github.com/hellobchain/newcryptosm@v0.0.0-20221019060107-edb949a317e9/http/server.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // HTTP server. See RFC 7230 through 7235. 6 7 package http 8 9 import ( 10 "bufio" 11 "bytes" 12 "context" 13 "errors" 14 "fmt" 15 "github.com/hellobchain/newcryptosm/tls" 16 "io" 17 "io/ioutil" 18 "log" 19 "net" 20 "net/textproto" 21 "net/url" 22 "os" 23 "path" 24 "runtime" 25 "sort" 26 "strconv" 27 "strings" 28 "sync" 29 "sync/atomic" 30 "time" 31 32 "golang.org/x/net/http/httpguts" 33 ) 34 35 // Errors used by the HTTP server. 36 var ( 37 // ErrBodyNotAllowed is returned by ResponseWriter.Write calls 38 // when the HTTP method or response code does not permit a 39 // body. 40 ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body") 41 42 // ErrHijacked is returned by ResponseWriter.Write calls when 43 // the underlying connection has been hijacked using the 44 // Hijacker interface. A zero-byte write on a hijacked 45 // connection will return ErrHijacked without any other side 46 // effects. 47 ErrHijacked = errors.New("http: connection has been hijacked") 48 49 // ErrContentLength is returned by ResponseWriter.Write calls 50 // when a Handler set a Content-Length response header with a 51 // declared size and then attempted to write more bytes than 52 // declared. 53 ErrContentLength = errors.New("http: wrote more than the declared Content-Length") 54 55 // Deprecated: ErrWriteAfterFlush is no longer returned by 56 // anything in the net/http package. Callers should not 57 // compare errors against this variable. 58 ErrWriteAfterFlush = errors.New("unused") 59 ) 60 61 // A Handler responds to an HTTP request. 62 // 63 // ServeHTTP should write reply headers and data to the ResponseWriter 64 // and then return. Returning signals that the request is finished; it 65 // is not valid to use the ResponseWriter or read from the 66 // Request.Body after or concurrently with the completion of the 67 // ServeHTTP call. 68 // 69 // Depending on the HTTP client software, HTTP protocol version, and 70 // any intermediaries between the client and the Go server, it may not 71 // be possible to read from the Request.Body after writing to the 72 // ResponseWriter. Cautious handlers should read the Request.Body 73 // first, and then reply. 74 // 75 // Except for reading the body, handlers should not modify the 76 // provided Request. 77 // 78 // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes 79 // that the effect of the panic was isolated to the active request. 80 // It recovers the panic, logs a stack trace to the server error log, 81 // and either closes the network connection or sends an HTTP/2 82 // RST_STREAM, depending on the HTTP protocol. To abort a handler so 83 // the client sees an interrupted response but the server doesn't log 84 // an error, panic with the value ErrAbortHandler. 85 type Handler interface { 86 ServeHTTP(ResponseWriter, *Request) 87 } 88 89 // A ResponseWriter interface is used by an HTTP handler to 90 // construct an HTTP response. 91 // 92 // A ResponseWriter may not be used after the Handler.ServeHTTP method 93 // has returned. 94 type ResponseWriter interface { 95 // Header returns the header map that will be sent by 96 // WriteHeader. The Header map also is the mechanism with which 97 // Handlers can set HTTP trailers. 98 // 99 // Changing the header map after a call to WriteHeader (or 100 // Write) has no effect unless the modified headers are 101 // trailers. 102 // 103 // There are two ways to set Trailers. The preferred way is to 104 // predeclare in the headers which trailers you will later 105 // send by setting the "Trailer" header to the names of the 106 // trailer keys which will come later. In this case, those 107 // keys of the Header map are treated as if they were 108 // trailers. See the example. The second way, for trailer 109 // keys not known to the Handler until after the first Write, 110 // is to prefix the Header map keys with the TrailerPrefix 111 // constant value. See TrailerPrefix. 112 // 113 // To suppress automatic response headers (such as "Date"), set 114 // their value to nil. 115 Header() Header 116 117 // Write writes the data to the connection as part of an HTTP reply. 118 // 119 // If WriteHeader has not yet been called, Write calls 120 // WriteHeader(http.StatusOK) before writing the data. If the Header 121 // does not contain a Content-Type line, Write adds a Content-Type set 122 // to the result of passing the initial 512 bytes of written data to 123 // DetectContentType. Additionally, if the total size of all written 124 // data is under a few KB and there are no Flush calls, the 125 // Content-Length header is added automatically. 126 // 127 // Depending on the HTTP protocol version and the client, calling 128 // Write or WriteHeader may prevent future reads on the 129 // Request.Body. For HTTP/1.x requests, handlers should read any 130 // needed request body data before writing the response. Once the 131 // headers have been flushed (due to either an explicit Flusher.Flush 132 // call or writing enough data to trigger a flush), the request body 133 // may be unavailable. For HTTP/2 requests, the Go HTTP server permits 134 // handlers to continue to read the request body while concurrently 135 // writing the response. However, such behavior may not be supported 136 // by all HTTP/2 clients. Handlers should read before writing if 137 // possible to maximize compatibility. 138 Write([]byte) (int, error) 139 140 // WriteHeader sends an HTTP response header with the provided 141 // status code. 142 // 143 // If WriteHeader is not called explicitly, the first call to Write 144 // will trigger an implicit WriteHeader(http.StatusOK). 145 // Thus explicit calls to WriteHeader are mainly used to 146 // send error codes. 147 // 148 // The provided code must be a valid HTTP 1xx-5xx status code. 149 // Only one header may be written. Go does not currently 150 // support sending user-defined 1xx informational headers, 151 // with the exception of 100-continue response header that the 152 // Server sends automatically when the Request.Body is read. 153 WriteHeader(statusCode int) 154 } 155 156 // The Flusher interface is implemented by ResponseWriters that allow 157 // an HTTP handler to flush buffered data to the client. 158 // 159 // The default HTTP/1.x and HTTP/2 ResponseWriter implementations 160 // support Flusher, but ResponseWriter wrappers may not. Handlers 161 // should always test for this ability at runtime. 162 // 163 // Note that even for ResponseWriters that support Flush, 164 // if the client is connected through an HTTP proxy, 165 // the buffered data may not reach the client until the response 166 // completes. 167 type Flusher interface { 168 // Flush sends any buffered data to the client. 169 Flush() 170 } 171 172 // The Hijacker interface is implemented by ResponseWriters that allow 173 // an HTTP handler to take over the connection. 174 // 175 // The default ResponseWriter for HTTP/1.x connections supports 176 // Hijacker, but HTTP/2 connections intentionally do not. 177 // ResponseWriter wrappers may also not support Hijacker. Handlers 178 // should always test for this ability at runtime. 179 type Hijacker interface { 180 // Hijack lets the caller take over the connection. 181 // After a call to Hijack the HTTP server library 182 // will not do anything else with the connection. 183 // 184 // It becomes the caller's responsibility to manage 185 // and close the connection. 186 // 187 // The returned net.Conn may have read or write deadlines 188 // already set, depending on the configuration of the 189 // Server. It is the caller's responsibility to set 190 // or clear those deadlines as needed. 191 // 192 // The returned bufio.Reader may contain unprocessed buffered 193 // data from the client. 194 // 195 // After a call to Hijack, the original Request.Body must not 196 // be used. The original Request's Context remains valid and 197 // is not canceled until the Request's ServeHTTP method 198 // returns. 199 Hijack() (net.Conn, *bufio.ReadWriter, error) 200 } 201 202 // The CloseNotifier interface is implemented by ResponseWriters which 203 // allow detecting when the underlying connection has gone away. 204 // 205 // This mechanism can be used to cancel long operations on the server 206 // if the client has disconnected before the response is ready. 207 // 208 // Deprecated: the CloseNotifier interface predates Go's context package. 209 // New code should use Request.Context instead. 210 type CloseNotifier interface { 211 // CloseNotify returns a channel that receives at most a 212 // single value (true) when the client connection has gone 213 // away. 214 // 215 // CloseNotify may wait to notify until Request.Body has been 216 // fully read. 217 // 218 // After the Handler has returned, there is no guarantee 219 // that the channel receives a value. 220 // 221 // If the protocol is HTTP/1.1 and CloseNotify is called while 222 // processing an idempotent request (such a GET) while 223 // HTTP/1.1 pipelining is in use, the arrival of a subsequent 224 // pipelined request may cause a value to be sent on the 225 // returned channel. In practice HTTP/1.1 pipelining is not 226 // enabled in browsers and not seen often in the wild. If this 227 // is a problem, use HTTP/2 or only use CloseNotify on methods 228 // such as POST. 229 CloseNotify() <-chan bool 230 } 231 232 var ( 233 // ServerContextKey is a context key. It can be used in HTTP 234 // handlers with Context.Value to access the server that 235 // started the handler. The associated value will be of 236 // type *Server. 237 ServerContextKey = &contextKey{"http-server"} 238 239 // LocalAddrContextKey is a context key. It can be used in 240 // HTTP handlers with Context.Value to access the local 241 // address the connection arrived on. 242 // The associated value will be of type net.Addr. 243 LocalAddrContextKey = &contextKey{"local-addr"} 244 ) 245 246 // A conn represents the server side of an HTTP connection. 247 type conn struct { 248 // server is the server on which the connection arrived. 249 // Immutable; never nil. 250 server *Server 251 252 // cancelCtx cancels the connection-level context. 253 cancelCtx context.CancelFunc 254 255 // rwc is the underlying network connection. 256 // This is never wrapped by other types and is the value given out 257 // to CloseNotifier callers. It is usually of type *net.TCPConn or 258 // *tls.Conn. 259 rwc net.Conn 260 261 // remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously 262 // inside the Listener's Accept goroutine, as some implementations block. 263 // It is populated immediately inside the (*conn).serve goroutine. 264 // This is the value of a Handler's (*Request).RemoteAddr. 265 remoteAddr string 266 267 // tlsState is the TLS connection state when using TLS. 268 // nil means not TLS. 269 tlsState *tls.ConnectionState 270 271 // werr is set to the first write error to rwc. 272 // It is set via checkConnErrorWriter{w}, where bufw writes. 273 werr error 274 275 // r is bufr's read source. It's a wrapper around rwc that provides 276 // io.LimitedReader-style limiting (while reading request headers) 277 // and functionality to support CloseNotifier. See *connReader docs. 278 r *connReader 279 280 // bufr reads from r. 281 bufr *bufio.Reader 282 283 // bufw writes to checkConnErrorWriter{c}, which populates werr on error. 284 bufw *bufio.Writer 285 286 // lastMethod is the method of the most recent request 287 // on this connection, if any. 288 lastMethod string 289 290 curReq atomic.Value // of *response (which has a Request in it) 291 292 curState struct{ atomic uint64 } // packed (unixtime<<8|uint8(ConnState)) 293 294 // mu guards hijackedv 295 mu sync.Mutex 296 297 // hijackedv is whether this connection has been hijacked 298 // by a Handler with the Hijacker interface. 299 // It is guarded by mu. 300 hijackedv bool 301 } 302 303 func (c *conn) hijacked() bool { 304 c.mu.Lock() 305 defer c.mu.Unlock() 306 return c.hijackedv 307 } 308 309 // c.mu must be held. 310 func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 311 if c.hijackedv { 312 return nil, nil, ErrHijacked 313 } 314 c.r.abortPendingRead() 315 316 c.hijackedv = true 317 rwc = c.rwc 318 rwc.SetDeadline(time.Time{}) 319 320 buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc)) 321 if c.r.hasByte { 322 if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil { 323 return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err) 324 } 325 } 326 c.setState(rwc, StateHijacked) 327 return 328 } 329 330 // This should be >= 512 bytes for DetectContentType, 331 // but otherwise it's somewhat arbitrary. 332 const bufferBeforeChunkingSize = 2048 333 334 // chunkWriter writes to a response's conn buffer, and is the writer 335 // wrapped by the response.bufw buffered writer. 336 // 337 // chunkWriter also is responsible for finalizing the Header, including 338 // conditionally setting the Content-Type and setting a Content-Length 339 // in cases where the handler's final output is smaller than the buffer 340 // size. It also conditionally adds chunk headers, when in chunking mode. 341 // 342 // See the comment above (*response).Write for the entire write flow. 343 type chunkWriter struct { 344 res *response 345 346 // header is either nil or a deep clone of res.handlerHeader 347 // at the time of res.writeHeader, if res.writeHeader is 348 // called and extra buffering is being done to calculate 349 // Content-Type and/or Content-Length. 350 header Header 351 352 // wroteHeader tells whether the header's been written to "the 353 // wire" (or rather: w.conn.buf). this is unlike 354 // (*response).wroteHeader, which tells only whether it was 355 // logically written. 356 wroteHeader bool 357 358 // set by the writeHeader method: 359 chunking bool // using chunked transfer encoding for reply body 360 } 361 362 var ( 363 crlf = []byte("\r\n") 364 colonSpace = []byte(": ") 365 ) 366 367 func (cw *chunkWriter) Write(p []byte) (n int, err error) { 368 if !cw.wroteHeader { 369 cw.writeHeader(p) 370 } 371 if cw.res.req.Method == "HEAD" { 372 // Eat writes. 