github.com/hikaru7719/go@v0.0.0-20181025140707-c8b2ac68906a/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bufio"
     9  	"bytes"
    10  	"encoding/binary"
    11  	"fmt"
    12  	"html"
    13  	"os"
    14  	"sort"
    15  
    16  	"cmd/compile/internal/ssa"
    17  	"cmd/compile/internal/types"
    18  	"cmd/internal/obj"
    19  	"cmd/internal/objabi"
    20  	"cmd/internal/src"
    21  	"cmd/internal/sys"
    22  )
    23  
    24  var ssaConfig *ssa.Config
    25  var ssaCaches []ssa.Cache
    26  
    27  var ssaDump string     // early copy of $GOSSAFUNC; the func name to dump output for
    28  var ssaDumpStdout bool // whether to dump to stdout
    29  const ssaDumpFile = "ssa.html"
    30  
    31  // ssaDumpInlined holds all inlined functions when ssaDump contains a function name.
    32  var ssaDumpInlined []*Node
    33  
    34  func initssaconfig() {
    35  	types_ := ssa.NewTypes()
    36  
    37  	if thearch.SoftFloat {
    38  		softfloatInit()
    39  	}
    40  
    41  	// Generate a few pointer types that are uncommon in the frontend but common in the backend.
    42  	// Caching is disabled in the backend, so generating these here avoids allocations.
    43  	_ = types.NewPtr(types.Types[TINTER])                             // *interface{}
    44  	_ = types.NewPtr(types.NewPtr(types.Types[TSTRING]))              // **string
    45  	_ = types.NewPtr(types.NewPtr(types.Idealstring))                 // **string
    46  	_ = types.NewPtr(types.NewSlice(types.Types[TINTER]))             // *[]interface{}
    47  	_ = types.NewPtr(types.NewPtr(types.Bytetype))                    // **byte
    48  	_ = types.NewPtr(types.NewSlice(types.Bytetype))                  // *[]byte
    49  	_ = types.NewPtr(types.NewSlice(types.Types[TSTRING]))            // *[]string
    50  	_ = types.NewPtr(types.NewSlice(types.Idealstring))               // *[]string
    51  	_ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8
    52  	_ = types.NewPtr(types.Types[TINT16])                             // *int16
    53  	_ = types.NewPtr(types.Types[TINT64])                             // *int64
    54  	_ = types.NewPtr(types.Errortype)                                 // *error
    55  	types.NewPtrCacheEnabled = false
    56  	ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, *types_, Ctxt, Debug['N'] == 0)
    57  	if thearch.LinkArch.Name == "386" {
    58  		ssaConfig.Set387(thearch.Use387)
    59  	}
    60  	ssaConfig.SoftFloat = thearch.SoftFloat
    61  	ssaConfig.Race = flag_race
    62  	ssaCaches = make([]ssa.Cache, nBackendWorkers)
    63  
    64  	// Set up some runtime functions we'll need to call.
    65  	assertE2I = sysfunc("assertE2I")
    66  	assertE2I2 = sysfunc("assertE2I2")
    67  	assertI2I = sysfunc("assertI2I")
    68  	assertI2I2 = sysfunc("assertI2I2")
    69  	deferproc = sysfunc("deferproc")
    70  	Deferreturn = sysfunc("deferreturn")
    71  	Duffcopy = sysfunc("duffcopy")
    72  	Duffzero = sysfunc("duffzero")
    73  	gcWriteBarrier = sysfunc("gcWriteBarrier")
    74  	goschedguarded = sysfunc("goschedguarded")
    75  	growslice = sysfunc("growslice")
    76  	msanread = sysfunc("msanread")
    77  	msanwrite = sysfunc("msanwrite")
    78  	newproc = sysfunc("newproc")
    79  	panicdivide = sysfunc("panicdivide")
    80  	panicdottypeE = sysfunc("panicdottypeE")
    81  	panicdottypeI = sysfunc("panicdottypeI")
    82  	panicindex = sysfunc("panicindex")
    83  	panicnildottype = sysfunc("panicnildottype")
    84  	panicslice = sysfunc("panicslice")
    85  	raceread = sysfunc("raceread")
    86  	racereadrange = sysfunc("racereadrange")
    87  	racewrite = sysfunc("racewrite")
    88  	racewriterange = sysfunc("racewriterange")
    89  	supportPopcnt = sysfunc("support_popcnt")
    90  	supportSSE41 = sysfunc("support_sse41")
    91  	arm64SupportAtomics = sysfunc("arm64_support_atomics")
    92  	typedmemclr = sysfunc("typedmemclr")
    93  	typedmemmove = sysfunc("typedmemmove")
    94  	Udiv = sysfunc("udiv")
    95  	writeBarrier = sysfunc("writeBarrier")
    96  
    97  	// GO386=387 runtime functions
    98  	ControlWord64trunc = sysfunc("controlWord64trunc")
    99  	ControlWord32 = sysfunc("controlWord32")
   100  
   101  	// Wasm
   102  	WasmMove = sysfunc("wasmMove")
   103  	WasmZero = sysfunc("wasmZero")
   104  	WasmDiv = sysfunc("wasmDiv")
   105  	WasmTruncS = sysfunc("wasmTruncS")
   106  	WasmTruncU = sysfunc("wasmTruncU")
   107  	SigPanic = sysfunc("sigpanic")
   108  }
   109  
   110  // buildssa builds an SSA function for fn.
