github.com/hellobchain/newcryptosm@v0.0.0-20221019060107-edb949a317e9/ecdsa/ecdsa.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
     6  // defined in FIPS 186-3.
     7  //
     8  // This implementation  derives the nonce from an AES-CTR CSPRNG keyed by
     9  // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by
    10  // a result of Coron; the AES-CTR stream is IRO under standard assumptions.
    11  package ecdsa
    12  
    13  // References:
    14  //   [NSA]: Suite B implementer's guide to FIPS 186-3,
    15  //     http://www.nsa.gov/ia/_files/ecdsa.pdf
    16  //   [SECG]: SECG, SEC1
    17  //     http://www.secg.org/sec1-v2.pdf
    18  
    19  import (
    20  	"crypto"
    21  	"crypto/aes"
    22  	"crypto/cipher"
    23  	"crypto/elliptic"
    24  	"crypto/sha512"
    25  	"encoding/asn1"
    26  	"errors"
    27  	"io"
    28  	"math/big"
    29  )
    30  
    31  func IsSM2(params *elliptic.CurveParams) bool {
    32  	if params.Params().Name == "SM2" {
    33  		return true
    34  	}
    35  	return false
    36  }
    37  
    38  // A invertible implements fast inverse mod Curve.Params().N
    39  type invertible interface {
    40  	// Inverse returns the inverse of k in GF(P)
    41  	Inverse(k *big.Int) *big.Int
    42  }
    43  
    44  // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point)
    45  type combinedMult interface {
    46  	CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
    47  }
    48  
    49  const (
    50  	aesIV = "IV for ECDSA CTR"
    51  )
    52  
    53  // PublicKey represents an ECDSA public key.
    54  type PublicKey struct {
    55  	elliptic.Curve
    56  	X, Y *big.Int
    57  }
    58  
    59  // PrivateKey represents an ECDSA private key.
    60  type PrivateKey struct {
    61  	PublicKey
    62  	D *big.Int
    63  }
    64  
    65  type ecdsaSignature struct {
    66  	R, S *big.Int
    67  }
    68  
    69  // Public returns the public key corresponding to priv.
    70  func (priv *PrivateKey) Public() crypto.PublicKey {
    71  	return &priv.PublicKey
    72  }
    73  
    74  // Sign signs digest with priv, reading randomness from rand. The opts argument
    75  // is not currently used but, in keeping with the crypto.Signer interface,
    76  // should be the hash function used to digest the message.
    77  //
    78  // This method implements crypto.Signer, which is an interface to support keys
    79  // where the private part is kept in, for example, a hardware module. Common
    80  // uses should use the Sign function in this package directly.
    81  func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
    82  	r, s, err := Sign(rand, priv, digest)
    83  	if err != nil {
    84  		return nil, err
    85  	}
    86  
    87  	return asn1.Marshal(ecdsaSignature{r, s})
    88  }
    89  
    90  var one = new(big.Int).SetInt64(1)
    91  
    92  // randFieldElement returns a random element of the field underlying the given
    93  // curve using the procedure given in [NSA] A.2.1.
    94  func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
    95  	params := c.Params()
    96  	b := make([]byte, params.BitSize/8+8)
    97  	_, err = io.ReadFull(rand, b)
    98  	if err != nil {
    99  		return
   100  	}
   101  
   102  	k = new(big.Int).SetBytes(b)
   103  	n := new(big.Int).Sub(params.N, one)
   104  	k.Mod(k, n)
   105  	k.Add(k, one)
   106  	return
   107  }
   108  
   109  // GenerateKey generates a public and private key pair.
   110  func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
   111  	k, err := randFieldElement(c, rand)
   112  	if err != nil {
   113  		return nil, err
   114  	}
   115  
   116  	priv := new(PrivateKey)
   117  	priv.PublicKey.Curve = c
   118  	priv.D = k
   119  	priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
   120  	return priv, nil
   121  }
   122  
   123  // hashToInt converts a hash value to an integer. There is some disagreement
   124  // about how this is done. [NSA] suggests that this is done in the obvious
   125  // manner, but [SECG] truncates the hash to the bit-length of the curve order
   126  // first. We follow [SECG] because that's what OpenSSL does. Additionally,
   127  // OpenSSL right shifts excess bits from the number if the hash is too large
   128  // and we mirror that too.