373 return len(p), nil 374 } 375 if cw.chunking { 376 _, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p)) 377 if err != nil { 378 cw.res.conn.rwc.Close() 379 return 380 } 381 } 382 n, err = cw.res.conn.bufw.Write(p) 383 if cw.chunking && err == nil { 384 _, err = cw.res.conn.bufw.Write(crlf) 385 } 386 if err != nil { 387 cw.res.conn.rwc.Close() 388 } 389 return 390 } 391 392 func (cw *chunkWriter) flush() { 393 if !cw.wroteHeader { 394 cw.writeHeader(nil) 395 } 396 cw.res.conn.bufw.Flush() 397 } 398 399 func (cw *chunkWriter) close() { 400 if !cw.wroteHeader { 401 cw.writeHeader(nil) 402 } 403 if cw.chunking { 404 bw := cw.res.conn.bufw // conn's bufio writer 405 // zero chunk to mark EOF 406 bw.WriteString("0\r\n") 407 if trailers := cw.res.finalTrailers(); trailers != nil { 408 trailers.Write(bw) // the writer handles noting errors 409 } 410 // final blank line after the trailers (whether 411 // present or not) 412 bw.WriteString("\r\n") 413 } 414 } 415 416 // A response represents the server side of an HTTP response. 417 type response struct { 418 conn *conn 419 req *Request // request for this response 420 reqBody io.ReadCloser 421 cancelCtx context.CancelFunc // when ServeHTTP exits 422 wroteHeader bool // reply header has been (logically) written 423 wroteContinue bool // 100 Continue response was written 424 wants10KeepAlive bool // HTTP/1.0 w/ Connection "keep-alive" 425 wantsClose bool // HTTP request has Connection "close" 426 427 w *bufio.Writer // buffers output in chunks to chunkWriter 428 cw chunkWriter 429 430 // handlerHeader is the Header that Handlers get access to, 431 // which may be retained and mutated even after WriteHeader. 432 // handlerHeader is copied into cw.header at WriteHeader 433 // time, and privately mutated thereafter. 434 handlerHeader Header 435 calledHeader bool // handler accessed handlerHeader via Header 436 437 written int64 // number of bytes written in body 438 contentLength int64 // explicitly-declared Content-Length; or -1 439 status int // status code passed to WriteHeader 440 441 // close connection after this reply. set on request and 442 // updated after response from handler if there's a 443 // "Connection: keep-alive" response header and a 444 // Content-Length. 445 closeAfterReply bool 446 447 // requestBodyLimitHit is set by requestTooLarge when 448 // maxBytesReader hits its max size. It is checked in 449 // WriteHeader, to make sure we don't consume the 450 // remaining request body to try to advance to the next HTTP 451 // request. Instead, when this is set, we stop reading 452 // subsequent requests on this connection and stop reading 453 // input from it. 454 requestBodyLimitHit bool 455 456 // trailers are the headers to be sent after the handler 457 // finishes writing the body. This field is initialized from 458 // the Trailer response header when the response header is 459 // written. 460 trailers []string 461 462 handlerDone atomicBool // set true when the handler exits 463 464 // Buffers for Date, Content-Length, and status code 465 dateBuf [len(TimeFormat)]byte 466 clenBuf [10]byte 467 statusBuf [3]byte 468 469 // closeNotifyCh is the channel returned by CloseNotify. 470 // TODO(bradfitz): this is currently (for Go 1.8) always 471 // non-nil. Make this lazily-created again as it used to be? 472 closeNotifyCh chan bool 473 didCloseNotify int32 // atomic (only 0->1 winner should send) 474 } 475 476 // TrailerPrefix is a magic prefix for ResponseWriter.Header map keys 477 // that, if present, signals that the map entry is actually for 478 // the response trailers, and not the response headers. The prefix 479 // is stripped after the ServeHTTP call finishes and the values are 480 // sent in the trailers. 481 // 482 // This mechanism is intended only for trailers that are not known 483 // prior to the headers being written. If the set of trailers is fixed 484 // or known before the header is written, the normal Go trailers mechanism 485 // is preferred: 486 // https://golang.org/pkg/net/http/#ResponseWriter 487 // https://golang.org/pkg/net/http/#example_ResponseWriter_trailers 488 const TrailerPrefix = "Trailer:" 489 490 // finalTrailers is called after the Handler exits and returns a non-nil 491 // value if the Handler set any trailers. 492 func (w *response) finalTrailers() Header { 493 var t Header 494 for k, vv := range w.handlerHeader { 495 if strings.HasPrefix(k, TrailerPrefix) { 496 if t == nil { 497 t = make(Header) 498 } 499 t[strings.TrimPrefix(k, TrailerPrefix)] = vv 500 } 501 } 502 for _, k := range w.trailers { 503 if t == nil { 504 t = make(Header) 505 } 506 for _, v := range w.handlerHeader[k] { 507 t.Add(k, v) 508 } 509 } 510 return t 511 } 512 513 type atomicBool int32 514 515 func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 } 516 func (b *atomicBool) setTrue() { atomic.StoreInt32((*int32)(b), 1) } 517 518 // declareTrailer is called for each Trailer header when the 519 // response header is written. It notes that a header will need to be 520 // written in the trailers at the end of the response. 521 func (w *response) declareTrailer(k string) { 522 k = CanonicalHeaderKey(k) 523 if !httpguts.ValidTrailerHeader(k) { 524 // Forbidden by RFC 7230, section 4.1.2 525 return 526 } 527 w.trailers = append(w.trailers, k) 528 } 529 530 // requestTooLarge is called by maxBytesReader when too much input has 531 // been read from the client. 532 func (w *response) requestTooLarge() { 533 w.closeAfterReply = true 534 w.requestBodyLimitHit = true 535 if !w.wroteHeader { 536 w.Header().Set("Connection", "close") 537 } 538 } 539 540 // needsSniff reports whether a Content-Type still needs to be sniffed. 541 func (w *response) needsSniff() bool { 542 _, haveType := w.handlerHeader["Content-Type"] 543 return !w.cw.wroteHeader && !haveType && w.written < sniffLen 544 } 545 546 // writerOnly hides an io.Writer value's optional ReadFrom method 547 // from io.Copy. 548 type writerOnly struct { 549 io.Writer 550 } 551 552 func srcIsRegularFile(src io.Reader) (isRegular bool, err error) { 553 switch v := src.(type) { 554 case *os.File: 555 fi, err := v.Stat() 556 if err != nil { 557 return false, err 558 } 559 return fi.Mode().IsRegular(), nil 560 case *io.LimitedReader: 561 return srcIsRegularFile(v.R) 562 default: 563 return 564 } 565 } 566 567 // ReadFrom is here to optimize copying from an *os.File regular file 568 // to a *net.TCPConn with sendfile. 569 func (w *response) ReadFrom(src io.Reader) (n int64, err error) { 570 // Our underlying w.conn.rwc is usually a *TCPConn (with its 571 // own ReadFrom method). If not, or if our src isn't a regular 572 // file, just fall back to the normal copy method. 573 rf, ok := w.conn.rwc.(io.ReaderFrom) 574 regFile, err := srcIsRegularFile(src) 575 if err != nil { 576 return 0, err 577 } 578 if !ok || !regFile { 579 bufp := copyBufPool.Get().(*[]byte) 580 defer copyBufPool.Put(bufp) 581 return io.CopyBuffer(writerOnly{w}, src, *bufp) 582 } 583 584 // sendfile path: 585 586 if !w.wroteHeader { 587 w.WriteHeader(StatusOK) 588 } 589 590 if w.needsSniff() { 591 n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen)) 592 n += n0 593 if err != nil { 594 return n, err 595 } 596 } 597 598 w.w.Flush() // get rid of any previous writes 599 w.cw.flush() // make sure Header is written; flush data to rwc 600 601 // Now that cw has been flushed, its chunking field is guaranteed initialized. 602 if !w.cw.chunking && w.bodyAllowed() { 603 n0, err := rf.ReadFrom(src) 604 n += n0 605 w.written += n0 606 return n, err 607 } 608 609 n0, err := io.Copy(writerOnly{w}, src) 610 n += n0 611 return n, err 612 } 613 614 // debugServerConnections controls whether all server connections are wrapped 615 // with a verbose logging wrapper. 616 const debugServerConnections = false 617 618 // Create new connection from rwc. 619 func (srv *Server) newConn(rwc net.Conn) *conn { 620 c := &conn{ 621 server: srv, 622 rwc: rwc, 623 } 624 if debugServerConnections { 625 c.rwc = newLoggingConn("server", c.rwc) 626 } 627 return c 628 } 629 630 type readResult struct { 631 n int 632 err error 633 b byte // byte read, if n == 1 634 } 635 636 // connReader is the io.Reader wrapper used by *conn. It combines a 637 // selectively-activated io.LimitedReader (to bound request header 638 // read sizes) with support for selectively keeping an io.Reader.Read 639 // call blocked in a background goroutine to wait for activity and 640 // trigger a CloseNotifier channel. 641 type connReader struct { 642 conn *conn 643 644 mu sync.Mutex // guards following 645 hasByte bool 646 byteBuf [1]byte 647 cond *sync.Cond 648 inRead bool 649 aborted bool // set true before conn.rwc deadline is set to past 650 remain int64 // bytes remaining 651 } 652 653 func (cr *connReader) lock() { 654 cr.mu.Lock() 655 if cr.cond == nil { 656 cr.cond = sync.NewCond(&cr.mu) 657 } 658 } 659 660 func (cr *connReader) unlock() { cr.mu.Unlock() } 661 662 func (cr *connReader) startBackgroundRead() { 663 cr.lock() 664 defer cr.unlock() 665 if cr.inRead { 666 panic("invalid concurrent Body.Read call") 667 } 668 if cr.hasByte { 669 return 670 } 671 cr.inRead = true 672 cr.conn.rwc.SetReadDeadline(time.Time{}) 673 go cr.backgroundRead() 674 } 675 676 func (cr *connReader) backgroundRead() { 677 n, err := cr.conn.rwc.Read(cr.byteBuf[:]) 678 cr.lock() 679 if n == 1 { 680 cr.hasByte = true 681 // We were past the end of the previous request's body already 682 // (since we wouldn't be in a background read otherwise), so 683 // this is a pipelined HTTP request. Prior to Go 1.11 we used to 684 // send on the CloseNotify channel and cancel the context here, 685 // but the behavior was documented as only "may", and we only 686 // did that because that's how CloseNotify accidentally behaved 687 // in very early Go releases prior to context support. Once we 688 // added context support, people used a Handler's 689 // Request.Context() and passed it along. Having that context 690 // cancel on pipelined HTTP requests caused problems. 691 // Fortunately, almost nothing uses HTTP/1.x pipelining. 692 // Unfortunately, apt-get does, or sometimes does. 693 // New Go 1.11 behavior: don't fire CloseNotify or cancel 694 // contexts on pipelined requests. Shouldn't affect people, but 695 // fixes cases like Issue 23921. This does mean that a client 696 // closing their TCP connection after sending a pipelined 697 // request won't cancel the context, but we'll catch that on any 698 // write failure (in checkConnErrorWriter.Write). 699 // If the server never writes, yes, there are still contrived 700 // server & client behaviors where this fails to ever cancel the 701 // context, but that's kinda why HTTP/1.x pipelining died 702 // anyway. 703 } 704 if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() { 705 // Ignore this error. It's the expected error from 706 // another goroutine calling abortPendingRead. 707 } else if err != nil { 708 cr.handleReadError(err) 709 } 710 cr.aborted = false 711 cr.inRead = false 712 cr.unlock() 713 cr.cond.Broadcast() 714 } 715 716 func (cr *connReader) abortPendingRead() { 717 cr.lock() 718 defer cr.unlock() 719 if !cr.inRead { 720 return 721 } 722 cr.aborted = true 723 cr.conn.rwc.SetReadDeadline(aLongTimeAgo) 724 for cr.inRead { 725 cr.cond.Wait() 726 } 727 cr.conn.rwc.SetReadDeadline(time.Time{}) 728 } 729 730 func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain } 731 func (cr *connReader) setInfiniteReadLimit() { cr.remain = maxInt64 } 732 func (cr *connReader) hitReadLimit() bool { return cr.remain <= 0 } 733 734 // handleReadError is called whenever a Read from the client returns a 735 // non-nil error. 736 // 737 // The provided non-nil err is almost always io.EOF or a "use of 738 // closed network connection". In any case, the error is not 739 // particularly interesting, except perhaps for debugging during 740 // development. Any error means the connection is dead and we should 741 // down its context. 742 // 743 // It may be called from multiple goroutines. 744 func (cr *connReader) handleReadError(_ error) { 745 cr.conn.cancelCtx() 746 cr.closeNotify() 747 } 748 749 // may be called from multiple goroutines. 750 func (cr *connReader) closeNotify() { 751 res, _ := cr.conn.curReq.Load().(*response) 752 if res != nil && atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) { 753 res.closeNotifyCh <- true 754 } 755 } 756 757 func (cr *connReader) Read(p []byte) (n int, err error) { 758 cr.lock() 759 if cr.inRead { 760 cr.unlock() 761 if cr.conn.hijacked() { 762 panic("invalid Body.Read call. After hijacked, the original Request must not be used") 763 } 764 panic("invalid concurrent Body.Read call") 765 } 766 if cr.hitReadLimit() { 767 cr.unlock() 768 return 0, io.EOF 769 } 770 if len(p) == 0 { 771 cr.unlock() 772 return 0, nil 773 } 774 if int64(len(p)) > cr.remain { 775 p = p[:cr.remain] 776 } 777 if cr.hasByte { 778 p[0] = cr.byteBuf[0] 779 cr.hasByte = false 780 cr.unlock() 781 return 1, nil 782 } 783 cr.inRead = true 784 cr.unlock() 785 n, err = cr.conn.rwc.Read(p) 786 787 cr.lock() 788 cr.inRead = false 789 if err != nil { 790 cr.handleReadError(err) 791 } 792 cr.remain -= int64(n) 793 cr.unlock() 794 795 cr.cond.Broadcast() 796 return n, err 797 } 798 799 var ( 800 bufioReaderPool sync.Pool 801 bufioWriter2kPool sync.Pool 802 bufioWriter4kPool sync.Pool 803 ) 804 805 var copyBufPool = sync.Pool{ 806 New: func() interface{} { 807 b := make([]byte, 32*1024) 808 return &b 809 }, 810 } 811 812 func bufioWriterPool(size int) *sync.Pool { 813 switch size { 814 case 2 << 10: 815 return &bufioWriter2kPool 816 case 4 << 10: 817 return &bufioWriter4kPool 818 } 819 return nil 820 } 821 822 func newBufioReader(r io.Reader) *bufio.Reader { 823 if v := bufioReaderPool.Get(); v != nil { 824 br := v.(*bufio.Reader) 825 br.Reset(r) 826 return br 827 } 828 // Note: if this reader size is ever changed, update 829 // TestHandlerBodyClose's assumptions. 830 return bufio.NewReader(r) 831 } 832 833 func putBufioReader(br *bufio.Reader) { 834 br.Reset(nil) 835 bufioReaderPool.Put(br) 836 } 837 838 func newBufioWriterSize(w io.Writer, size int) *bufio.Writer { 839 pool := bufioWriterPool(size) 840 if pool != nil { 841 if v := pool.Get(); v != nil { 842 bw := v.(*bufio.Writer) 843 bw.Reset(w) 844 return bw 845 } 846 } 847 return bufio.NewWriterSize(w, size) 848 } 849 850 func putBufioWriter(bw *bufio.Writer) { 851 bw.Reset(nil) 852 if pool := bufioWriterPool(bw.Available()); pool != nil { 853 pool.Put(bw) 854 } 855 } 856 857 // DefaultMaxHeaderBytes is the maximum permitted size of the headers 858 // in an HTTP request. 859 // This can be overridden by setting Server.MaxHeaderBytes. 860 const DefaultMaxHeaderBytes = 1 << 20 // 1 MB 861 862 func (srv *Server) maxHeaderBytes() int { 863 if srv.MaxHeaderBytes > 0 { 864 return srv.MaxHeaderBytes 865 } 866 return DefaultMaxHeaderBytes 867 } 868 869 func (srv *Server) initialReadLimitSize() int64 { 870 return int64(srv.maxHeaderBytes()) + 4096 // bufio slop 871 } 872 873 // wrapper around io.ReadCloser which on first read, sends an 874 // HTTP/1.1 100 Continue header 875 type expectContinueReader struct { 876 resp *response 877 readCloser io.ReadCloser 878 closed bool 879 sawEOF bool 880 } 881 882 func (ecr *expectContinueReader) Read(p []byte) (n int, err error) { 883 if ecr.closed { 884 return 0, ErrBodyReadAfterClose 885 } 886 if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() { 887 ecr.resp.wroteContinue = true 888 ecr.resp.