   111  // worker indicates which of the backend workers is doing the processing.
   112  func buildssa(fn *Node, worker int) *ssa.Func {
   113  	name := fn.funcname()
   114  	printssa := name == ssaDump
   115  	var astBuf *bytes.Buffer
   116  	if printssa {
   117  		astBuf = &bytes.Buffer{}
   118  		fdumplist(astBuf, "buildssa-enter", fn.Func.Enter)
   119  		fdumplist(astBuf, "buildssa-body", fn.Nbody)
   120  		fdumplist(astBuf, "buildssa-exit", fn.Func.Exit)
   121  		if ssaDumpStdout {
   122  			fmt.Println("generating SSA for", name)
   123  			fmt.Print(astBuf.String())
   124  		}
   125  	}
   126  
   127  	var s state
   128  	s.pushLine(fn.Pos)
   129  	defer s.popLine()
   130  
   131  	s.hasdefer = fn.Func.HasDefer()
   132  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   133  		s.cgoUnsafeArgs = true
   134  	}
   135  
   136  	fe := ssafn{
   137  		curfn: fn,
   138  		log:   printssa && ssaDumpStdout,
   139  	}
   140  	s.curfn = fn
   141  
   142  	s.f = ssa.NewFunc(&fe)
   143  	s.config = ssaConfig
   144  	s.f.Type = fn.Type
   145  	s.f.Config = ssaConfig
   146  	s.f.Cache = &ssaCaches[worker]
   147  	s.f.Cache.Reset()
   148  	s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name)
   149  	s.f.Name = name
   150  	s.f.PrintOrHtmlSSA = printssa
   151  	if fn.Func.Pragma&Nosplit != 0 {
   152  		s.f.NoSplit = true
   153  	}
   154  	s.panics = map[funcLine]*ssa.Block{}
   155  	s.softFloat = s.config.SoftFloat
   156  
   157  	if printssa {
   158  		s.f.HTMLWriter = ssa.NewHTMLWriter(ssaDumpFile, s.f.Frontend(), name)
   159  		// TODO: generate and print a mapping from nodes to values and blocks
   160  		dumpSourcesColumn(s.f.HTMLWriter, fn)
   161  		s.f.HTMLWriter.WriteAST("AST", astBuf)
   162  	}
   163  
   164  	// Allocate starting block
   165  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
   166  
   167  	// Allocate starting values
   168  	s.labels = map[string]*ssaLabel{}
   169  	s.labeledNodes = map[*Node]*ssaLabel{}
   170  	s.fwdVars = map[*Node]*ssa.Value{}
   171  	s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem)
   172  	s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
   173  	s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR])
   174  
   175  	s.startBlock(s.f.Entry)
   176  	s.vars[&memVar] = s.startmem
   177  
   178  	// Generate addresses of local declarations
   179  	s.decladdrs = map[*Node]*ssa.Value{}
   180  	for _, n := range fn.Func.Dcl {
   181  		switch n.Class() {
   182  		case PPARAM, PPARAMOUT:
   183  			s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type), n, s.sp, s.startmem)
   184  			if n.Class() == PPARAMOUT && s.canSSA(n) {
   185  				// Save ssa-able PPARAMOUT variables so we can
   186  				// store them back to the stack at the end of
   187  				// the function.
   188  				s.returns = append(s.returns, n)
   189  			}
   190  		case PAUTO:
   191  			// processed at each use, to prevent Addr coming
   192  			// before the decl.
   193  		case PAUTOHEAP:
   194  			// moved to heap - already handled by frontend
   195  		case PFUNC:
   196  			// local function - already handled by frontend
   197  		default:
   198  			s.Fatalf("local variable with class %v unimplemented", n.Class())
   199  		}
   200  	}
   201  
   202  	// Populate SSAable arguments.
   203  	for _, n := range fn.Func.Dcl {
   204  		if n.Class() == PPARAM && s.canSSA(n) {
   205  			v := s.newValue0A(ssa.OpArg, n.Type, n)
   206  			s.vars[n] = v
   207  			s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself.
   208  		}
   209  	}
   210  
   211  	// Convert the AST-based IR to the SSA-based IR
   212  	s.stmtList(fn.Func.Enter)
   213  	s.stmtList(fn.Nbody)
   214  
   215  	// fallthrough to exit
   216  	if s.curBlock != nil {
   217  		s.pushLine(fn.Func.Endlineno)
   218  		s.exit()
   219  		s.popLine()
   220  	}
   221  
   222  	for _, b := range s.f.Blocks {
   223  		if b.Pos != src.NoXPos {
   224  			s.updateUnsetPredPos(b)
   225  		}
   226  	}
   227  
   228  	s.insertPhis()
   229  
   230  	// Main call to ssa package to compile function
   231  	ssa.Compile(s.f)
   232  	return s.f
   233  }
   234  
   235  func dumpSourcesColumn(writer *ssa.HTMLWriter, fn *Node) {
   236  	// Read sources of target function fn.