   129  func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
   130  	orderBits := c.Params().N.BitLen()
   131  	orderBytes := (orderBits + 7) / 8
   132  	if len(hash) > orderBytes {
   133  		hash = hash[:orderBytes]
   134  	}
   135  
   136  	ret := new(big.Int).SetBytes(hash)
   137  	excess := len(hash)*8 - orderBits
   138  	if excess > 0 {
   139  		ret.Rsh(ret, uint(excess))
   140  	}
   141  	return ret
   142  }
   143  
   144  // fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
   145  // This has better constant-time properties than Euclid's method (implemented
   146  // in math/big.Int.ModInverse) although math/big itself isn't strictly
   147  // constant-time so it's not perfect.
   148  func fermatInverse(k, N *big.Int) *big.Int {
   149  	two := big.NewInt(2)
   150  	nMinus2 := new(big.Int).Sub(N, two)
   151  	return new(big.Int).Exp(k, nMinus2, N)
   152  }
   153  
   154  var errZeroParam = errors.New("zero parameter")
   155  
   156  // Sign signs a hash (which should be the result of hashing a larger message)
   157  // using the private key, priv. If the hash is longer than the bit-length of the
   158  // private key's curve order, the hash will be truncated to that length.  It
   159  // returns the signature as a pair of integers. The security of the private key
   160  // depends on the entropy of rand.
   161  func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
   162  	// randutil.MaybeReadByte(rand)
   163  
   164  	// Get min(log2(q) / 2, 256) bits of entropy from rand.
   165  	entropylen := (priv.Curve.Params().BitSize + 7) / 16
   166  	if entropylen > 32 {
   167  		entropylen = 32
   168  	}
   169  	entropy := make([]byte, entropylen)
   170  	_, err = io.ReadFull(rand, entropy)
   171  	if err != nil {
   172  		return
   173  	}
   174  
   175  	// Initialize an SHA-512 hash context; digest ...
   176  	md := sha512.New()
   177  	md.Write(priv.D.Bytes()) // the private key,
   178  	md.Write(entropy)        // the entropy,
   179  	md.Write(hash)           // and the input hash;
   180  	key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512),
   181  	// which is an indifferentiable MAC.
   182  
   183  	// Create an AES-CTR instance to use as a CSPRNG.
   184  	block, err := aes.NewCipher(key)
   185  	if err != nil {
   186  		return nil, nil, err
   187  	}
   188  
   189  	// Create a CSPRNG that xors a stream of zeros with
   190  	// the output of the AES-CTR instance.
   191  	csprng := cipher.StreamReader{
   192  		R: zeroReader,
   193  		S: cipher.NewCTR(block, []byte(aesIV)),
   194  	}
   195  
   196  	// See [NSA] 3.4.1
   197  	c := priv.PublicKey.Curve
   198  	N := c.Params().N
   199  	if N.Sign() == 0 {
   200  		return nil, nil, errZeroParam
   201  	}
   202  
   203  	var k *big.Int
   204  	var e *big.Int
   205  
   206  	if IsSM2(priv.Curve.Params()) {
   207  		e = GetE(&priv.PublicKey, hash)
   208  		for {
   209  			for {
   210  				k, err = randFieldElement(c, csprng)
   211  				if err != nil {
   212  					return nil, nil, err
   213  				}
   214  
   215  				r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
   216  				r.Add(r, e)
   217  				r.Mod(r, N)
   218  				if r.Sign() == 0 {
   219  					continue
   220  				}
   221  				if t := new(big.Int).Add(r, k); t.Cmp(N) == 0 {
   222  					continue
   223  				}
   224  				break
   225  			}
   226  
   227  			rD := new(big.Int).Mul(priv.D, r)
   228  			s = new(big.Int).Sub(k, rD)
   229  			d1 := new(big.Int).Add(priv.D, one)