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n") 889 ecr.resp.conn.bufw.Flush() 890 } 891 n, err = ecr.readCloser.Read(p) 892 if err == io.EOF { 893 ecr.sawEOF = true 894 } 895 return 896 } 897 898 func (ecr *expectContinueReader) Close() error { 899 ecr.closed = true 900 return ecr.readCloser.Close() 901 } 902 903 // TimeFormat is the time format to use when generating times in HTTP 904 // headers. It is like time.RFC1123 but hard-codes GMT as the time 905 // zone. The time being formatted must be in UTC for Format to 906 // generate the correct format. 907 // 908 // For parsing this time format, see ParseTime. 909 const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT" 910 911 // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat)) 912 func appendTime(b []byte, t time.Time) []byte { 913 const days = "SunMonTueWedThuFriSat" 914 const months = "JanFebMarAprMayJunJulAugSepOctNovDec" 915 916 t = t.UTC() 917 yy, mm, dd := t.Date() 918 hh, mn, ss := t.Clock() 919 day := days[3*t.Weekday():] 920 mon := months[3*(mm-1):] 921 922 return append(b, 923 day[0], day[1], day[2], ',', ' ', 924 byte('0'+dd/10), byte('0'+dd%10), ' ', 925 mon[0], mon[1], mon[2], ' ', 926 byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ', 927 byte('0'+hh/10), byte('0'+hh%10), ':', 928 byte('0'+mn/10), byte('0'+mn%10), ':', 929 byte('0'+ss/10), byte('0'+ss%10), ' ', 930 'G', 'M', 'T') 931 } 932 933 var errTooLarge = errors.New("http: request too large") 934 935 // Read next request from connection. 936 func (c *conn) readRequest(ctx context.Context) (w *response, err error) { 937 if c.hijacked() { 938 return nil, ErrHijacked 939 } 940 941 var ( 942 wholeReqDeadline time.Time // or zero if none 943 hdrDeadline time.Time // or zero if none 944 ) 945 t0 := time.Now() 946 if d := c.server.readHeaderTimeout(); d != 0 { 947 hdrDeadline = t0.Add(d) 948 } 949 if d := c.server.ReadTimeout; d != 0 { 950 wholeReqDeadline = t0.Add(d) 951 } 952 c.rwc.SetReadDeadline(hdrDeadline) 953 if d := c.server.WriteTimeout; d != 0 { 954 defer func() { 955 c.rwc.SetWriteDeadline(time.Now().Add(d)) 956 }() 957 } 958 959 c.r.setReadLimit(c.server.initialReadLimitSize()) 960 if c.lastMethod == "POST" { 961 // RFC 7230 section 3 tolerance for old buggy clients. 962 peek, _ := c.bufr.Peek(4) // ReadRequest will get err below 963 c.bufr.Discard(numLeadingCRorLF(peek)) 964 } 965 req, err := readRequest(c.bufr, keepHostHeader) 966 if err != nil { 967 if c.r.hitReadLimit() { 968 return nil, errTooLarge 969 } 970 return nil, err 971 } 972 973 if !http1ServerSupportsRequest(req) { 974 return nil, badRequestError("unsupported protocol version") 975 } 976 977 c.lastMethod = req.Method 978 c.r.setInfiniteReadLimit() 979 980 hosts, haveHost := req.Header["Host"] 981 isH2Upgrade := req.isH2Upgrade() 982 if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" { 983 return nil, badRequestError("missing required Host header") 984 } 985 if len(hosts) > 1 { 986 return nil, badRequestError("too many Host headers") 987 } 988 if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) { 989 return nil, badRequestError("malformed Host header") 990 } 991 for k, vv := range req.Header { 992 if !httpguts.ValidHeaderFieldName(k) { 993 return nil, badRequestError("invalid header name") 994 } 995 for _, v := range vv { 996 if !httpguts.ValidHeaderFieldValue(v) { 997 return nil, badRequestError("invalid header value") 998 } 999 } 1000 } 1001 delete(req.Header, "Host") 1002 1003 ctx, cancelCtx := context.WithCancel(ctx) 1004 req.ctx = ctx 1005 req.RemoteAddr = c.remoteAddr 1006 req.TLS = c.tlsState 1007 if body, ok := req.Body.(*body); ok { 1008 body.doEarlyClose = true 1009 } 1010 1011 // Adjust the read deadline if necessary. 1012 if !hdrDeadline.Equal(wholeReqDeadline) { 1013 c.rwc.SetReadDeadline(wholeReqDeadline) 1014 } 1015 1016 w = &response{ 1017 conn: c, 1018 cancelCtx: cancelCtx, 1019 req: req, 1020 reqBody: req.Body, 1021 handlerHeader: make(Header), 1022 contentLength: -1, 1023 closeNotifyCh: make(chan bool, 1), 1024 1025 // We populate these ahead of time so we're not 1026 // reading from req.Header after their Handler starts 1027 // and maybe mutates it (Issue 14940) 1028 wants10KeepAlive: req.wantsHttp10KeepAlive(), 1029 wantsClose: req.wantsClose(), 1030 } 1031 if isH2Upgrade { 1032 w.closeAfterReply = true 1033 } 1034 w.cw.res = w 1035 w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize) 1036 return w, nil 1037 } 1038 1039 // http1ServerSupportsRequest reports whether Go's HTTP/1.x server 1040 // supports the given request. 1041 func http1ServerSupportsRequest(req *Request) bool { 1042 if req.ProtoMajor == 1 { 1043 return true 1044 } 1045 // Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can 1046 // wire up their own HTTP/2 upgrades. 1047 if req.ProtoMajor == 2 && req.ProtoMinor == 0 && 1048 req.Method == "PRI" && req.RequestURI == "*" { 1049 return true 1050 } 1051 // Reject HTTP/0.x, and all other HTTP/2+ requests (which 1052 // aren't encoded in ASCII anyway). 1053 return false 1054 } 1055 1056 func (w *response) Header() Header { 1057 if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader { 1058 // Accessing the header between logically writing it 1059 // and physically writing it means we need to allocate 1060 // a clone to snapshot the logically written state. 1061 w.cw.header = w.handlerHeader.Clone() 1062 } 1063 w.calledHeader = true 1064 return w.handlerHeader 1065 } 1066 1067 // maxPostHandlerReadBytes is the max number of Request.Body bytes not 1068 // consumed by a handler that the server will read from the client 1069 // in order to keep a connection alive. If there are more bytes than 1070 // this then the server to be paranoid instead sends a "Connection: 1071 // close" response. 1072 // 1073 // This number is approximately what a typical machine's TCP buffer 1074 // size is anyway. (if we have the bytes on the machine, we might as 1075 // well read them) 1076 const maxPostHandlerReadBytes = 256 << 10 1077 1078 func checkWriteHeaderCode(code int) { 1079 // Issue 22880: require valid WriteHeader status codes. 1080 // For now we only enforce that it's three digits. 1081 // In the future we might block things over 599 (600 and above aren't defined 1082 // at https://httpwg.org/specs/rfc7231.html#status.codes) 1083 // and we might block under 200 (once we have more mature 1xx support). 1084 // But for now any three digits. 1085 // 1086 // We used to send "HTTP/1.1 000 0" on the wire in responses but there's 1087 // no equivalent bogus thing we can realistically send in HTTP/2, 1088 // so we'll consistently panic instead and help people find their bugs 1089 // early. (We can't return an error from WriteHeader even if we wanted to.) 1090 if code < 100 || code > 999 { 1091 panic(fmt.Sprintf("invalid WriteHeader code %v", code)) 1092 } 1093 } 1094 1095 // relevantCaller searches the call stack for the first function outside of net/http. 1096 // The purpose of this function is to provide more helpful error messages. 1097 func relevantCaller() runtime.Frame { 1098 pc := make([]uintptr, 16) 1099 n := runtime.Callers(1, pc) 1100 frames := runtime.CallersFrames(pc[:n]) 1101 var frame runtime.Frame 1102 for { 1103 frame, more := frames.Next() 1104 if !strings.HasPrefix(frame.Function, "github.com/hyperledger/fabric-sdk-go/third_party/github.com/hyperledger/fabric/smalgo/gmhttp.") { 1105 return frame 1106 } 1107 if !more { 1108 break 1109 } 1110 } 1111 return frame 1112 } 1113 1114 func (w *response) WriteHeader(code int) { 1115 if w.conn.hijacked() { 1116 caller := relevantCaller() 1117 w.conn.server.logf("http: response.WriteHeader on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1118 return 1119 } 1120 if w.wroteHeader { 1121 caller := relevantCaller() 1122 w.conn.server.logf("http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1123 return 1124 } 1125 checkWriteHeaderCode(code) 1126 w.wroteHeader = true 1127 w.status = code 1128 1129 if w.calledHeader && w.cw.header == nil { 1130 w.cw.header = w.handlerHeader.Clone() 1131 } 1132 1133 if cl := w.handlerHeader.get("Content-Length"); cl != "" { 1134 v, err := strconv.ParseInt(cl, 10, 64) 1135 if err == nil && v >= 0 { 1136 w.contentLength = v 1137 } else { 1138 w.conn.server.logf("http: invalid Content-Length of %q", cl) 1139 w.handlerHeader.Del("Content-Length") 1140 } 1141 } 1142 } 1143 1144 // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader. 1145 // This type is used to avoid extra allocations from cloning and/or populating 1146 // the response Header map and all its 1-element slices. 1147 type extraHeader struct { 1148 contentType string 1149 connection string 1150 transferEncoding string 1151 date []byte // written if not nil 1152 contentLength []byte // written if not nil 1153 } 1154 1155 // Sorted the same as extraHeader.Write's loop. 1156 var extraHeaderKeys = [][]byte{ 1157 []byte("Content-Type"), 1158 []byte("Connection"), 1159 []byte("Transfer-Encoding"), 1160 } 1161 1162 var ( 1163 headerContentLength = []byte("Content-Length: ") 1164 headerDate = []byte("Date: ") 1165 ) 1166 1167 // Write writes the headers described in h to w. 1168 // 1169 // This method has a value receiver, despite the somewhat large size 1170 // of h, because it prevents an allocation. The escape analysis isn't 1171 // smart enough to realize this function doesn't mutate h. 1172 func (h extraHeader) Write(w *bufio.Writer) { 1173 if h.date != nil { 1174 w.Write(headerDate) 1175 w.Write(h.date) 1176 w.Write(crlf) 1177 } 1178 if h.contentLength != nil { 1179 w.Write(headerContentLength) 1180 w.Write(h.contentLength) 1181 w.Write(crlf) 1182 } 1183 for i, v := range []string{h.contentType, h.connection, h.transferEncoding} { 1184 if v != "" { 1185 w.Write(extraHeaderKeys[i]) 1186 w.Write(colonSpace) 1187 w.WriteString(v) 1188 w.Write(crlf) 1189 } 1190 } 1191 } 1192 1193 // writeHeader finalizes the header sent to the client and writes it 1194 // to cw.res.conn.bufw. 1195 // 1196 // p is not written by writeHeader, but is the first chunk of the body 1197 // that will be written. It is sniffed for a Content-Type if none is 1198 // set explicitly. It's also used to set the Content-Length, if the 1199 // total body size was small and the handler has already finished 1200 // running. 1201 func (cw *chunkWriter) writeHeader(p []byte) { 1202 if cw.wroteHeader { 1203 return 1204 } 1205 cw.wroteHeader = true 1206 1207 w := cw.res 1208 keepAlivesEnabled := w.conn.server.doKeepAlives() 1209 isHEAD := w.req.Method == "HEAD" 1210 1211 // header is written out to w.conn.buf below. Depending on the 1212 // state of the handler, we either own the map or not. If we 1213 // don't own it, the exclude map is created lazily for 1214 // WriteSubset to remove headers. The setHeader struct holds 1215 // headers we need to add. 1216 header := cw.header 1217 owned := header != nil 1218 if !owned { 1219 header = w.handlerHeader 1220 } 1221 var excludeHeader map[string]bool 1222 delHeader := func(key string) { 1223 if owned { 1224 header.Del(key) 1225 return 1226 } 1227 if _, ok := header[key]; !ok { 1228 return 1229 } 1230 if excludeHeader == nil { 1231 excludeHeader = make(map[string]bool) 1232 } 1233 excludeHeader[key] = true 1234 } 1235 var setHeader extraHeader 1236 1237 // Don't write out the fake "Trailer:foo" keys. See TrailerPrefix. 1238 trailers := false 1239 for k := range cw.header { 1240 if strings.HasPrefix(k, TrailerPrefix) { 1241 if excludeHeader == nil { 1242 excludeHeader = make(map[string]bool) 1243 } 1244 excludeHeader[k] = true 1245 trailers = true 1246 } 1247 } 1248 for _, v := range cw.header["Trailer"] { 1249 trailers = true 1250 foreachHeaderElement(v, cw.res.declareTrailer) 1251 } 1252 1253 te := header.get("Transfer-Encoding") 1254 hasTE := te != "" 1255 1256 // If the handler is done but never sent a Content-Length 1257 // response header and this is our first (and last) write, set 1258 // it, even to zero. This helps HTTP/1.0 clients keep their 1259 // "keep-alive" connections alive. 1260 // Exceptions: 304/204/1xx responses never get Content-Length, and if 1261 // it was a HEAD request, we don't know the difference between 1262 // 0 actual bytes and 0 bytes because the handler noticed it 1263 // was a HEAD request and chose not to write anything. So for 1264 // HEAD, the handler should either write the Content-Length or 1265 // write non-zero bytes. If it's actually 0 bytes and the 1266 // handler never looked at the Request.Method, we just don't 1267 // send a Content-Length header. 1268 // Further, we don't send an automatic Content-Length if they 1269 // set a Transfer-Encoding, because they're generally incompatible. 1270 if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) { 1271 w.contentLength = int64(len(p)) 1272 setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10) 1273 } 1274 1275 // If this was an HTTP/1.0 request with keep-alive and we sent a 1276 // Content-Length back, we can make this a keep-alive response ... 1277 if w.wants10KeepAlive && keepAlivesEnabled { 1278 sentLength := header.get("Content-Length") != "" 1279 if sentLength && header.get("Connection") == "keep-alive" { 1280 w.closeAfterReply = false 1281 } 1282 } 1283 1284 // Check for an explicit (and valid) Content-Length header. 1285 hasCL := w.contentLength != -1 1286 1287 if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) { 1288 _, connectionHeaderSet := header["Connection"] 1289 if !connectionHeaderSet { 1290 setHeader.connection = "keep-alive" 1291 } 1292 } else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose { 1293 w.closeAfterReply = true 1294 } 1295 1296 if header.get("Connection") == "close" || !keepAlivesEnabled { 1297 w.closeAfterReply = true 1298 } 1299 1300 // If the client wanted a 100-continue but we never sent it to 1301 // them (or, more strictly: we never finished reading their 1302 // request body), don't reuse this connection because it's now 1303 // in an unknown state: we might be sending this response at 1304 // the same time the client is now sending its request body 1305 // after a timeout. (Some HTTP clients send Expect: 1306 // 100-continue but knowing that some servers don't support 1307 // it, the clients set a timer and send the body later anyway) 1308 // If we haven't seen EOF, we can't skip over the unread body 1309 // because we don't know if the next bytes on the wire will be 1310 // the body-following-the-timer or the subsequent request. 