   237  	fname := Ctxt.PosTable.Pos(fn.Pos).Filename()
   238  	targetFn, err := readFuncLines(fname, fn.Pos.Line(), fn.Func.Endlineno.Line())
   239  	if err != nil {
   240  		writer.Logger.Logf("cannot read sources for function %v: %v", fn, err)
   241  	}
   242  
   243  	// Read sources of inlined functions.
   244  	var inlFns []*ssa.FuncLines
   245  	for _, fi := range ssaDumpInlined {
   246  		var elno src.XPos
   247  		if fi.Name.Defn == nil {
   248  			// Endlineno is filled from exported data.
   249  			elno = fi.Func.Endlineno
   250  		} else {
   251  			elno = fi.Name.Defn.Func.Endlineno
   252  		}
   253  		fname := Ctxt.PosTable.Pos(fi.Pos).Filename()
   254  		fnLines, err := readFuncLines(fname, fi.Pos.Line(), elno.Line())
   255  		if err != nil {
   256  			writer.Logger.Logf("cannot read sources for function %v: %v", fi, err)
   257  			continue
   258  		}
   259  		inlFns = append(inlFns, fnLines)
   260  	}
   261  
   262  	sort.Sort(ssa.ByTopo(inlFns))
   263  	if targetFn != nil {
   264  		inlFns = append([]*ssa.FuncLines{targetFn}, inlFns...)
   265  	}
   266  
   267  	writer.WriteSources("sources", inlFns)
   268  }
   269  
   270  func readFuncLines(file string, start, end uint) (*ssa.FuncLines, error) {
   271  	f, err := os.Open(os.ExpandEnv(file))
   272  	if err != nil {
   273  		return nil, err
   274  	}
   275  	defer f.Close()
   276  	var lines []string
   277  	ln := uint(1)
   278  	scanner := bufio.NewScanner(f)
   279  	for scanner.Scan() && ln <= end {
   280  		if ln >= start {
   281  			lines = append(lines, scanner.Text())
   282  		}
   283  		ln++
   284  	}
   285  	return &ssa.FuncLines{Filename: file, StartLineno: start, Lines: lines}, nil
   286  }
   287  
   288  // updateUnsetPredPos propagates the earliest-value position information for b
   289  // towards all of b's predecessors that need a position, and recurs on that
   290  // predecessor if its position is updated. B should have a non-empty position.
   291  func (s *state) updateUnsetPredPos(b *ssa.Block) {
   292  	if b.Pos == src.NoXPos {
   293  		s.Fatalf("Block %s should have a position", b)
   294  	}
   295  	bestPos := src.NoXPos
   296  	for _, e := range b.Preds {
   297  		p := e.Block()
   298  		if !p.LackingPos() {
   299  			continue
   300  		}
   301  		if bestPos == src.NoXPos {
   302  			bestPos = b.Pos
   303  			for _, v := range b.Values {
   304  				if v.LackingPos() {
   305  					continue
   306  				}
   307  				if v.Pos != src.NoXPos {
   308  					// Assume values are still in roughly textual order;
   309  					// TODO: could also seek minimum position?
   310  					bestPos = v.Pos
   311  					break
   312  				}
   313  			}
   314  		}
   315  		p.Pos = bestPos
   316  		s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay.
   317  	}
   318  }
   319  
   320  type state struct {
   321  	// configuration (arch) information
   322  	config *ssa.Config
   323  
   324  	// function we're building
   325  	f *ssa.Func
   326  
   327  	// Node for function
   328  	curfn *Node
   329  
   330  	// labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f
   331  	labels       map[string]*ssaLabel
   332  	labeledNodes map[*Node]*ssaLabel
   333  
   334  	// unlabeled break and continue statement tracking
   335  	breakTo    *ssa.Block // current target for plain break statement
   336  	continueTo *ssa.Block // current target for plain continue statement
   337  
   338  	// current location where we're interpreting the AST
   339  	curBlock *ssa.Block
   340  
   341  	// variable assignments in the current block (map from variable symbol to ssa value)
   342  	// *Node is the unique identifier (an ONAME Node) for the variable.
   343  	// TODO: keep a single varnum map, then make all of these maps slices instead?
   344  	vars map[*Node]*ssa.Value
   345  
   346  	// fwdVars are variables that are used before they are defined in the current block.
   347  	// This map exists just to coalesce multiple references into a single FwdRef op.
   348  	// *Node is the unique identifier (an ONAME Node) for the variable.
   349  	fwdVars map[*Node]*ssa.Value
   350  
   351  	// all defined variables at the end of each block. Indexed by block ID.
   352  	defvars []map[*Node]*ssa.Value
   353  
   354  	// addresses of PPARAM and PPARAMOUT variables.
   355  	decladdrs map[*Node]*ssa.Value
   356  
   357  	// starting values. Memory, stack pointer, and globals pointer
   358  	startmem *ssa.Value
   359  	sp       *ssa.Value
   360  	sb       *ssa.Value
   361  
   362  	// line number stack. The current line number is top of stack
   363  	line []src.XPos
   364  	// the last line number processed; it may have been popped
   365  	lastPos src.XPos
   366  
   367  	// list of panic calls by function name and line number.