   230  			var d1Inv *big.Int
   231  			if in, ok := priv.Curve.(invertible); ok {
   232  				d1Inv = in.Inverse(d1)
   233  			} else {
   234  				d1Inv = fermatInverse(d1, N) // N != 0
   235  			}
   236  			s.Mul(s, d1Inv)
   237  			s.Mod(s, N)
   238  			if s.Sign() != 0 {
   239  				break
   240  			}
   241  		}
   242  	} else {
   243  		e = hashToInt(hash, c)
   244  		var kInv *big.Int
   245  		for {
   246  			for {
   247  				k, err = randFieldElement(c, csprng)
   248  				if err != nil {
   249  					return nil, nil, err
   250  				}
   251  
   252  				if in, ok := priv.Curve.(invertible); ok {
   253  					kInv = in.Inverse(k)
   254  				} else {
   255  					kInv = fermatInverse(k, N) // N != 0
   256  				}
   257  
   258  				r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
   259  				r.Mod(r, N)
   260  				if r.Sign() != 0 {
   261  					break
   262  				}
   263  			}
   264  
   265  			s = new(big.Int).Mul(priv.D, r)
   266  			s.Add(s, e)
   267  			s.Mul(s, kInv)
   268  			s.Mod(s, N) // N != 0
   269  			if s.Sign() != 0 {
   270  				break
   271  			}
   272  		}
   273  	}
   274  
   275  	return r, s, nil
   276  }
   277  
   278  // Verify verifies the signature in r, s of hash using the public key, pub. Its
   279  // return value records whether the signature is valid.
   280  func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
   281  	// See [NSA] 3.4.2
   282  	c := pub.Curve
   283  	N := c.Params().N
   284  
   285  	if r.Sign() <= 0 || s.Sign() <= 0 {
   286  		return false
   287  	}
   288  	if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
   289  		return false
   290  	}
   291  	var e *big.Int
   292  	if IsSM2(pub.Curve.Params()) {
   293  		e = GetE(pub, hash)
   294  		t := new(big.Int).Add(r, s)
   295  		t.Mod(t, N)
   296  		if N.Sign() == 0 {
   297  			return false
   298  		}
   299  		// Check if implements s*g + t*p
   300  		var x *big.Int
   301  		if opt, ok := c.(combinedMult); ok {
   302  			x, _ = opt.CombinedMult(pub.X, pub.Y, s.Bytes(), t.Bytes())
   303  		} else {
   304  			x1, y1 := c.ScalarBaseMult(s.Bytes())
   305  			x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
   306  			x, _ = c.Add(x1, y1, x2, y2)
   307  		}
   308  
   309  		x.Add(x, e)
   310  		x.Mod(x, N)
   311  		return x.Cmp(r) == 0
   312  	}
   313  	e = hashToInt(hash, c)
   314  	var w *big.Int
   315  	if in, ok := c.(invertible); ok {
   316  		w = in.Inverse(s)
   317  	} else {
   318  		w = new(big.Int).ModInverse(s, N)
   319  	}
   320  
   321  	u1 := e.Mul(e, w)
   322  	u1.Mod(u1, N)
   323  	u2 := w.Mul(r, w)
   324  	u2.Mod(u2, N)
   325  
   326  	// Check if implements S1*g + S2*p
   327  	var x, y *big.Int
   328  	if opt, ok := c.(combinedMult); ok {
   329  		x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
   330  	} else {
   331  		x1, y1 := c.ScalarBaseMult(u1.Bytes())
   332  		x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
   333  		x, y = c.Add(x1, y1, x2, y2)
   334  	}
   335  
   336  	if x.Sign() == 0 && y.Sign() == 0 {
   337  		return false
   338  	}
   339  	x.Mod(x, N)
   340  	return x.Cmp(r) == 0
   341  }
   342  
   343  type zr struct {
   344  	io.Reader
   345  }
   346  
   347  // Read replaces the contents of dst with zeros.
   348  func (z *zr) Read(dst []byte) (n int, err error) {
   349  	for i := range dst {
   350  		dst[i] = 0
   351  	}
   352  	return len(dst), nil
   353  }
   354  
   355  var zeroReader = &zr{}