1311 // See Issue 11549. 1312 if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF { 1313 w.closeAfterReply = true 1314 } 1315 1316 // Per RFC 2616, we should consume the request body before 1317 // replying, if the handler hasn't already done so. But we 1318 // don't want to do an unbounded amount of reading here for 1319 // DoS reasons, so we only try up to a threshold. 1320 // TODO(bradfitz): where does RFC 2616 say that? See Issue 15527 1321 // about HTTP/1.x Handlers concurrently reading and writing, like 1322 // HTTP/2 handlers can do. Maybe this code should be relaxed? 1323 if w.req.ContentLength != 0 && !w.closeAfterReply { 1324 var discard, tooBig bool 1325 1326 switch bdy := w.req.Body.(type) { 1327 case *expectContinueReader: 1328 if bdy.resp.wroteContinue { 1329 discard = true 1330 } 1331 case *body: 1332 bdy.mu.Lock() 1333 switch { 1334 case bdy.closed: 1335 if !bdy.sawEOF { 1336 // Body was closed in handler with non-EOF error. 1337 w.closeAfterReply = true 1338 } 1339 case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes: 1340 tooBig = true 1341 default: 1342 discard = true 1343 } 1344 bdy.mu.Unlock() 1345 default: 1346 discard = true 1347 } 1348 1349 if discard { 1350 _, err := io.CopyN(ioutil.Discard, w.reqBody, maxPostHandlerReadBytes+1) 1351 switch err { 1352 case nil: 1353 // There must be even more data left over. 1354 tooBig = true 1355 case ErrBodyReadAfterClose: 1356 // Body was already consumed and closed. 1357 case io.EOF: 1358 // The remaining body was just consumed, close it. 1359 err = w.reqBody.Close() 1360 if err != nil { 1361 w.closeAfterReply = true 1362 } 1363 default: 1364 // Some other kind of error occurred, like a read timeout, or 1365 // corrupt chunked encoding. In any case, whatever remains 1366 // on the wire must not be parsed as another HTTP request. 1367 w.closeAfterReply = true 1368 } 1369 } 1370 1371 if tooBig { 1372 w.requestTooLarge() 1373 delHeader("Connection") 1374 setHeader.connection = "close" 1375 } 1376 } 1377 1378 code := w.status 1379 if bodyAllowedForStatus(code) { 1380 // If no content type, apply sniffing algorithm to body. 1381 _, haveType := header["Content-Type"] 1382 if !haveType && !hasTE && len(p) > 0 { 1383 setHeader.contentType = DetectContentType(p) 1384 } 1385 } else { 1386 for _, k := range suppressedHeaders(code) { 1387 delHeader(k) 1388 } 1389 } 1390 1391 if !header.has("Date") { 1392 setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now()) 1393 } 1394 1395 if hasCL && hasTE && te != "identity" { 1396 // TODO: return an error if WriteHeader gets a return parameter 1397 // For now just ignore the Content-Length. 1398 w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d", 1399 te, w.contentLength) 1400 delHeader("Content-Length") 1401 hasCL = false 1402 } 1403 1404 if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) { 1405 // do nothing 1406 } else if code == StatusNoContent { 1407 delHeader("Transfer-Encoding") 1408 } else if hasCL { 1409 delHeader("Transfer-Encoding") 1410 } else if w.req.ProtoAtLeast(1, 1) { 1411 // HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no 1412 // content-length has been provided. The connection must be closed after the 1413 // reply is written, and no chunking is to be done. This is the setup 1414 // recommended in the Server-Sent Events candidate recommendation 11, 1415 // section 8. 1416 if hasTE && te == "identity" { 1417 cw.chunking = false 1418 w.closeAfterReply = true 1419 } else { 1420 // HTTP/1.1 or greater: use chunked transfer encoding 1421 // to avoid closing the connection at EOF. 1422 cw.chunking = true 1423 setHeader.transferEncoding = "chunked" 1424 if hasTE && te == "chunked" { 1425 // We will send the chunked Transfer-Encoding header later. 1426 delHeader("Transfer-Encoding") 1427 } 1428 } 1429 } else { 1430 // HTTP version < 1.1: cannot do chunked transfer 1431 // encoding and we don't know the Content-Length so 1432 // signal EOF by closing connection. 1433 w.closeAfterReply = true 1434 delHeader("Transfer-Encoding") // in case already set 1435 } 1436 1437 // Cannot use Content-Length with non-identity Transfer-Encoding. 1438 if cw.chunking { 1439 delHeader("Content-Length") 1440 } 1441 if !w.req.ProtoAtLeast(1, 0) { 1442 return 1443 } 1444 1445 if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) { 1446 delHeader("Connection") 1447 if w.req.ProtoAtLeast(1, 1) { 1448 setHeader.connection = "close" 1449 } 1450 } 1451 1452 writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:]) 1453 cw.header.WriteSubset(w.conn.bufw, excludeHeader) 1454 setHeader.Write(w.conn.bufw) 1455 w.conn.bufw.Write(crlf) 1456 } 1457 1458 // foreachHeaderElement splits v according to the "#rule" construction 1459 // in RFC 7230 section 7 and calls fn for each non-empty element. 1460 func foreachHeaderElement(v string, fn func(string)) { 1461 v = textproto.TrimString(v) 1462 if v == "" { 1463 return 1464 } 1465 if !strings.Contains(v, ",") { 1466 fn(v) 1467 return 1468 } 1469 for _, f := range strings.Split(v, ",") { 1470 if f = textproto.TrimString(f); f != "" { 1471 fn(f) 1472 } 1473 } 1474 } 1475 1476 // writeStatusLine writes an HTTP/1.x Status-Line (RFC 7230 Section 3.1.2) 1477 // to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0. 1478 // code is the response status code. 1479 // scratch is an optional scratch buffer. If it has at least capacity 3, it's used. 1480 func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) { 1481 if is11 { 1482 bw.WriteString("HTTP/1.1 ") 1483 } else { 1484 bw.WriteString("HTTP/1.0 ") 1485 } 1486 if text, ok := statusText[code]; ok { 1487 bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10)) 1488 bw.WriteByte(' ') 1489 bw.WriteString(text) 1490 bw.WriteString("\r\n") 1491 } else { 1492 // don't worry about performance 1493 fmt.Fprintf(bw, "%03d status code %d\r\n", code, code) 1494 } 1495 } 1496 1497 // bodyAllowed reports whether a Write is allowed for this response type. 1498 // It's illegal to call this before the header has been flushed. 1499 func (w *response) bodyAllowed() bool { 1500 if !w.wroteHeader { 1501 panic("") 1502 } 1503 return bodyAllowedForStatus(w.status) 1504 } 1505 1506 // The Life Of A Write is like this: 1507 // 1508 // Handler starts. No header has been sent. The handler can either 1509 // write a header, or just start writing. Writing before sending a header 1510 // sends an implicitly empty 200 OK header. 1511 // 1512 // If the handler didn't declare a Content-Length up front, we either 1513 // go into chunking mode or, if the handler finishes running before 1514 // the chunking buffer size, we compute a Content-Length and send that 1515 // in the header instead. 1516 // 1517 // Likewise, if the handler didn't set a Content-Type, we sniff that 1518 // from the initial chunk of output. 1519 // 1520 // The Writers are wired together like: 1521 // 1522 // 1. *response (the ResponseWriter) -> 1523 // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes 1524 // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type) 1525 // and which writes the chunk headers, if needed. 1526 // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to -> 1527 // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write 1528 // and populates c.werr with it if so. but otherwise writes to: 1529 // 6. the rwc, the net.Conn. 1530 // 1531 // TODO(bradfitz): short-circuit some of the buffering when the 1532 // initial header contains both a Content-Type and Content-Length. 1533 // Also short-circuit in (1) when the header's been sent and not in 1534 // chunking mode, writing directly to (4) instead, if (2) has no 1535 // buffered data. More generally, we could short-circuit from (1) to 1536 // (3) even in chunking mode if the write size from (1) is over some 1537 // threshold and nothing is in (2). The answer might be mostly making 1538 // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal 1539 // with this instead. 1540 func (w *response) Write(data []byte) (n int, err error) { 1541 return w.write(len(data), data, "") 1542 } 1543 1544 func (w *response) WriteString(data string) (n int, err error) { 1545 return w.write(len(data), nil, data) 1546 } 1547 1548 // either dataB or dataS is non-zero. 1549 func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) { 1550 if w.conn.hijacked() { 1551 if lenData > 0 { 1552 caller := relevantCaller() 1553 w.conn.server.logf("http: response.Write on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1554 } 1555 return 0, ErrHijacked 1556 } 1557 if !w.wroteHeader { 1558 w.WriteHeader(StatusOK) 1559 } 1560 if lenData == 0 { 1561 return 0, nil 1562 } 1563 if !w.bodyAllowed() { 1564 return 0, ErrBodyNotAllowed 1565 } 1566 1567 w.written += int64(lenData) // ignoring errors, for errorKludge 1568 if w.contentLength != -1 && w.written > w.contentLength { 1569 return 0, ErrContentLength 1570 } 1571 if dataB != nil { 1572 return w.w.Write(dataB) 1573 } else { 1574 return w.w.WriteString(dataS) 1575 } 1576 } 1577 1578 func (w *response) finishRequest() { 1579 w.handlerDone.setTrue() 1580 1581 if !w.wroteHeader { 1582 w.WriteHeader(StatusOK) 1583 } 1584 1585 w.w.Flush() 1586 putBufioWriter(w.w) 1587 w.cw.close() 1588 w.conn.bufw.Flush() 1589 1590 w.conn.r.abortPendingRead() 1591 1592 // Close the body (regardless of w.closeAfterReply) so we can 1593 // re-use its bufio.Reader later safely. 1594 w.reqBody.Close() 1595 1596 if w.req.MultipartForm != nil { 1597 w.req.MultipartForm.RemoveAll() 1598 } 1599 } 1600 1601 // shouldReuseConnection reports whether the underlying TCP connection can be reused. 1602 // It must only be called after the handler is done executing. 1603 func (w *response) shouldReuseConnection() bool { 1604 if w.closeAfterReply { 1605 // The request or something set while executing the 1606 // handler indicated we shouldn't reuse this 1607 // connection. 1608 return false 1609 } 1610 1611 if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written { 1612 // Did not write enough. Avoid getting out of sync. 1613 return false 1614 } 1615 1616 // There was some error writing to the underlying connection 1617 // during the request, so don't re-use this conn. 1618 if w.conn.werr != nil { 1619 return false 1620 } 1621 1622 if w.closedRequestBodyEarly() { 1623 return false 1624 } 1625 1626 return true 1627 } 1628 1629 func (w *response) closedRequestBodyEarly() bool { 1630 body, ok := w.req.Body.(*body) 1631 return ok && body.didEarlyClose() 1632 } 1633 1634 func (w *response) Flush() { 1635 if !w.wroteHeader { 1636 w.WriteHeader(StatusOK) 1637 } 1638 w.w.Flush() 1639 w.cw.flush() 1640 } 1641 1642 func (c *conn) finalFlush() { 1643 if c.bufr != nil { 1644 // Steal the bufio.Reader (~4KB worth of memory) and its associated 1645 // reader for a future connection. 1646 putBufioReader(c.bufr) 1647 c.bufr = nil 1648 } 1649 1650 if c.bufw != nil { 1651 c.bufw.Flush() 1652 // Steal the bufio.Writer (~4KB worth of memory) and its associated 1653 // writer for a future connection. 1654 putBufioWriter(c.bufw) 1655 c.bufw = nil 1656 } 1657 } 1658 1659 // Close the connection. 1660 func (c *conn) close() { 1661 c.finalFlush() 1662 c.rwc.Close() 1663 } 1664 1665 // rstAvoidanceDelay is the amount of time we sleep after closing the 1666 // write side of a TCP connection before closing the entire socket. 1667 // By sleeping, we increase the chances that the client sees our FIN 1668 // and processes its final data before they process the subsequent RST 1669 // from closing a connection with known unread data. 1670 // This RST seems to occur mostly on BSD systems. (And Windows?) 1671 // This timeout is somewhat arbitrary (~latency around the planet). 1672 const rstAvoidanceDelay = 500 * time.Millisecond 1673 1674 type closeWriter interface { 1675 CloseWrite() error 1676 } 1677 1678 var _ closeWriter = (*net.TCPConn)(nil) 1679 1680 // closeWrite flushes any outstanding data and sends a FIN packet (if 1681 // client is connected via TCP), signalling that we're done. We then 1682 // pause for a bit, hoping the client processes it before any 1683 // subsequent RST. 1684 // 1685 // See https://golang.org/issue/3595 1686 func (c *conn) closeWriteAndWait() { 1687 c.finalFlush() 1688 if tcp, ok := c.rwc.(closeWriter); ok { 1689 tcp.CloseWrite() 1690 } 1691 time.Sleep(rstAvoidanceDelay) 1692 } 1693 1694 // validNPN reports whether the proto is not a blacklisted Next 1695 // Protocol Negotiation protocol. Empty and built-in protocol types 1696 // are blacklisted and can't be overridden with alternate 1697 // implementations. 1698 func validNPN(proto string) bool { 1699 switch proto { 1700 case "", "http/1.1", "http/1.0": 1701 return false 1702 } 1703 return true 1704 } 1705 1706 func (c *conn) setState(nc net.Conn, state ConnState) { 1707 srv := c.server 1708 switch state { 1709 case StateNew: 1710 srv.trackConn(c, true) 1711 case StateHijacked, StateClosed: 1712 srv.trackConn(c, false) 1713 } 1714 if state > 0xff || state < 0 { 1715 panic("internal error") 1716 } 1717 packedState := uint64(time.Now().Unix()<<8) | uint64(state) 1718 atomic.StoreUint64(&c.curState.atomic, packedState) 1719 if hook := srv.ConnState; hook != nil { 1720 hook(nc, state) 1721 } 1722 } 1723 1724 func (c *conn) getState() (state ConnState, unixSec int64) { 1725 packedState := atomic.LoadUint64(&c.curState.atomic) 1726 return ConnState(packedState & 0xff), int64(packedState >> 8) 1727 } 1728 1729 // badRequestError is a literal string (used by in the server in HTML, 1730 // unescaped) to tell the user why their request was bad. It should 1731 // be plain text without user info or other embedded errors. 1732 type badRequestError string 1733 1734 func (e badRequestError) Error() string { return "Bad Request: " + string(e) } 1735 1736 // ErrAbortHandler is a sentinel panic value to abort a handler. 1737 // While any panic from ServeHTTP aborts the response to the client, 1738 // panicking with ErrAbortHandler also suppresses logging of a stack 1739 // trace to the server's error log. 1740 var ErrAbortHandler = errors.New("github.com/hyperledger/fabric-sdk-go/third_party/github.com/hyperledger/fabric/smalgo/gmhttp: abort Handler") 1741 1742 // isCommonNetReadError reports whether err is a common error 1743 // encountered during reading a request off the network when the 1744 // client has gone away or had its read fail somehow. This is used to 1745 // determine which logs are interesting enough to log about. 1746 func isCommonNetReadError(err error) bool { 1747 if err == io.EOF { 1748 return true 1749 } 1750 if neterr, ok := err.(net.Error); ok && neterr.Timeout() { 1751 return true 1752 } 1753 if oe, ok := err.