   368  	// Used to deduplicate panic calls.
   369  	panics map[funcLine]*ssa.Block
   370  
   371  	// list of PPARAMOUT (return) variables.
   372  	returns []*Node
   373  
   374  	cgoUnsafeArgs bool
   375  	hasdefer      bool // whether the function contains a defer statement
   376  	softFloat     bool
   377  }
   378  
   379  type funcLine struct {
   380  	f    *obj.LSym
   381  	base *src.PosBase
   382  	line uint
   383  }
   384  
   385  type ssaLabel struct {
   386  	target         *ssa.Block // block identified by this label
   387  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   388  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   389  }
   390  
   391  // label returns the label associated with sym, creating it if necessary.
   392  func (s *state) label(sym *types.Sym) *ssaLabel {
   393  	lab := s.labels[sym.Name]
   394  	if lab == nil {
   395  		lab = new(ssaLabel)
   396  		s.labels[sym.Name] = lab
   397  	}
   398  	return lab
   399  }
   400  
   401  func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) }
   402  func (s *state) Log() bool                            { return s.f.Log() }
   403  func (s *state) Fatalf(msg string, args ...interface{}) {
   404  	s.f.Frontend().Fatalf(s.peekPos(), msg, args...)
   405  }
   406  func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) }
   407  func (s *state) Debug_checknil() bool                                { return s.f.Frontend().Debug_checknil() }
   408  
   409  var (
   410  	// dummy node for the memory variable
   411  	memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}}
   412  
   413  	// dummy nodes for temporary variables
   414  	ptrVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}}
   415  	lenVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}}
   416  	newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}}
   417  	capVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}}
   418  	typVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}}
   419  	okVar     = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}}
   420  )
   421  
   422  // startBlock sets the current block we're generating code in to b.
   423  func (s *state) startBlock(b *ssa.Block) {
   424  	if s.curBlock != nil {
   425  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   426  	}
   427  	s.curBlock = b
   428  	s.vars = map[*Node]*ssa.Value{}
   429  	for n := range s.fwdVars {
   430  		delete(s.fwdVars, n)
   431  	}
   432  }
   433  
   434  // endBlock marks the end of generating code for the current block.
   435  // Returns the (former) current block. Returns nil if there is no current
   436  // block, i.e. if no code flows to the current execution point.
   437  func (s *state) endBlock() *ssa.Block {
   438  	b := s.curBlock
   439  	if b == nil {
   440  		return nil
   441  	}
   442  	for len(s.defvars) <= int(b.ID) {
   443  		s.defvars = append(s.defvars, nil)
   444  	}
   445  	s.defvars[b.ID] = s.vars
   446  	s.curBlock = nil
   447  	s.vars = nil
   448  	if b.LackingPos() {
   449  		// Empty plain blocks get the line of their successor (handled after all blocks created),
   450  		// except for increment blocks in For statements (handled in ssa conversion of OFOR),
   451  		// and for blocks ending in GOTO/BREAK/CONTINUE.
   452  		b.Pos = src.NoXPos
   453  	} else {
   454  		b.Pos = s.lastPos
   455  	}
   456  	return b
   457  }
   458  
   459  // pushLine pushes a line number on the line number stack.
   460  func (s *state) pushLine(line src.XPos) {
   461  	if !line.IsKnown() {
   462  		// the frontend may emit node with line number missing,
   463  		// use the parent line number in this case.
   464  		line = s.peekPos()
   465  		if Debug['K'] != 0 {
   466  			Warn("buildssa: unknown position (line 0)")
   467  		}
   468  	} else {
   469  		s.lastPos = line
   470  	}
   471  
   472  	s.line = append(s.line, line)
   473  }
   474  
   475  // popLine pops the top of the line number stack.
   476  func (s *state) popLine() {
   477  	s.line = s.line[:len(s.line)-1]
   478  }
   479  
   480  // peekPos peeks the top of the line number stack.
   481  func (s *state) peekPos() src.XPos {
   482  	return s.line[len(s.line)-1]
   483  }
   484  
   485  // newValue0 adds a new value with no arguments to the current block.
   486  func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value {
   487  	return s.curBlock.NewValue0(s.peekPos(), op, t)
   488  }
   489  
   490  // newValue0A adds a new value with no arguments and an aux value to the current block.
   491  func (s *state) newValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
   492  	return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
   493  }
   494  
   495  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   496  func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value {
   497  	return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
   498  }
   499  
   500  // newValue1 adds a new value with one argument to the current block.
   501  func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   502  	return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
   503  }
   504  
   505  // newValue1A adds a new value with one argument and an aux value to the current block.
   506  func (s *state) newValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   507  	return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
   508  }
   509  
   510  // newValue1Apos adds a new value with one argument and an aux value to the current block.
   511  // isStmt determines whether the created values may be a statement or not
   512  // (i.e., false means never, yes means maybe).
