288 208 {7, "95367431640625"}, // * 1048576 209 {7, "476837158203125"}, // * 2097152 210 {7, "2384185791015625"}, // * 4194304 211 {7, "11920928955078125"}, // * 8388608 212 {8, "59604644775390625"}, // * 16777216 213 {8, "298023223876953125"}, // * 33554432 214 {8, "1490116119384765625"}, // * 67108864 215 {9, "7450580596923828125"}, // * 134217728 216 } 217 218 // Is the leading prefix of b lexicographically less than s? 219 func prefixIsLessThan(b []byte, s string) bool { 220 for i := 0; i < len(s); i++ { 221 if i >= len(b) { 222 return true 223 } 224 if b[i] != s[i] { 225 return b[i] < s[i] 226 } 227 } 228 return false 229 } 230 231 // Binary shift left (/ 2) by k bits. k <= maxShift to avoid overflow. 232 func leftShift(a *decimal, k uint) { 233 delta := leftcheats[k].delta 234 if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) { 235 delta-- 236 } 237 238 r := a.nd // read index 239 w := a.nd + delta // write index 240 n := 0 241 242 // Pick up a digit, put down a digit. 243 for r--; r >= 0; r-- { 244 n += (int(a.d[r]) - '0') << k 245 quo := n / 10 246 rem := n - 10*quo 247 w-- 248 if w < len(a.d) { 249 a.d[w] = byte(rem + '0') 250 } else if rem != 0 { 251 a.trunc = true 252 } 253 n = quo 254 } 255 256 // Put down extra digits. 257 for n > 0 { 258 quo := n / 10 259 rem := n - 10*quo 260 w-- 261 if w < len(a.d) { 262 a.d[w] = byte(rem + '0') 263 } else if rem != 0 { 264 a.trunc = true 265 } 266 n = quo 267 } 268 269 a.nd += delta 270 if a.nd >= len(a.d) { 271 a.nd = len(a.d) 272 } 273 a.dp += delta 274 trim(a) 275 } 276 277 // Binary shift left (k > 0) or right (k < 0). 278 func (a *decimal) Shift(k int) { 279 switch { 280 case a.nd == 0: 281 // nothing to do: a == 0 282 case k > 0: 283 for k > maxShift { 284 leftShift(a, maxShift) 285 k -= maxShift 286 } 287 leftShift(a, uint(k)) 288 case k < 0: 289 for k < -maxShift { 290 rightShift(a, maxShift) 291 k += maxShift 292 } 293 rightShift(a, uint(-k)) 294 } 295 } 296 297 // If we chop a at nd digits, should we round up? 298 func shouldRoundUp(a *decimal, nd int) bool { 299 if nd < 0 || nd >= a.nd { 300 return false 301 } 302 if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even 303 // if we truncated, a little higher than what's recorded - always round up 304 if a.trunc { 305 return true 306 } 307 return nd > 0 && (a.d[nd-1]-'0')%2 != 0 308 } 309 // not halfway - digit tells all 310 return a.d[nd] >= '5' 311 } 312 313 // Round a to nd digits (or fewer). 314 // If nd is zero, it means we're rounding 315 // just to the left of the digits, as in 316 // 0.09 -> 0.1. 317 func (a *decimal) Round(nd int) { 318 if nd < 0 || nd >= a.nd { 319 return 320 } 321 if shouldRoundUp(a, nd) { 322 a.RoundUp(nd) 323 } else { 324 a.RoundDown(nd) 325 } 326 } 327 328 // Round a down to nd digits (or fewer). 329 func (a *decimal) RoundDown(nd int) { 330 if nd < 0 || nd >= a.nd { 331 return 332 } 333 a.nd = nd 334 trim(a) 335 } 336 337 // Round a up to nd digits (or fewer). 338 func (a *decimal) RoundUp(nd int) { 339 if nd < 0 || nd >= a.nd { 340 return 341 } 342 343 // round up 344 for i := nd - 1; i >= 0; i-- { 345 c := a.d[i] 346 if c < '9' { // can stop after this digit 347 a.d[i]++ 348 a.nd = i + 1 349 return 350 } 351 } 352 353 // Number is all 9s. 354 // Change to single 1 with adjusted decimal point. 355 a.d[0] = '1' 356 a.nd = 1 357 a.dp++ 358 } 359 360 // Extract integer part, rounded appropriately. 361 // No guarantees about overflow. 362 func (a *decimal) RoundedInteger() uint64 { 363 if a.dp > 20 { 364 return 0xFFFFFFFFFFFFFFFF 365 } 366 var i int 367 n := uint64(0) 368 for i = 0; i < a.dp && i < a.nd; i++ { 369 n = n*10 + uint64(a.d[i]-'0') 370 } 371 for ; i < a.dp; i++ { 372 n *= 10 373 } 374 if shouldRoundUp(a, a.dp) { 375 n++ 376 } 377 return n 378 }