(*net.OpError); ok && oe.Op == "read" { 1754 return true 1755 } 1756 return false 1757 } 1758 1759 // Serve a new connection. 1760 func (c *conn) serve(ctx context.Context) { 1761 c.remoteAddr = c.rwc.RemoteAddr().String() 1762 ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr()) 1763 defer func() { 1764 if err := recover(); err != nil && err != ErrAbortHandler { 1765 const size = 64 << 10 1766 buf := make([]byte, size) 1767 buf = buf[:runtime.Stack(buf, false)] 1768 c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf) 1769 } 1770 if !c.hijacked() { 1771 c.close() 1772 c.setState(c.rwc, StateClosed) 1773 } 1774 }() 1775 1776 if tlsConn, ok := c.rwc.(*tls.Conn); ok { 1777 if d := c.server.ReadTimeout; d != 0 { 1778 c.rwc.SetReadDeadline(time.Now().Add(d)) 1779 } 1780 if d := c.server.WriteTimeout; d != 0 { 1781 c.rwc.SetWriteDeadline(time.Now().Add(d)) 1782 } 1783 if err := tlsConn.Handshake(); err != nil { 1784 // If the handshake failed due to the client not speaking 1785 // TLS, assume they're speaking plaintext HTTP and write a 1786 // 400 response on the TLS conn's underlying net.Conn. 1787 if re, ok := err.(tls.RecordHeaderError); ok && re.Conn != nil && tlsRecordHeaderLooksLikeHTTP(re.RecordHeader) { 1788 io.WriteString(re.Conn, "HTTP/1.0 400 Bad Request\r\n\r\nClient sent an HTTP request to an HTTPS server.\n") 1789 re.Conn.Close() 1790 return 1791 } 1792 c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err) 1793 return 1794 } 1795 c.tlsState = new(tls.ConnectionState) 1796 *c.tlsState = tlsConn.ConnectionState() 1797 if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) { 1798 if fn := c.server.TLSNextProto[proto]; fn != nil { 1799 h := initNPNRequest{ctx, tlsConn, serverHandler{c.server}} 1800 fn(c.server, tlsConn, h) 1801 } 1802 return 1803 } 1804 } 1805 1806 // HTTP/1.x from here on. 1807 1808 ctx, cancelCtx := context.WithCancel(ctx) 1809 c.cancelCtx = cancelCtx 1810 defer cancelCtx() 1811 1812 c.r = &connReader{conn: c} 1813 c.bufr = newBufioReader(c.r) 1814 c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10) 1815 1816 for { 1817 w, err := c.readRequest(ctx) 1818 if c.r.remain != c.server.initialReadLimitSize() { 1819 // If we read any bytes off the wire, we're active. 1820 c.setState(c.rwc, StateActive) 1821 } 1822 if err != nil { 1823 const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n" 1824 1825 switch { 1826 case err == errTooLarge: 1827 // Their HTTP client may or may not be 1828 // able to read this if we're 1829 // responding to them and hanging up 1830 // while they're still writing their 1831 // request. Undefined behavior. 1832 const publicErr = "431 Request Header Fields Too Large" 1833 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 1834 c.closeWriteAndWait() 1835 return 1836 1837 case isUnsupportedTEError(err): 1838 // Respond as per RFC 7230 Section 3.3.1 which says, 1839 // A server that receives a request message with a 1840 // transfer coding it does not understand SHOULD 1841 // respond with 501 (Unimplemented). 1842 code := StatusNotImplemented 1843 1844 // We purposefully aren't echoing back the transfer-encoding's value, 1845 // so as to mitigate the risk of cross side scripting by an attacker. 1846 fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders) 1847 return 1848 1849 case isCommonNetReadError(err): 1850 return // don't reply 1851 1852 default: 1853 publicErr := "400 Bad Request" 1854 if v, ok := err.(badRequestError); ok { 1855 publicErr = publicErr + ": " + string(v) 1856 } 1857 1858 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 1859 return 1860 } 1861 } 1862 1863 // Expect 100 Continue support 1864 req := w.req 1865 if req.expectsContinue() { 1866 if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 { 1867 // Wrap the Body reader with one that replies on the connection 1868 req.Body = &expectContinueReader{readCloser: req.Body, resp: w} 1869 } 1870 } else if req.Header.get("Expect") != "" { 1871 w.sendExpectationFailed() 1872 return 1873 } 1874 1875 c.curReq.Store(w) 1876 1877 if requestBodyRemains(req.Body) { 1878 registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead) 1879 } else { 1880 w.conn.r.startBackgroundRead() 1881 } 1882 1883 // HTTP cannot have multiple simultaneous active requests.[*] 1884 // Until the server replies to this request, it can't read another, 1885 // so we might as well run the handler in this goroutine. 1886 // [*] Not strictly true: HTTP pipelining. We could let them all process 1887 // in parallel even if their responses need to be serialized. 1888 // But we're not going to implement HTTP pipelining because it 1889 // was never deployed in the wild and the answer is HTTP/2. 1890 serverHandler{c.server}.ServeHTTP(w, w.req) 1891 w.cancelCtx() 1892 if c.hijacked() { 1893 return 1894 } 1895 w.finishRequest() 1896 if !w.shouldReuseConnection() { 1897 if w.requestBodyLimitHit || w.closedRequestBodyEarly() { 1898 c.closeWriteAndWait() 1899 } 1900 return 1901 } 1902 c.setState(c.rwc, StateIdle) 1903 c.curReq.Store((*response)(nil)) 1904 1905 if !w.conn.server.doKeepAlives() { 1906 // We're in shutdown mode. We might've replied 1907 // to the user without "Connection: close" and 1908 // they might think they can send another 1909 // request, but such is life with HTTP/1.1. 1910 return 1911 } 1912 1913 if d := c.server.idleTimeout(); d != 0 { 1914 c.rwc.SetReadDeadline(time.Now().Add(d)) 1915 if _, err := c.bufr.Peek(4); err != nil { 1916 return 1917 } 1918 } 1919 c.rwc.SetReadDeadline(time.Time{}) 1920 } 1921 } 1922 1923 func (w *response) sendExpectationFailed() { 1924 // TODO(bradfitz): let ServeHTTP handlers handle 1925 // requests with non-standard expectation[s]? Seems 1926 // theoretical at best, and doesn't fit into the 1927 // current ServeHTTP model anyway. We'd need to 1928 // make the ResponseWriter an optional 1929 // "ExpectReplier" interface or something. 1930 // 1931 // For now we'll just obey RFC 7231 5.1.1 which says 1932 // "A server that receives an Expect field-value other 1933 // than 100-continue MAY respond with a 417 (Expectation 1934 // Failed) status code to indicate that the unexpected 1935 // expectation cannot be met." 1936 w.Header().Set("Connection", "close") 1937 w.WriteHeader(StatusExpectationFailed) 1938 w.finishRequest() 1939 } 1940 1941 // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter 1942 // and a Hijacker. 1943 func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 1944 if w.handlerDone.isSet() { 1945 panic("github.com/hyperledger/fabric-sdk-go/third_party/github.com/hyperledger/fabric/smalgo/gmhttp: Hijack called after ServeHTTP finished") 1946 } 1947 if w.wroteHeader { 1948 w.cw.flush() 1949 } 1950 1951 c := w.conn 1952 c.mu.Lock() 1953 defer c.mu.Unlock() 1954 1955 // Release the bufioWriter that writes to the chunk writer, it is not 1956 // used after a connection has been hijacked. 1957 rwc, buf, err = c.hijackLocked() 1958 if err == nil { 1959 putBufioWriter(w.w) 1960 w.w = nil 1961 } 1962 return rwc, buf, err 1963 } 1964 1965 func (w *response) CloseNotify() <-chan bool { 1966 if w.handlerDone.isSet() { 1967 panic("github.com/hyperledger/fabric-sdk-go/third_party/github.com/hyperledger/fabric/smalgo/gmhttp: CloseNotify called after ServeHTTP finished") 1968 } 1969 return w.closeNotifyCh 1970 } 1971 1972 func registerOnHitEOF(rc io.ReadCloser, fn func()) { 1973 switch v := rc.(type) { 1974 case *expectContinueReader: 1975 registerOnHitEOF(v.readCloser, fn) 1976 case *body: 1977 v.registerOnHitEOF(fn) 1978 default: 1979 panic("unexpected type " + fmt.Sprintf("%T", rc)) 1980 } 1981 } 1982 1983 // requestBodyRemains reports whether future calls to Read 1984 // on rc might yield more data. 1985 func requestBodyRemains(rc io.ReadCloser) bool { 1986 if rc == NoBody { 1987 return false 1988 } 1989 switch v := rc.(type) { 1990 case *expectContinueReader: 1991 return requestBodyRemains(v.readCloser) 1992 case *body: 1993 return v.bodyRemains() 1994 default: 1995 panic("unexpected type " + fmt.Sprintf("%T", rc)) 1996 } 1997 } 1998 1999 // The HandlerFunc type is an adapter to allow the use of 2000 // ordinary functions as HTTP handlers. If f is a function 2001 // with the appropriate signature, HandlerFunc(f) is a 2002 // Handler that calls f. 2003 type HandlerFunc func(ResponseWriter, *Request) 2004 2005 // ServeHTTP calls f(w, r). 2006 func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { 2007 f(w, r) 2008 } 2009 2010 // Helper handlers 2011 2012 // Error replies to the request with the specified error message and HTTP code. 2013 // It does not otherwise end the request; the caller should ensure no further 2014 // writes are done to w. 2015 // The error message should be plain text. 2016 func Error(w ResponseWriter, error string, code int) { 2017 w.Header().Set("Content-Type", "text/plain; charset=utf-8") 2018 w.Header().Set("X-Content-Type-Options", "nosniff") 2019 w.WriteHeader(code) 2020 fmt.Fprintln(w, error) 2021 } 2022 2023 // NotFound replies to the request with an HTTP 404 not found error. 2024 func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) } 2025 2026 // NotFoundHandler returns a simple request handler 2027 // that replies to each request with a ``404 page not found'' reply. 2028 func NotFoundHandler() Handler { return HandlerFunc(NotFound) } 2029 2030 // StripPrefix returns a handler that serves HTTP requests 2031 // by removing the given prefix from the request URL's Path 2032 // and invoking the handler h. StripPrefix handles a 2033 // request for a path that doesn't begin with prefix by 2034 // replying with an HTTP 404 not found error. 2035 func StripPrefix(prefix string, h Handler) Handler { 2036 if prefix == "" { 2037 return h 2038 } 2039 return HandlerFunc(func(w ResponseWriter, r *Request) { 2040 if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) { 2041 r2 := new(Request) 2042 *r2 = *r 2043 r2.URL = new(url.URL) 2044 *r2.URL = *r.URL 2045 r2.URL.Path = p 2046 h.ServeHTTP(w, r2) 2047 } else { 2048 NotFound(w, r) 2049 } 2050 }) 2051 } 2052 2053 // Redirect replies to the request with a redirect to url, 2054 // which may be a path relative to the request path. 2055 // 2056 // The provided code should be in the 3xx range and is usually 2057 // StatusMovedPermanently, StatusFound or StatusSeeOther. 2058 // 2059 // If the Content-Type header has not been set, Redirect sets it 2060 // to "text/html; charset=utf-8" and writes a small HTML body. 2061 // Setting the Content-Type header to any value, including nil, 2062 // disables that behavior. 2063 func Redirect(w ResponseWriter, r *Request, url string, code int) { 2064 // parseURL is just url.Parse (url is shadowed for godoc). 2065 if u, err := parseURL(url); err == nil { 2066 // If url was relative, make its path absolute by 2067 // combining with request path. 2068 // The client would probably do this for us, 2069 // but doing it ourselves is more reliable. 2070 // See RFC 7231, section 7.1.2 2071 if u.Scheme == "" && u.Host == "" { 2072 oldpath := r.URL.Path 2073 if oldpath == "" { // should not happen, but avoid a crash if it does 2074 oldpath = "/" 2075 } 2076 2077 // no leading http://server 2078 if url == "" || url[0] != '/' { 2079 // make relative path absolute 2080 olddir, _ := path.Split(oldpath) 2081 url = olddir + url 2082 } 2083 2084 var query string 2085 if i := strings.Index(url, "?"); i != -1 { 2086 url, query = url[:i], url[i:] 2087 } 2088 2089 // clean up but preserve trailing slash 2090 trailing := strings.HasSuffix(url, "/") 2091 url = path.Clean(url) 2092 if trailing && !strings.HasSuffix(url, "/") { 2093 url += "/" 2094 } 2095 url += query 2096 } 2097 } 2098 2099 h := w.Header() 2100 2101 // RFC 7231 notes that a short HTML body is usually included in 2102 // the response because older user agents may not understand 301/307. 2103 // Do it only if the request didn't already have a Content-Type header. 2104 _, hadCT := h["Content-Type"] 2105 2106 h.Set("Location", hexEscapeNonASCII(url)) 2107 if !hadCT && (r.Method == "GET" || r.Method == "HEAD") { 2108 h.Set("Content-Type", "text/html; charset=utf-8") 2109 } 2110 w.WriteHeader(code) 2111 2112 // Shouldn't send the body for POST or HEAD; that leaves GET. 2113 if !hadCT && r.Method == "GET" { 2114 body := "<a href=\"" + htmlEscape(url) + "\">" + statusText[code] + "</a>.\n" 2115 fmt.Fprintln(w, body) 2116 } 2117 } 2118 2119 // parseURL is just url.Parse. It exists only so that url.Parse can be called 2120 // in places where url is shadowed for godoc. See https://golang.org/cl/49930. 2121 var parseURL = url.Parse 2122 2123 var htmlReplacer = strings.NewReplacer( 2124 "&", "&", 2125 "<", "<", 2126 ">", ">", 2127 // """ is shorter than """. 2128 `"`, """, 2129 // "'" is shorter than "'" and apos was not in HTML until HTML5. 2130 "'", "'", 2131 ) 2132 2133 func htmlEscape(s string) string { 2134 return htmlReplacer.Replace(s) 2135 } 2136 2137 // Redirect to a fixed URL 2138 type redirectHandler struct { 2139 url string 2140 code int 2141 } 2142 2143 func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) { 2144 Redirect(w, r, rh.url, rh.code) 2145 } 2146 2147 // RedirectHandler returns a request handler that redirects 2148 // each request it receives to the given url using the given 2149 // status code. 2150 // 2151 // The provided code should be in the 3xx range and is usually 2152 // StatusMovedPermanently, StatusFound or StatusSeeOther. 2153 func RedirectHandler(url string, code int) Handler { 2154 return &redirectHandler{url, code} 2155 } 2156 2157 // ServeMux is an HTTP request multiplexer. 2158 // It matches the URL of each incoming request against a list of registered 2159 // patterns and calls the handler for the pattern that 2160 // most closely matches the URL. 2161 // 2162 // Patterns name fixed, rooted paths, like "/favicon.ico", 2163 // or rooted subtrees, like "/images/" (note the trailing slash). 2164 // Longer patterns take precedence over shorter ones, so that 2165 // if there are handlers registered for both "/images/" 2166 // and "/images/thumbnails/", the latter handler will be 2167 // called for paths beginning "/images/thumbnails/" and the 2168 // former will receive requests for any other paths in the 2169 // "/images/" subtree. 2170 // 2171 // Note that since a pattern ending in a slash names a rooted subtree, 2172 // the pattern "/" matches all paths not matched by other registered 2173 // patterns, not just the URL with Path == "/". 