   513  func (s *state) newValue1Apos(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value, isStmt bool) *ssa.Value {
   514  	if isStmt {
   515  		return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
   516  	}
   517  	return s.curBlock.NewValue1A(s.peekPos().WithNotStmt(), op, t, aux, arg)
   518  }
   519  
   520  // newValue1I adds a new value with one argument and an auxint value to the current block.
   521  func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value {
   522  	return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
   523  }
   524  
   525  // newValue2 adds a new value with two arguments to the current block.
   526  func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   527  	return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
   528  }
   529  
   530  // newValue2Apos adds a new value with two arguments and an aux value to the current block.
   531  // isStmt determines whether the created values may be a statement or not
   532  // (i.e., false means never, yes means maybe).
   533  func (s *state) newValue2Apos(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1 *ssa.Value, isStmt bool) *ssa.Value {
   534  	if isStmt {
   535  		return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1)
   536  	}
   537  	return s.curBlock.NewValue2A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1)
   538  }
   539  
   540  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   541  func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   542  	return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
   543  }
   544  
   545  // newValue3 adds a new value with three arguments to the current block.
   546  func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   547  	return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
   548  }
   549  
   550  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   551  func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   552  	return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   553  }
   554  
   555  // newValue3A adds a new value with three arguments and an aux value to the current block.
   556  func (s *state) newValue3A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   557  	return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   558  }
   559  
   560  // newValue3Apos adds a new value with three arguments and an aux value to the current block.
   561  // isStmt determines whether the created values may be a statement or not
   562  // (i.e., false means never, yes means maybe).
   563  func (s *state) newValue3Apos(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value, isStmt bool) *ssa.Value {
   564  	if isStmt {
   565  		return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   566  	}
   567  	return s.curBlock.NewValue3A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1, arg2)
   568  }
   569  
   570  // newValue4 adds a new value with four arguments to the current block.
   571  func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
   572  	return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
   573  }
   574  
   575  // entryNewValue0 adds a new value with no arguments to the entry block.
   576  func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value {
   577  	return s.f.Entry.NewValue0(src.NoXPos, op, t)
   578  }
   579  
   580  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   581  func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
   582  	return s.f.Entry.NewValue0A(src.NoXPos, op, t, aux)
   583  }
   584  
   585  // entryNewValue1 adds a new value with one argument to the entry block.
   586  func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   587  	return s.f.Entry.NewValue1(src.NoXPos, op, t, arg)
   588  }
   589  
   590  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   591  func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   592  	return s.f.Entry.NewValue1I(src.NoXPos, op, t, auxint, arg)
   593  }
   594  
   595  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   596  func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   597  	return s.f.Entry.NewValue1A(src.NoXPos, op, t, aux, arg)
   598  }
   599  
   600  // entryNewValue2 adds a new value with two arguments to the entry block.
   601  func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   602  	return s.f.Entry.NewValue2(src.NoXPos, op, t, arg0, arg1)
   603  }
   604  
   605  // entryNewValue2A adds a new value with two arguments and an aux value to the entry block.
   606  func (s *state) entryNewValue2A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1 *ssa.Value) *ssa.Value {
   607  	return s.f.Entry.NewValue2A(src.NoXPos, op, t, aux, arg0, arg1)
   608  }
   609  
   610  // const* routines add a new const value to the entry block.
   611  func (s *state) constSlice(t *types.Type) *ssa.Value {
   612  	return s.f.ConstSlice(t)
   613  }
   614  func (s *state) constInterface(t *types.Type) *ssa.Value {
   615  	return s.f.ConstInterface(t)
   616  }
   617  func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(t) }
   618  func (s *state) constEmptyString(t *types.Type) *ssa.Value {
   619  	return s.f.ConstEmptyString(t)
   620  }
   621  func (s *state) constBool(c bool) *ssa.Value {
   622  	return s.f.ConstBool(types.Types[TBOOL], c)
   623  }
   624  func (s *state) constInt8(t *types.Type, c int8) *ssa.Value {
   625  	return s.f.ConstInt8(t, c)
   626  }
   627  func (s *state) constInt16(t *types.Type, c int16) *ssa.Value {
   628  	return s.f.ConstInt16(t, c)
   629  }
   630  func (s *state) constInt32(t *types.Type, c int32) *ssa.Value {
   631  	return s.f.ConstInt32(t, c)
   632  }
   633  func (s *state) constInt64(t *types.Type, c int64) *ssa.Value {
   634  	return s.f.ConstInt64(t, c)
   635  }
   636  func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value {
   637  	return s.f.ConstFloat32(t, c)
   638  }
   639  func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value {
   640  	return s.f.ConstFloat64(t, c)
   641  }
   642  func (s *state) constInt(t *types.Type, c int64) *ssa.Value {
   643  	if s.config.PtrSize == 8 {
   644  		return s.constInt64(t, c)
   645  	}
   646  	if int64(int32(c)) != c {
   647  		s.Fatalf("integer constant too big %d", c)
   648  	}
   649  	return s.constInt32(t, int32(c))
   650  }
   651  func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value {
   652  	return s.f.ConstOffPtrSP(t, c, s.sp)
   653  }
   654  
   655  // newValueOrSfCall* are wrappers around newValue*, which may create a call to a
   656  // soft-float runtime function instead (when emitting soft-float code).
   657  func (s *state) newValueOrSfCall1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   658  	if s.softFloat {
   659  		if c, ok := s.sfcall(op, arg); ok {
   660  			return c
   661  		}
   662  	}
   663  	return s.newValue1(op, t, arg)
   664  }
   665  func (s *state) newValueOrSfCall2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   666  	if s.softFloat {
   667  		if c, ok := s.sfcall(op, arg0, arg1); ok {
   668  			return c
   669  		}
   670  	}
   671  	return s.newValue2(op, t, arg0, arg1)
   672  }
   673  
   674  func (s *state) instrument(t *types.Type, addr *ssa.Value, wr bool) {
   675  	if !s.curfn.Func.InstrumentBody() {
   676  		return
   677  	}
   678  
   679  	w := t.Size()
   680  	if w == 0 {
   681  		return // can't race on zero-sized things
   682  	}
   683  
   684  	if ssa.IsSanitizerSafeAddr(addr) {
   685  		return
   686  	}
   687  
   688  	var fn *obj.LSym
   689  	needWidth := false
   690  
   691  	if flag_msan {
   692  		fn = msanread
   693  		if wr {
   694  			fn = msanwrite
   695  		}
   696  		needWidth = true
   697  	} else if flag_race && t.NumComponents(types.CountBlankFields) > 1 {
   698  		// for composite objects we have to write every address
   699  		// because a write might happen to any subobject.
   700  		// composites with only one element don't have subobjects, though.
   701  		fn = racereadrange
   702  		if wr {
   703  			fn = racewriterange
   704  		}
   705  		needWidth = true
   706  	} else if flag_race {
   707  		// for non-composite objects we can write just the start
   708  		// address, as any write must write the first byte.
   709  		fn = raceread
   710  		if wr {
   711  			fn = racewrite
   712  		}
   713  	} else {
   714  		panic("unreachable")
   715  	}
   716  
   717  	args := []*ssa.Value{addr}
   718  	if needWidth {
   719  		args = append(args, s.constInt(types.Types[TUINTPTR], w))
   720  	}
   721  	s.rtcall(fn, true, nil, args...)
   722  }
   723  
   724  func (s *state) load(t *types.Type, src *ssa.Value) *ssa.Value {
   725  	s.instrument(t, src, false)
   726  	return s.rawLoad(t, src)
   727  }
   728  
   729  func (s *state) rawLoad(t *types.Type, src *ssa.Value) *ssa.Value {
   730  	return s.newValue2(ssa.OpLoad, t, src, s.mem())
   731  }
   732  
   733  func (s *state) store(t *types.Type, dst, val *ssa.Value) {
   734  	s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, dst, val, s.mem())
   735  }
   736  
   737  func (s *state) zero(t *types.Type, dst *ssa.Value) {
   738  	s.instrument(t, dst, true)
   739  	store := s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), dst, s.mem())
   740  	store.Aux = t
   741  	s.vars[&memVar] = store
   742  }
   743  
   744  func (s *state) move(t *types.Type, dst, src *ssa.Value) {
   745  	s.instrument(t, src, false)
   746  	s.instrument(t, dst, true)
   747  	store := s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), dst, src, s.mem())
   748  	store.Aux = t
   749  	s.vars[&memVar] = store
   750  }
   751  
   752  // stmtList converts the statement list n to SSA and adds it to s.
   753  func (s *state) stmtList(l Nodes) {
   754  	for _, n := range l.Slice() {
   755  		s.stmt(n)
   756  	}
   757  }
   758  
   759  // stmt converts the statement n to SSA and adds it to s.
   760  func (s *state) stmt(n *Node) {
   761  	if !(n.Op == OVARKILL || n.Op == OVARLIVE || n.Op == OVARDEF) {
   762  		// OVARKILL, OVARLIVE, and OVARDEF are invisible to the programmer, so we don't use their line numbers to avoid confusion in debugging.
   763  		s.pushLine(n.Pos)
   764  		defer s.popLine()
   765  	}
   766  
   767  	// If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
   768  	// then this code is dead. Stop here.
   769  	if s.curBlock == nil && n.Op != OLABEL {
   770  		return
   771  	}
   772  
   773  	s.stmtList(n.Ninit)
   774  	switch n.Op {
   775  
   776  	case OBLOCK:
   777  		s.stmtList(n.List)
   778  
   779  	// No-ops
   780  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   781  
   782  	// Expression statements
   783  	case OCALLFUNC:
   784  		if isIntrinsicCall(n) {
   785  			s.intrinsicCall(n)
   786  			return
   787  		}
   788  		fallthrough
   789  
   790  	case OCALLMETH, OCALLINTER:
   791  		s.call(n, callNormal)
   792  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC {
   793  			if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
   794  				n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block" || fn == "panicmakeslicelen" || fn == "panicmakeslicecap") {
   795  				m := s.mem()
   796  				b := s.endBlock()
   797  				b.Kind = ssa.BlockExit
   798  				b.SetControl(m)
   799  				// TODO: never rewrite OPANIC to OCALLFUNC in the
   800  				// first place. Need to wait until all backends
   801  				// go through SSA.