2174 // 2175 // If a subtree has been registered and a request is received naming the 2176 // subtree root without its trailing slash, ServeMux redirects that 2177 // request to the subtree root (adding the trailing slash). This behavior can 2178 // be overridden with a separate registration for the path without 2179 // the trailing slash. For example, registering "/images/" causes ServeMux 2180 // to redirect a request for "/images" to "/images/", unless "/images" has 2181 // been registered separately. 2182 // 2183 // Patterns may optionally begin with a host name, restricting matches to 2184 // URLs on that host only. Host-specific patterns take precedence over 2185 // general patterns, so that a handler might register for the two patterns 2186 // "/codesearch" and "codesearch.google.com/" without also taking over 2187 // requests for "http://www.google.com/". 2188 // 2189 // ServeMux also takes care of sanitizing the URL request path and the Host 2190 // header, stripping the port number and redirecting any request containing . or 2191 // .. elements or repeated slashes to an equivalent, cleaner URL. 2192 type ServeMux struct { 2193 mu sync.RWMutex 2194 m map[string]muxEntry 2195 es []muxEntry // slice of entries sorted from longest to shortest. 2196 hosts bool // whether any patterns contain hostnames 2197 } 2198 2199 type muxEntry struct { 2200 h Handler 2201 pattern string 2202 } 2203 2204 // NewServeMux allocates and returns a new ServeMux. 2205 func NewServeMux() *ServeMux { return new(ServeMux) } 2206 2207 // DefaultServeMux is the default ServeMux used by Serve. 2208 var DefaultServeMux = &defaultServeMux 2209 2210 var defaultServeMux ServeMux 2211 2212 // cleanPath returns the canonical path for p, eliminating . and .. elements. 2213 func cleanPath(p string) string { 2214 if p == "" { 2215 return "/" 2216 } 2217 if p[0] != '/' { 2218 p = "/" + p 2219 } 2220 np := path.Clean(p) 2221 // path.Clean removes trailing slash except for root; 2222 // put the trailing slash back if necessary. 2223 if p[len(p)-1] == '/' && np != "/" { 2224 // Fast path for common case of p being the string we want: 2225 if len(p) == len(np)+1 && strings.HasPrefix(p, np) { 2226 np = p 2227 } else { 2228 np += "/" 2229 } 2230 } 2231 return np 2232 } 2233 2234 // stripHostPort returns h without any trailing ":<port>". 2235 func stripHostPort(h string) string { 2236 // If no port on host, return unchanged 2237 if strings.IndexByte(h, ':') == -1 { 2238 return h 2239 } 2240 host, _, err := net.SplitHostPort(h) 2241 if err != nil { 2242 return h // on error, return unchanged 2243 } 2244 return host 2245 } 2246 2247 // Find a handler on a handler map given a path string. 2248 // Most-specific (longest) pattern wins. 2249 func (mux *ServeMux) match(path string) (h Handler, pattern string) { 2250 // Check for exact match first. 2251 v, ok := mux.m[path] 2252 if ok { 2253 return v.h, v.pattern 2254 } 2255 2256 // Check for longest valid match. mux.es contains all patterns 2257 // that end in / sorted from longest to shortest. 2258 for _, e := range mux.es { 2259 if strings.HasPrefix(path, e.pattern) { 2260 return e.h, e.pattern 2261 } 2262 } 2263 return nil, "" 2264 } 2265 2266 // redirectToPathSlash determines if the given path needs appending "/" to it. 2267 // This occurs when a handler for path + "/" was already registered, but 2268 // not for path itself. If the path needs appending to, it creates a new 2269 // URL, setting the path to u.Path + "/" and returning true to indicate so. 2270 func (mux *ServeMux) redirectToPathSlash(host, path string, u *url.URL) (*url.URL, bool) { 2271 mux.mu.RLock() 2272 shouldRedirect := mux.shouldRedirectRLocked(host, path) 2273 mux.mu.RUnlock() 2274 if !shouldRedirect { 2275 return u, false 2276 } 2277 path = path + "/" 2278 u = &url.URL{Path: path, RawQuery: u.RawQuery} 2279 return u, true 2280 } 2281 2282 // shouldRedirectRLocked reports whether the given path and host should be redirected to 2283 // path+"/". This should happen if a handler is registered for path+"/" but 2284 // not path -- see comments at ServeMux. 2285 func (mux *ServeMux) shouldRedirectRLocked(host, path string) bool { 2286 p := []string{path, host + path} 2287 2288 for _, c := range p { 2289 if _, exist := mux.m[c]; exist { 2290 return false 2291 } 2292 } 2293 2294 n := len(path) 2295 if n == 0 { 2296 return false 2297 } 2298 for _, c := range p { 2299 if _, exist := mux.m[c+"/"]; exist { 2300 return path[n-1] != '/' 2301 } 2302 } 2303 2304 return false 2305 } 2306 2307 // Handler returns the handler to use for the given request, 2308 // consulting r.Method, r.Host, and r.URL.Path. It always returns 2309 // a non-nil handler. If the path is not in its canonical form, the 2310 // handler will be an internally-generated handler that redirects 2311 // to the canonical path. If the host contains a port, it is ignored 2312 // when matching handlers. 2313 // 2314 // The path and host are used unchanged for CONNECT requests. 2315 // 2316 // Handler also returns the registered pattern that matches the 2317 // request or, in the case of internally-generated redirects, 2318 // the pattern that will match after following the redirect. 2319 // 2320 // If there is no registered handler that applies to the request, 2321 // Handler returns a ``page not found'' handler and an empty pattern. 2322 func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) { 2323 2324 // CONNECT requests are not canonicalized. 2325 if r.Method == "CONNECT" { 2326 // If r.URL.Path is /tree and its handler is not registered, 2327 // the /tree -> /tree/ redirect applies to CONNECT requests 2328 // but the path canonicalization does not. 2329 if u, ok := mux.redirectToPathSlash(r.URL.Host, r.URL.Path, r.URL); ok { 2330 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path 2331 } 2332 2333 return mux.handler(r.Host, r.URL.Path) 2334 } 2335 2336 // All other requests have any port stripped and path cleaned 2337 // before passing to mux.handler. 2338 host := stripHostPort(r.Host) 2339 path := cleanPath(r.URL.Path) 2340 2341 // If the given path is /tree and its handler is not registered, 2342 // redirect for /tree/. 2343 if u, ok := mux.redirectToPathSlash(host, path, r.URL); ok { 2344 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path 2345 } 2346 2347 if path != r.URL.Path { 2348 _, pattern = mux.handler(host, path) 2349 url := *r.URL 2350 url.Path = path 2351 return RedirectHandler(url.String(), StatusMovedPermanently), pattern 2352 } 2353 2354 return mux.handler(host, r.URL.Path) 2355 } 2356 2357 // handler is the main implementation of Handler. 2358 // The path is known to be in canonical form, except for CONNECT methods. 2359 func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) { 2360 mux.mu.RLock() 2361 defer mux.mu.RUnlock() 2362 2363 // Host-specific pattern takes precedence over generic ones 2364 if mux.hosts { 2365 h, pattern = mux.match(host + path) 2366 } 2367 if h == nil { 2368 h, pattern = mux.match(path) 2369 } 2370 if h == nil { 2371 h, pattern = NotFoundHandler(), "" 2372 } 2373 return 2374 } 2375 2376 // ServeHTTP dispatches the request to the handler whose 2377 // pattern most closely matches the request URL. 2378 func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { 2379 if r.RequestURI == "*" { 2380 if r.ProtoAtLeast(1, 1) { 2381 w.Header().Set("Connection", "close") 2382 } 2383 w.WriteHeader(StatusBadRequest) 2384 return 2385 } 2386 h, _ := mux.Handler(r) 2387 h.ServeHTTP(w, r) 2388 } 2389 2390 // Handle registers the handler for the given pattern. 2391 // If a handler already exists for pattern, Handle panics. 2392 func (mux *ServeMux) Handle(pattern string, handler Handler) { 2393 mux.mu.Lock() 2394 defer mux.mu.Unlock() 2395 2396 if pattern == "" { 2397 panic("http: invalid pattern") 2398 } 2399 if handler == nil { 2400 panic("http: nil handler") 2401 } 2402 if _, exist := mux.m[pattern]; exist { 2403 panic("http: multiple registrations for " + pattern) 2404 } 2405 2406 if mux.m == nil { 2407 mux.m = make(map[string]muxEntry) 2408 } 2409 e := muxEntry{h: handler, pattern: pattern} 2410 mux.m[pattern] = e 2411 if pattern[len(pattern)-1] == '/' { 2412 mux.es = appendSorted(mux.es, e) 2413 } 2414 2415 if pattern[0] != '/' { 2416 mux.hosts = true 2417 } 2418 } 2419 2420 func appendSorted(es []muxEntry, e muxEntry) []muxEntry { 2421 n := len(es) 2422 i := sort.Search(n, func(i int) bool { 2423 return len(es[i].pattern) < len(e.pattern) 2424 }) 2425 if i == n { 2426 return append(es, e) 2427 } 2428 // we now know that i points at where we want to insert 2429 es = append(es, muxEntry{}) // try to grow the slice in place, any entry works. 2430 copy(es[i+1:], es[i:]) // Move shorter entries down 2431 es[i] = e 2432 return es 2433 } 2434 2435 // HandleFunc registers the handler function for the given pattern. 2436 func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2437 if handler == nil { 2438 panic("http: nil handler") 2439 } 2440 mux.Handle(pattern, HandlerFunc(handler)) 2441 } 2442 2443 // Handle registers the handler for the given pattern 2444 // in the DefaultServeMux. 2445 // The documentation for ServeMux explains how patterns are matched. 2446 func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) } 2447 2448 // HandleFunc registers the handler function for the given pattern 2449 // in the DefaultServeMux. 2450 // The documentation for ServeMux explains how patterns are matched. 2451 func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2452 DefaultServeMux.HandleFunc(pattern, handler) 2453 } 2454 2455 // Serve accepts incoming HTTP connections on the listener l, 2456 // creating a new service goroutine for each. The service goroutines 2457 // read requests and then call handler to reply to them. 2458 // 2459 // The handler is typically nil, in which case the DefaultServeMux is used. 2460 // 2461 // HTTP/2 support is only enabled if the Listener returns *tls.Conn 2462 // connections and they were configured with "h2" in the TLS 2463 // Config.NextProtos. 2464 // 2465 // Serve always returns a non-nil error. 2466 func Serve(l net.Listener, handler Handler) error { 2467 srv := &Server{Handler: handler} 2468 return srv.Serve(l) 2469 } 2470 2471 // ServeTLS accepts incoming HTTPS connections on the listener l, 2472 // creating a new service goroutine for each. The service goroutines 2473 // read requests and then call handler to reply to them. 2474 // 2475 // The handler is typically nil, in which case the DefaultServeMux is used. 2476 // 2477 // Additionally, files containing a certificate and matching private key 2478 // for the server must be provided. If the certificate is signed by a 2479 // certificate authority, the certFile should be the concatenation 2480 // of the server's certificate, any intermediates, and the CA's certificate. 2481 // 2482 // ServeTLS always returns a non-nil error. 2483 func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error { 2484 srv := &Server{Handler: handler} 2485 return srv.ServeTLS(l, certFile, keyFile) 2486 } 2487 2488 // A Server defines parameters for running an HTTP server. 2489 // The zero value for Server is a valid configuration. 2490 type Server struct { 2491 Addr string // TCP address to listen on, ":http" if empty 2492 Handler Handler // handler to invoke, http.DefaultServeMux if nil 2493 2494 // TLSConfig optionally provides a TLS configuration for use 2495 // by ServeTLS and ListenAndServeTLS. Note that this value is 2496 // cloned by ServeTLS and ListenAndServeTLS, so it's not 2497 // possible to modify the configuration with methods like 2498 // tls.Config.SetSessionTicketKeys. To use 2499 // SetSessionTicketKeys, use Server.Serve with a TLS Listener 2500 // instead. 2501 TLSConfig *tls.Config 2502 2503 // ReadTimeout is the maximum duration for reading the entire 2504 // request, including the body. 2505 // 2506 // Because ReadTimeout does not let Handlers make per-request 2507 // decisions on each request body's acceptable deadline or 2508 // upload rate, most users will prefer to use 2509 // ReadHeaderTimeout. It is valid to use them both. 2510 ReadTimeout time.Duration 2511 2512 // ReadHeaderTimeout is the amount of time allowed to read 2513 // request headers. The connection's read deadline is reset 2514 // after reading the headers and the Handler can decide what 2515 // is considered too slow for the body. If ReadHeaderTimeout 2516 // is zero, the value of ReadTimeout is used. If both are 2517 // zero, there is no timeout. 2518 ReadHeaderTimeout time.Duration 2519 2520 // WriteTimeout is the maximum duration before timing out 2521 // writes of the response. It is reset whenever a new 2522 // request's header is read. Like ReadTimeout, it does not 2523 // let Handlers make decisions on a per-request basis. 2524 WriteTimeout time.Duration 2525 2526 // IdleTimeout is the maximum amount of time to wait for the 2527 // next request when keep-alives are enabled. If IdleTimeout 2528 // is zero, the value of ReadTimeout is used. If both are 2529 // zero, there is no timeout. 2530 IdleTimeout time.Duration 2531 2532 // MaxHeaderBytes controls the maximum number of bytes the 2533 // server will read parsing the request header's keys and 2534 // values, including the request line. It does not limit the 2535 // size of the request body. 2536 // If zero, DefaultMaxHeaderBytes is used. 2537 MaxHeaderBytes int 2538 2539 // TLSNextProto optionally specifies a function to take over 2540 // ownership of the provided TLS connection when an NPN/ALPN 2541 // protocol upgrade has occurred. The map key is the protocol 2542 // name negotiated. The Handler argument should be used to 2543 // handle HTTP requests and will initialize the Request's TLS 2544 // and RemoteAddr if not already set. The connection is 2545 // automatically closed when the function returns. 2546 // If TLSNextProto is not nil, HTTP/2 support is not enabled 2547 // automatically. 2548 TLSNextProto map[string]func(*Server, *tls.Conn, Handler) 2549 2550 // ConnState specifies an optional callback function that is 2551 // called when a client connection changes state. See the 2552 // ConnState type and associated constants for details. 2553 ConnState func(net.Conn, ConnState) 2554 2555 // ErrorLog specifies an optional logger for errors accepting 2556 // connections, unexpected behavior from handlers, and 2557 // underlying FileSystem errors. 2558 // If nil, logging is done via the log package's standard logger. 2559 ErrorLog *log.Logger 2560 2561 // BaseContext optionally specifies a function that returns 2562 // the base context for incoming requests on this server. 2563 // The provided Listener is the specific Listener that's 2564 // about to start accepting requests. 2565 // If BaseContext is nil, the default is context.Background(). 2566 // If non-nil, it must return a non-nil context. 