   802  			}
   803  		}
   804  	case ODEFER:
   805  		s.call(n.Left, callDefer)
   806  	case OPROC:
   807  		s.call(n.Left, callGo)
   808  
   809  	case OAS2DOTTYPE:
   810  		res, resok := s.dottype(n.Rlist.First(), true)
   811  		deref := false
   812  		if !canSSAType(n.Rlist.First().Type) {
   813  			if res.Op != ssa.OpLoad {
   814  				s.Fatalf("dottype of non-load")
   815  			}
   816  			mem := s.mem()
   817  			if mem.Op == ssa.OpVarKill {
   818  				mem = mem.Args[0]
   819  			}
   820  			if res.Args[1] != mem {
   821  				s.Fatalf("memory no longer live from 2-result dottype load")
   822  			}
   823  			deref = true
   824  			res = res.Args[0]
   825  		}
   826  		s.assign(n.List.First(), res, deref, 0)
   827  		s.assign(n.List.Second(), resok, false, 0)
   828  		return
   829  
   830  	case OAS2FUNC:
   831  		// We come here only when it is an intrinsic call returning two values.
   832  		if !isIntrinsicCall(n.Rlist.First()) {
   833  			s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First())
   834  		}
   835  		v := s.intrinsicCall(n.Rlist.First())
   836  		v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
   837  		v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
   838  		s.assign(n.List.First(), v1, false, 0)
   839  		s.assign(n.List.Second(), v2, false, 0)
   840  		return
   841  
   842  	case ODCL:
   843  		if n.Left.Class() == PAUTOHEAP {
   844  			Fatalf("DCL %v", n)
   845  		}
   846  
   847  	case OLABEL:
   848  		sym := n.Left.Sym
   849  		lab := s.label(sym)
   850  
   851  		// Associate label with its control flow node, if any
   852  		if ctl := n.labeledControl(); ctl != nil {
   853  			s.labeledNodes[ctl] = lab
   854  		}
   855  
   856  		// The label might already have a target block via a goto.
   857  		if lab.target == nil {
   858  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   859  		}
   860  
   861  		// Go to that label.
   862  		// (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
   863  		if s.curBlock != nil {
   864  			b := s.endBlock()
   865  			b.AddEdgeTo(lab.target)
   866  		}
   867  		s.startBlock(lab.target)
   868  
   869  	case OGOTO:
   870  		sym := n.Left.Sym
   871  
   872  		lab := s.label(sym)
   873  		if lab.target == nil {
   874  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   875  		}
   876  
   877  		b := s.endBlock()
   878  		b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block.
   879  		b.AddEdgeTo(lab.target)
   880  
   881  	case OAS:
   882  		if n.Left == n.Right && n.Left.Op == ONAME {
   883  			// An x=x assignment. No point in doing anything
   884  			// here. In addition, skipping this assignment
   885  			// prevents generating:
   886  			//   VARDEF x
   887  			//   COPY x -> x
   888  			// which is bad because x is incorrectly considered
   889  			// dead before the vardef. See issue #14904.
   890  			return
   891  		}
   892  
   893  		// Evaluate RHS.
   894  		rhs := n.Right
   895  		if rhs != nil {
   896  			switch rhs.Op {
   897  			case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
   898  				// All literals with nonzero fields have already been
   899  				// rewritten during walk. Any that remain are just T{}
   900  				// or equivalents. Use the zero value.
   901  				if !isZero(rhs) {
   902  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   903  				}
   904  				rhs = nil
   905  			case OAPPEND:
   906  				// Check whether we're writing the result of an append back to the same slice.
   907  				// If so, we handle it specially to avoid write barriers on the fast
   908  				// (non-growth) path.
   909  				if !samesafeexpr(n.Left, rhs.List.First()) || Debug['N'] != 0 {
   910  					break
   911  				}
   912  				// If the slice can be SSA'd, it'll be on the stack,
   913  				// so there will be no write barriers,
   914  				// so there's no need to attempt to prevent them.
   915  				if s.canSSA(n.Left) {
   916  					if Debug_append > 0 { // replicating old diagnostic message
   917  						Warnl(n.Pos, "append: len-only update (in local slice)")
   918  					}
   919  					break
   920  				}
   921  				if Debug_append > 0 {
   922  					Warnl(n.Pos, "append: len-only update")
   923  				}
   924  				s.append(rhs, true)
   925  				return
   926  			}
   927  		}
   928  
   929  		if n.Left.isBlank() {
   930  			// _ = rhs
   931  			// Just evaluate rhs for side-effects.
   932  			if rhs != nil {
   933  				s.expr(rhs)
   934  			}
   935  			return
   936  		}
   937  
   938  		var t *types.Type
   939  		if n.Right != nil {
   940  			t = n.Right.Type
   941  		} else {
   942  			t = n.Left.Type
   943  		}
   944  
   945  		var r *ssa.Value
   946  		deref := !canSSAType(t)
   947  		if deref {
   948  			if rhs == nil {
   949  				r = nil // Signal assign to use OpZero.