2567 BaseContext func(net.Listener) context.Context 2568 2569 // ConnContext optionally specifies a function that modifies 2570 // the context used for a new connection c. The provided ctx 2571 // is derived from the base context and has a ServerContextKey 2572 // value. 2573 ConnContext func(ctx context.Context, c net.Conn) context.Context 2574 2575 disableKeepAlives int32 // accessed atomically. 2576 inShutdown int32 // accessed atomically (non-zero means we're in Shutdown) 2577 nextProtoOnce sync.Once // guards setupHTTP2_* init 2578 nextProtoErr error // result of http.ConfigureServer if used 2579 2580 mu sync.Mutex 2581 listeners map[*net.Listener]struct{} 2582 activeConn map[*conn]struct{} 2583 doneChan chan struct{} 2584 onShutdown []func() 2585 } 2586 2587 func (s *Server) getDoneChan() <-chan struct{} { 2588 s.mu.Lock() 2589 defer s.mu.Unlock() 2590 return s.getDoneChanLocked() 2591 } 2592 2593 func (s *Server) getDoneChanLocked() chan struct{} { 2594 if s.doneChan == nil { 2595 s.doneChan = make(chan struct{}) 2596 } 2597 return s.doneChan 2598 } 2599 2600 func (s *Server) closeDoneChanLocked() { 2601 ch := s.getDoneChanLocked() 2602 select { 2603 case <-ch: 2604 // Already closed. Don't close again. 2605 default: 2606 // Safe to close here. We're the only closer, guarded 2607 // by s.mu. 2608 close(ch) 2609 } 2610 } 2611 2612 // Close immediately closes all active net.Listeners and any 2613 // connections in state StateNew, StateActive, or StateIdle. For a 2614 // graceful shutdown, use Shutdown. 2615 // 2616 // Close does not attempt to close (and does not even know about) 2617 // any hijacked connections, such as WebSockets. 2618 // 2619 // Close returns any error returned from closing the Server's 2620 // underlying Listener(s). 2621 func (srv *Server) Close() error { 2622 atomic.StoreInt32(&srv.inShutdown, 1) 2623 srv.mu.Lock() 2624 defer srv.mu.Unlock() 2625 srv.closeDoneChanLocked() 2626 err := srv.closeListenersLocked() 2627 for c := range srv.activeConn { 2628 c.rwc.Close() 2629 delete(srv.activeConn, c) 2630 } 2631 return err 2632 } 2633 2634 // shutdownPollInterval is how often we poll for quiescence 2635 // during Server.Shutdown. This is lower during tests, to 2636 // speed up tests. 2637 // Ideally we could find a solution that doesn't involve polling, 2638 // but which also doesn't have a high runtime cost (and doesn't 2639 // involve any contentious mutexes), but that is left as an 2640 // exercise for the reader. 2641 var shutdownPollInterval = 500 * time.Millisecond 2642 2643 // Shutdown gracefully shuts down the server without interrupting any 2644 // active connections. Shutdown works by first closing all open 2645 // listeners, then closing all idle connections, and then waiting 2646 // indefinitely for connections to return to idle and then shut down. 2647 // If the provided context expires before the shutdown is complete, 2648 // Shutdown returns the context's error, otherwise it returns any 2649 // error returned from closing the Server's underlying Listener(s). 2650 // 2651 // When Shutdown is called, Serve, ListenAndServe, and 2652 // ListenAndServeTLS immediately return ErrServerClosed. Make sure the 2653 // program doesn't exit and waits instead for Shutdown to return. 2654 // 2655 // Shutdown does not attempt to close nor wait for hijacked 2656 // connections such as WebSockets. The caller of Shutdown should 2657 // separately notify such long-lived connections of shutdown and wait 2658 // for them to close, if desired. See RegisterOnShutdown for a way to 2659 // register shutdown notification functions. 2660 // 2661 // Once Shutdown has been called on a server, it may not be reused; 2662 // future calls to methods such as Serve will return ErrServerClosed. 2663 func (srv *Server) Shutdown(ctx context.Context) error { 2664 atomic.StoreInt32(&srv.inShutdown, 1) 2665 2666 srv.mu.Lock() 2667 lnerr := srv.closeListenersLocked() 2668 srv.closeDoneChanLocked() 2669 for _, f := range srv.onShutdown { 2670 go f() 2671 } 2672 srv.mu.Unlock() 2673 2674 ticker := time.NewTicker(shutdownPollInterval) 2675 defer ticker.Stop() 2676 for { 2677 if srv.closeIdleConns() { 2678 return lnerr 2679 } 2680 select { 2681 case <-ctx.Done(): 2682 return ctx.Err() 2683 case <-ticker.C: 2684 } 2685 } 2686 } 2687 2688 // RegisterOnShutdown registers a function to call on Shutdown. 2689 // This can be used to gracefully shutdown connections that have 2690 // undergone NPN/ALPN protocol upgrade or that have been hijacked. 2691 // This function should start protocol-specific graceful shutdown, 2692 // but should not wait for shutdown to complete. 2693 func (srv *Server) RegisterOnShutdown(f func()) { 2694 srv.mu.Lock() 2695 srv.onShutdown = append(srv.onShutdown, f) 2696 srv.mu.Unlock() 2697 } 2698 2699 // closeIdleConns closes all idle connections and reports whether the 2700 // server is quiescent. 2701 func (s *Server) closeIdleConns() bool { 2702 s.mu.Lock() 2703 defer s.mu.Unlock() 2704 quiescent := true 2705 for c := range s.activeConn { 2706 st, unixSec := c.getState() 2707 // Issue 22682: treat StateNew connections as if 2708 // they're idle if we haven't read the first request's 2709 // header in over 5 seconds. 2710 if st == StateNew && unixSec < time.Now().Unix()-5 { 2711 st = StateIdle 2712 } 2713 if st != StateIdle || unixSec == 0 { 2714 // Assume unixSec == 0 means it's a very new 2715 // connection, without state set yet. 2716 quiescent = false 2717 continue 2718 } 2719 c.rwc.Close() 2720 delete(s.activeConn, c) 2721 } 2722 return quiescent 2723 } 2724 2725 func (s *Server) closeListenersLocked() error { 2726 var err error 2727 for ln := range s.listeners { 2728 if cerr := (*ln).Close(); cerr != nil && err == nil { 2729 err = cerr 2730 } 2731 delete(s.listeners, ln) 2732 } 2733 return err 2734 } 2735 2736 // A ConnState represents the state of a client connection to a server. 2737 // It's used by the optional Server.ConnState hook. 2738 type ConnState int 2739 2740 const ( 2741 // StateNew represents a new connection that is expected to 2742 // send a request immediately. Connections begin at this 2743 // state and then transition to either StateActive or 2744 // StateClosed. 2745 StateNew ConnState = iota 2746 2747 // StateActive represents a connection that has read 1 or more 2748 // bytes of a request. The Server.ConnState hook for 2749 // StateActive fires before the request has entered a handler 2750 // and doesn't fire again until the request has been 2751 // handled. After the request is handled, the state 2752 // transitions to StateClosed, StateHijacked, or StateIdle. 2753 // For HTTP/2, StateActive fires on the transition from zero 2754 // to one active request, and only transitions away once all 2755 // active requests are complete. That means that ConnState 2756 // cannot be used to do per-request work; ConnState only notes 2757 // the overall state of the connection. 2758 StateActive 2759 2760 // StateIdle represents a connection that has finished 2761 // handling a request and is in the keep-alive state, waiting 2762 // for a new request. Connections transition from StateIdle 2763 // to either StateActive or StateClosed. 2764 StateIdle 2765 2766 // StateHijacked represents a hijacked connection. 2767 // This is a terminal state. It does not transition to StateClosed. 2768 StateHijacked 2769 2770 // StateClosed represents a closed connection. 2771 // This is a terminal state. Hijacked connections do not 2772 // transition to StateClosed. 2773 StateClosed 2774 ) 2775 2776 var stateName = map[ConnState]string{ 2777 StateNew: "new", 2778 StateActive: "active", 2779 StateIdle: "idle", 2780 StateHijacked: "hijacked", 2781 StateClosed: "closed", 2782 } 2783 2784 func (c ConnState) String() string { 2785 return stateName[c] 2786 } 2787 2788 // serverHandler delegates to either the server's Handler or 2789 // DefaultServeMux and also handles "OPTIONS *" requests. 2790 type serverHandler struct { 2791 srv *Server 2792 } 2793 2794 func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) { 2795 handler := sh.srv.Handler 2796 if handler == nil { 2797 handler = DefaultServeMux 2798 } 2799 if req.RequestURI == "*" && req.Method == "OPTIONS" { 2800 handler = globalOptionsHandler{} 2801 } 2802 handler.ServeHTTP(rw, req) 2803 } 2804 2805 // ListenAndServe listens on the TCP network address srv.Addr and then 2806 // calls Serve to handle requests on incoming connections. 2807 // Accepted connections are configured to enable TCP keep-alives. 2808 // 2809 // If srv.Addr is blank, ":http" is used. 2810 // 2811 // ListenAndServe always returns a non-nil error. After Shutdown or Close, 2812 // the returned error is ErrServerClosed. 2813 func (srv *Server) ListenAndServe() error { 2814 if srv.shuttingDown() { 2815 return ErrServerClosed 2816 } 2817 addr := srv.Addr 2818 if addr == "" { 2819 addr = ":http" 2820 } 2821 ln, err := net.Listen("tcp", addr) 2822 if err != nil { 2823 return err 2824 } 2825 return srv.Serve(ln) 2826 } 2827 2828 var testHookServerServe func(*Server, net.Listener) // used if non-nil 2829 2830 // shouldDoServeHTTP2 reports whether Server.Serve should configure 2831 // automatic HTTP/2. (which sets up the srv.TLSNextProto map) 2832 func (srv *Server) shouldConfigureHTTP2ForServe() bool { 2833 if srv.TLSConfig == nil { 2834 // Compatibility with Go 1.6: 2835 // If there's no TLSConfig, it's possible that the user just 2836 // didn't set it on the http.Server, but did pass it to 2837 // tls.NewListener and passed that listener to Serve. 2838 // So we should configure HTTP/2 (to set up srv.TLSNextProto) 2839 // in case the listener returns an "h2" *tls.Conn. 2840 return true 2841 } 2842 // The user specified a TLSConfig on their http.Server. 2843 // In this, case, only configure HTTP/2 if their tls.Config 2844 // explicitly mentions "h2". Otherwise http.ConfigureServer 2845 // would modify the tls.Config to add it, but they probably already 2846 // passed this tls.Config to tls.NewListener. And if they did, 2847 // it's too late anyway to fix it. It would only be potentially racy. 2848 // See Issue 15908. 2849 return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS) 2850 } 2851 2852 // ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe, 2853 // and ListenAndServeTLS methods after a call to Shutdown or Close. 2854 var ErrServerClosed = errors.New("http: Server closed") 2855 2856 // Serve accepts incoming connections on the Listener l, creating a 2857 // new service goroutine for each. The service goroutines read requests and 2858 // then call srv.Handler to reply to them. 2859 // 2860 // HTTP/2 support is only enabled if the Listener returns *tls.Conn 2861 // connections and they were configured with "h2" in the TLS 2862 // Config.NextProtos. 2863 // 2864 // Serve always returns a non-nil error and closes l. 2865 // After Shutdown or Close, the returned error is ErrServerClosed. 2866 func (srv *Server) Serve(l net.Listener) error { 2867 if fn := testHookServerServe; fn != nil { 2868 fn(srv, l) // call hook with unwrapped listener 2869 } 2870 2871 origListener := l 2872 l = &onceCloseListener{Listener: l} 2873 defer l.Close() 2874 2875 if err := srv.setupHTTP2_Serve(); err != nil { 2876 return err 2877 } 2878 2879 if !srv.trackListener(&l, true) { 2880 return ErrServerClosed 2881 } 2882 defer srv.trackListener(&l, false) 2883 2884 var tempDelay time.Duration // how long to sleep on accept failure 2885 2886 baseCtx := context.Background() 2887 if srv.BaseContext != nil { 2888 baseCtx = srv.BaseContext(origListener) 2889 if baseCtx == nil { 2890 panic("BaseContext returned a nil context") 2891 } 2892 } 2893 2894 ctx := context.WithValue(baseCtx, ServerContextKey, srv) 2895 for { 2896 rw, e := l.Accept() 2897 if e != nil { 2898 select { 2899 case <-srv.getDoneChan(): 2900 return ErrServerClosed 2901 default: 2902 } 2903 if ne, ok := e.(net.Error); ok && ne.Temporary() { 2904 if tempDelay == 0 { 2905 tempDelay = 5 * time.Millisecond 2906 } else { 2907 tempDelay *= 2 2908 } 2909 if max := 1 * time.Second; tempDelay > max { 2910 tempDelay = max 2911 } 2912 srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay) 2913 time.Sleep(tempDelay) 2914 continue 2915 } 2916 return e 2917 } 2918 connCtx := ctx 2919 if cc := srv.ConnContext; cc != nil { 2920 connCtx = cc(connCtx, rw) 2921 if connCtx == nil { 2922 panic("ConnContext returned nil") 2923 } 2924 } 2925 tempDelay = 0 2926 c := srv.newConn(rw) 2927 c.setState(c.rwc, StateNew) // before Serve can return 2928 go c.serve(connCtx) 2929 } 2930 } 2931 2932 // ServeTLS accepts incoming connections on the Listener l, creating a 2933 // new service goroutine for each. The service goroutines perform TLS 2934 // setup and then read requests, calling srv.Handler to reply to them. 2935 // 2936 // Files containing a certificate and matching private key for the 2937 // server must be provided if neither the Server's 2938 // TLSConfig.Certificates nor TLSConfig.GetCertificate are populated. 2939 // If the certificate is signed by a certificate authority, the 2940 // certFile should be the concatenation of the server's certificate, 2941 // any intermediates, and the CA's certificate. 2942 // 2943 // ServeTLS always returns a non-nil error. After Shutdown or Close, the 2944 // returned error is ErrServerClosed. 2945 func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error { 2946 // Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig 2947 // before we clone it and create the TLS Listener. 2948 if err := srv.setupHTTP2_ServeTLS(); err != nil { 2949 return err 2950 } 2951 2952 config := cloneTLSConfig(srv.TLSConfig) 2953 if !strSliceContains(config.NextProtos, "http/1.1") { 2954 config.NextProtos = append(config.NextProtos, "http/1.1") 2955 } 2956 2957 configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil 2958 if !configHasCert || certFile != "" || keyFile != "" { 2959 var err error 2960 config.Certificates = make([]tls.Certificate, 1) 2961 config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile) 2962 if err != nil { 2963 return err 2964 } 2965 } 2966 2967 tlsListener := tls.NewListener(l, config) 2968 return srv.Serve(tlsListener) 2969 } 2970 2971 // trackListener adds or removes a net.Listener to the set of tracked 2972 // listeners. 2973 // 2974 // We store a pointer to interface in the map set, in case the 2975 // net.Listener is not comparable. This is safe because we only call 2976 // trackListener via Serve and can track+defer untrack the same 2977 // pointer to local variable there. We never need to compare a 2978 // Listener from another caller. 2979 // 2980 // It reports whether the server is still up (not Shutdown or Closed). 2981 func (s *Server) trackListener(ln *net.Listener, add bool) bool { 2982 s.mu.Lock() 2983 defer s.mu.Unlock() 2984 if s.listeners == nil { 2985 s.listeners = make(map[*net.Listener]struct{}) 2986 } 2987 if add { 2988 if s.shuttingDown() { 2989 return false 2990 } 2991 s.listeners[ln] = struct{}{} 2992 } else { 2993 delete(s.listeners, ln) 2994 } 2995 return true 2996 } 2997 2998 func (s *Server) trackConn(c *conn, add bool) { 2999 s.mu.Lock() 3000 defer s.mu.Unlock() 3001 if s.activeConn == nil { 3002 s.activeConn = make(map[*conn]struct{}) 3003 } 3004 if add { 3005 s.activeConn[c] = struct{}{} 3006 } else { 3007 delete(s.activeConn, c) 3008 } 3009 } 3010 3011 func (s *Server) idleTimeout() time.Duration { 3012 if s.IdleTimeout != 0 { 3013 return s.IdleTimeout 3014 } 3015 return s.ReadTimeout 3016 } 3017 3018 func (s *Server) readHeaderTimeout() time.Duration { 3019 if s.ReadHeaderTimeout != 0 { 3020 return s.ReadHeaderTimeout 3021 } 3022 return s.ReadTimeout 3023 } 3024 3025 func (s *Server) doKeepAlives() bool { 3026 return atomic.LoadInt32(&s.disableKeepAlives) == 0 && !s.shuttingDown() 3027 } 3028 3029 func (s *Server) shuttingDown() bool { 3030 // TODO: replace inShutdown with the existing atomicBool type; 3031 // see https://github.com/golang/go/issues/20239#issuecomment-381434582 3032 return atomic.LoadInt32(&s.inShutdown) != 0 3033 } 3034 3035 // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled. 3036 // By default, keep-alives are always enabled. Only very 3037 // resource-constrained environments or servers in the process of 3038 // shutting down should disable them. 3039 func (srv *Server) SetKeepAlivesEnabled(v bool) { 3040 if v { 3041 atomic.StoreInt32(&srv.disableKeepAlives, 0) 3042 return 3043 } 3044 atomic.StoreInt32(&srv.disableKeepAlives, 1) 3045 3046 // Close idle HTTP/1 conns: 3047 srv.closeIdleConns() 3048 3049 // TODO: Issue 26303: close HTTP/2 conns as soon as they become idle. 3050 } 3051 3052 func (s *Server) logf(format string, args ...interface{}) { 3053 if s.ErrorLog != nil { 3054 s.ErrorLog.Printf(format, args...) 3055 } else { 3056 log.Printf(format, args...) 3057 } 3058 } 3059 3060 // logf prints to the ErrorLog of the *Server associated with request r 3061 // via ServerContextKey. If there's no associated server, or if ErrorLog 3062 // is nil, logging is done via the log package's standard logger. 3063 func logf(r *Request, format string, args ...interface{}) { 3064 s, _ := r.Context().Value(ServerContextKey).(*Server) 3065 if s != nil && s.ErrorLog != nil { 3066 s.ErrorLog.Printf(format, args...) 3067 } else { 3068 log.Printf(format, args...) 3069 } 3070 } 3071 3072 // ListenAndServe listens on the TCP network address addr and then calls 3073 // Serve with handler to handle requests on incoming connections. 3074 // Accepted connections are configured to enable TCP keep-alives. 3075 // 3076 // The handler is typically nil, in which case the DefaultServeMux is used. 3077 // 3078 // ListenAndServe always returns a non-nil error. 3079 func ListenAndServe(addr string, handler Handler) error { 3080 server := &Server{Addr: addr, Handler: handler} 3081 return server.ListenAndServe() 3082 } 3083 3084 // ListenAndServeTLS acts identically to ListenAndServe, except that it 3085 // expects HTTPS connections. Additionally, files containing a certificate and 3086 // matching private key for the server must be provided. If the certificate 3087 // is signed by a certificate authority, the certFile should be the concatenation 3088 // of the server's certificate, any intermediates, and the CA's certificate. 3089 func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error { 3090 server := &Server{Addr: addr, Handler: handler} 3091 return server.ListenAndServeTLS(certFile, keyFile) 3092 } 3093 3094 // ListenAndServeTLS listens on the TCP network address srv.Addr and 3095 // then calls ServeTLS to handle requests on incoming TLS connections. 3096 // Accepted connections are configured to enable TCP keep-alives. 3097 // 3098 // Filenames containing a certificate and matching private key for the 3099 // server must be provided if neither the Server's TLSConfig.Certificates 3100 // nor TLSConfig.GetCertificate are populated. If the certificate is 3101 // signed by a certificate authority, the certFile should be the 3102 // concatenation of the server's certificate, any intermediates, and 3103 // the CA's certificate. 3104 // 3105 // If srv.Addr is blank, ":https" is used. 3106 // 3107 // ListenAndServeTLS always returns a non-nil error. After Shutdown or 3108 // Close, the returned error is ErrServerClosed. 3109 func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error { 3110 if srv.shuttingDown() { 3111 return ErrServerClosed 3112 } 3113 addr := srv.Addr 3114 if addr == "" { 3115 addr = ":https" 3116 } 3117 3118 ln, err := net.Listen("tcp", addr) 3119 if err != nil { 3120 return err 3121 } 3122 3123 defer ln.Close() 3124 3125 return srv.ServeTLS(ln, certFile, keyFile) 3126 } 3127 3128 // setupHTTP2_ServeTLS conditionally configures HTTP/2 on 3129 // srv and reports whether there was an error setting it up. If it is 3130 // not configured for policy reasons, nil is returned. 3131 func (srv *Server) setupHTTP2_ServeTLS() error { 3132 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults) 3133 return srv.nextProtoErr 3134 } 3135 3136 // setupHTTP2_Serve is called from (*Server).Serve and conditionally 3137 // configures HTTP/2 on srv using a more conservative policy than 3138 // setupHTTP2_ServeTLS because Serve is called after tls.Listen, 3139 // and may be called concurrently. See shouldConfigureHTTP2ForServe. 3140 // 3141 // The tests named TestTransportAutomaticHTTP2* and 3142 // TestConcurrentServerServe in server_test.go demonstrate some 3143 // of the supported use cases and motivations. 3144 func (srv *Server) setupHTTP2_Serve() error { 3145 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve) 3146 return srv.nextProtoErr 3147 } 3148 3149 func (srv *Server) onceSetNextProtoDefaults_Serve() { 3150 if srv.shouldConfigureHTTP2ForServe() { 3151 srv.onceSetNextProtoDefaults() 3152 } 3153 } 3154 3155 // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't 3156 // configured otherwise. (by setting srv.TLSNextProto non-nil) 3157 // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*). 3158 func (srv *Server) onceSetNextProtoDefaults() { 3159 if strings.Contains(os.Getenv("GODEBUG"), "http2server=0") { 3160 return 3161 } 3162 // Enable HTTP/2 by default if the user hasn't otherwise 3163 // configured their TLSNextProto map. 3164 if srv.TLSNextProto == nil { 3165 conf := &http2Server{ 3166 NewWriteScheduler: func() http2WriteScheduler { return http2NewPriorityWriteScheduler(nil) }, 3167 } 3168 srv.nextProtoErr = http2ConfigureServer(srv, conf) 3169 } 3170 } 3171 3172 // TimeoutHandler returns a Handler that runs h with the given time limit. 3173 // 3174 // The new Handler calls h.ServeHTTP to handle each request, but if a 3175 // call runs for longer than its time limit, the handler responds with 3176 // a 503 Service Unavailable error and the given message in its body. 3177 // (If msg is empty, a suitable default message will be sent.) 3178 // After such a timeout, writes by h to its ResponseWriter will return 3179 // ErrHandlerTimeout. 3180 // 3181 // TimeoutHandler supports the Flusher and Pusher interfaces but does not 3182 // support the Hijacker interface. 3183 func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler { 3184 return &timeoutHandler{ 3185 handler: h, 3186 body: msg, 3187 dt: dt, 3188 } 3189 } 3190 3191 // ErrHandlerTimeout is returned on ResponseWriter Write calls 3192 // in handlers which have timed out. 3193 var ErrHandlerTimeout = errors.New("http: Handler timeout") 3194 3195 type timeoutHandler struct { 3196 handler Handler 3197 body string 3198 dt time.Duration 3199 3200 // When set, no context will be created and this context will 3201 // be used instead. 3202 testContext context.Context 3203 } 3204 3205 func (h *timeoutHandler) errorBody() string { 3206 if h.body != "" { 3207 return h.body 3208 } 3209 return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>" 3210 } 3211 3212 func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) { 3213 ctx := h.testContext 3214 if ctx == nil { 3215 var cancelCtx context.CancelFunc 3216 ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt) 3217 defer cancelCtx() 3218 } 3219 r = r.WithContext(ctx) 3220 done := make(chan struct{}) 3221 tw := &timeoutWriter{ 3222 w: w, 3223 h: make(Header), 3224 } 3225 panicChan := make(chan interface{}, 1) 3226 go func() { 3227 defer func() { 3228 if p := recover(); p != nil { 3229 panicChan <- p 3230 } 3231 }() 3232 h.handler.ServeHTTP(tw, r) 3233 close(done) 3234 }() 3235 select { 3236 case p := <-panicChan: 3237 panic(p) 3238 case <-done: 3239 tw.mu.Lock() 3240 defer tw.mu.Unlock() 3241 dst := w.Header() 3242 for k, vv := range tw.h { 3243 dst[k] = vv 3244 } 3245 if !tw.wroteHeader { 3246 tw.code = StatusOK 3247 } 3248 w.WriteHeader(tw.code) 3249 w.Write(tw.wbuf.Bytes()) 3250 case <-ctx.Done(): 3251 tw.mu.Lock() 3252 defer tw.mu.Unlock() 3253 w.WriteHeader(StatusServiceUnavailable) 3254 io.WriteString(w, h.errorBody()) 3255 tw.timedOut = true 3256 } 3257 } 3258 3259 type timeoutWriter struct { 3260 w ResponseWriter 3261 h Header 3262 wbuf bytes.Buffer 3263 3264 mu sync.Mutex 3265 timedOut bool 3266 wroteHeader bool 3267 code int 3268 } 3269 3270 var _ Pusher = (*timeoutWriter)(nil) 3271 3272 // Push implements the Pusher interface. 3273 func (tw *timeoutWriter) Push(target string, opts *PushOptions) error { 3274 if pusher, ok := tw.w.(Pusher); ok { 3275 return pusher.Push(target, opts) 3276 } 3277 return ErrNotSupported 3278 } 3279 3280 func (tw *timeoutWriter) Header() Header { return tw.h } 3281 3282 func (tw *timeoutWriter) Write(p []byte) (int, error) { 3283 tw.mu.Lock() 3284 defer tw.mu.Unlock() 3285 if tw.timedOut { 3286 return 0, ErrHandlerTimeout 3287 } 3288 if !tw.wroteHeader { 3289 tw.writeHeader(StatusOK) 3290 } 3291 return tw.wbuf.Write(p) 3292 } 3293 3294 func (tw *timeoutWriter) WriteHeader(code int) { 3295 checkWriteHeaderCode(code) 3296 tw.mu.Lock() 3297 defer tw.mu.Unlock() 3298 if tw.timedOut || tw.wroteHeader { 3299 return 3300 } 3301 tw.writeHeader(code) 3302 } 3303 3304 func (tw *timeoutWriter) writeHeader(code int) { 3305 tw.wroteHeader = true 3306 tw.code = code 3307 } 3308 3309 // onceCloseListener wraps a net.Listener, protecting it from 3310 // multiple Close calls. 3311 type onceCloseListener struct { 3312 net.Listener 3313 once sync.Once 3314 closeErr error 3315 } 3316 3317 func (oc *onceCloseListener) Close() error { 3318 oc.once.Do(oc.close) 3319 return oc.closeErr 3320 } 3321 3322 func (oc *onceCloseListener) close() { oc.closeErr = oc.Listener.Close() } 3323 3324 // globalOptionsHandler responds to "OPTIONS *" requests. 3325 type globalOptionsHandler struct{} 3326 3327 func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) { 3328 w.Header().Set("Content-Length", "0") 3329 if r.ContentLength != 0 { 3330 // Read up to 4KB of OPTIONS body (as mentioned in the 3331 // spec as being reserved for future use), but anything 3332 // over that is considered a waste of server resources 3333 // (or an attack) and we abort and close the connection, 3334 // courtesy of MaxBytesReader's EOF behavior. 3335 mb := MaxBytesReader(w, r.Body, 4<<10) 3336 io.Copy(ioutil.Discard, mb) 3337 } 3338 } 3339 3340 // initNPNRequest is an HTTP handler that initializes certain 3341 // uninitialized fields in its *Request. Such partially-initialized 3342 // Requests come from NPN protocol handlers. 3343 type initNPNRequest struct { 3344 ctx context.Context 3345 c *tls.Conn 3346 h serverHandler 3347 } 3348 3349 // BaseContext is an exported but unadvertised http.Handler method 3350 // recognized by x/net/http2 to pass down a context; the TLSNextProto 3351 // API predates context support so we shoehorn through the only 3352 // interface we have available. 3353 func (h initNPNRequest) BaseContext() context.Context { return h.ctx } 3354 3355 func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) { 3356 if req.TLS == nil { 3357 req.TLS = &tls.ConnectionState{} 3358 *req.TLS = h.c.ConnectionState() 3359 } 3360 if req.Body == nil { 3361 req.Body = NoBody 3362 } 3363 if req.RemoteAddr == "" { 3364 req.RemoteAddr = h.c.RemoteAddr().String() 3365 } 3366 h.h.ServeHTTP(rw, req) 3367 } 3368 3369 // loggingConn is used for debugging. 3370 type loggingConn struct { 3371 name string 3372 net.Conn 3373 } 3374 3375 var ( 3376 uniqNameMu sync.Mutex 3377 uniqNameNext = make(map[string]int) 3378 ) 3379 3380 func newLoggingConn(baseName string, c net.Conn) net.Conn { 3381 uniqNameMu.Lock() 3382 defer uniqNameMu.Unlock() 3383 uniqNameNext[baseName]++ 3384 return &loggingConn{ 3385 name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]), 3386 Conn: c, 3387 } 3388 } 3389 3390 func (c *loggingConn) Write(p []byte) (n int, err error) { 3391 log.Printf("%s.Write(%d) = ....", c.name, len(p)) 3392 n, err = c.Conn.Write(p) 3393 log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err) 3394 return 3395 } 3396 3397 func (c *loggingConn) Read(p []byte) (n int, err error) { 3398 log.Printf("%s.Read(%d) = ....", c.name, len(p)) 3399 n, err = c.Conn.Read(p) 3400 log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err) 3401 return 3402 } 3403 3404 func (c *loggingConn) Close() (err error) { 3405 log.Printf("%s.Close() = ...", c.name) 3406 err = c.Conn.Close() 3407 log.Printf("%s.Close() = %v", c.name, err) 3408 return 3409 } 3410 3411 // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr. 3412 // It only contains one field (and a pointer field at that), so it 3413 // fits in an interface value without an extra allocation. 3414 type checkConnErrorWriter struct { 3415 c *conn 3416 } 3417 3418 func (w checkConnErrorWriter) Write(p []byte) (n int, err error) { 3419 n, err = w.c.rwc.Write(p) 3420 if err != nil && w.c.werr == nil { 3421 w.c.werr = err 3422 w.c.cancelCtx() 3423 } 3424 return 3425 } 3426 3427 func numLeadingCRorLF(v []byte) (n int) { 3428 for _, b := range v { 3429 if b == '\r' || b == '\n' { 3430 n++ 3431 continue 3432 } 3433 break 3434 } 3435 return 3436 3437 } 3438 3439 func strSliceContains(ss []string, s string) bool { 3440 for _, v := range ss { 3441 if v == s { 3442 return true 3443 } 3444 } 3445 return false 3446 } 3447 3448 // tlsRecordHeaderLooksLikeHTTP reports whether a TLS record header 3449 // looks like it might've been a misdirected plaintext HTTP request. 3450 func tlsRecordHeaderLooksLikeHTTP(hdr [5]byte) bool { 3451 switch string(hdr[:]) { 3452 case "GET /", "HEAD ", "POST ", "PUT /", "OPTIO": 3453 return true 3454 } 3455 return false 3456 }