   950  			} else {
   951  				r = s.addr(rhs, false)
   952  			}
   953  		} else {
   954  			if rhs == nil {
   955  				r = s.zeroVal(t)
   956  			} else {
   957  				r = s.expr(rhs)
   958  			}
   959  		}
   960  
   961  		var skip skipMask
   962  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   963  			// We're assigning a slicing operation back to its source.
   964  			// Don't write back fields we aren't changing. See issue #14855.
   965  			i, j, k := rhs.SliceBounds()
   966  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   967  				// [0:...] is the same as [:...]
   968  				i = nil
   969  			}
   970  			// TODO: detect defaults for len/cap also.
   971  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   972  			//    tmp = len(*p)
   973  			//    (*p)[:tmp]
   974  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   975  			//      j = nil
   976  			//}
   977  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   978  			//      k = nil
   979  			//}
   980  			if i == nil {
   981  				skip |= skipPtr
   982  				if j == nil {
   983  					skip |= skipLen
   984  				}
   985  				if k == nil {
   986  					skip |= skipCap
   987  				}
   988  			}
   989  		}
   990  
   991  		s.assign(n.Left, r, deref, skip)
   992  
   993  	case OIF:
   994  		bThen := s.f.NewBlock(ssa.BlockPlain)
   995  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   996  		var bElse *ssa.Block
   997  		var likely int8
   998  		if n.Likely() {
   999  			likely = 1
  1000  		}
  1001  		if n.Rlist.Len() != 0 {
  1002  			bElse = s.f.NewBlock(ssa.BlockPlain)
  1003  			s.condBranch(n.Left, bThen, bElse, likely)
  1004  		} else {
  1005  			s.condBranch(n.Left, bThen, bEnd, likely)
  1006  		}
  1007  
  1008  		s.startBlock(bThen)
  1009  		s.stmtList(n.Nbody)
  1010  		if b := s.endBlock(); b != nil {
  1011  			b.AddEdgeTo(bEnd)
  1012  		}
  1013  
  1014  		if n.Rlist.Len() != 0 {
  1015  			s.startBlock(bElse)
  1016  			s.stmtList(n.Rlist)
  1017  			if b := s.endBlock(); b != nil {
  1018  				b.AddEdgeTo(bEnd)
  1019  			}
  1020  		}
  1021  		s.startBlock(bEnd)
  1022  
  1023  	case ORETURN:
  1024  		s.stmtList(n.List)
  1025  		b := s.exit()
  1026  		b.Pos = s.lastPos.WithIsStmt()
  1027  
  1028  	case ORETJMP:
  1029  		s.stmtList(n.List)
  1030  		b := s.exit()
  1031  		b.Kind = ssa.BlockRetJmp // override BlockRet
  1032  		b.Aux = n.Sym.Linksym()
  1033  
  1034  	case OCONTINUE, OBREAK:
  1035  		var to *ssa.Block
  1036  		if n.Left == nil {
  1037  			// plain break/continue
  1038  			switch n.Op {
  1039  			case OCONTINUE:
  1040  				to = s.continueTo
  1041  			case OBREAK:
  1042  				to = s.breakTo
  1043  			}
  1044  		} else {
  1045  			// labeled break/continue; look up the target
  1046  			sym := n.Left.Sym
  1047  			lab := s.label(sym)
  1048  			switch n.Op {
  1049  			case OCONTINUE:
  1050  				to = lab.continueTarget
  1051  			case OBREAK:
  1052  				to = lab.breakTarget
  1053  			}
  1054  		}
  1055  
  1056  		b := s.endBlock()
  1057  		b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block.
  1058  		b.AddEdgeTo(to)
  1059  
  1060  	case OFOR, OFORUNTIL:
  1061  		// OFOR: for Ninit; Left; Right { Nbody }
  1062  		// cond (Left); body (Nbody); incr (Right)
  1063  		//
  1064  		// OFORUNTIL: for Ninit; Left; Right; List { Nbody }
  1065  		// => body: { Nbody }; incr: Right; if Left { lateincr: List; goto body }; end:
  1066  		bCond := s.f.NewBlock(ssa.BlockPlain)
  1067  		bBody := s.f.NewBlock(ssa.BlockPlain)
  1068  		bIncr := s.f.NewBlock(ssa.BlockPlain)
  1069  		bEnd := s.f.NewBlock(ssa.BlockPlain)
  1070  
  1071  		// first, jump to condition test (OFOR) or body (OFORUNTIL)
  1072  		b := s.endBlock()
  1073  		if n.Op == OFOR {
  1074  			b.AddEdgeTo(bCond)
  1075  			// generate code to test condition
  1076  			s.startBlock(bCond)
  1077  			if n.Left != nil {
  1078  				s.condBranch(n.Left, bBody, bEnd, 1)
  1079  			} else {
  1080  				b := s.endBlock()
  1081  				b.Kind = ssa.BlockPlain
  1082  				b.AddEdgeTo(bBody)
  1083  			}
  1084  
  1085  		} else {
  1086  			b.AddEdgeTo(bBody)
  1087  		}
  1088  
  1089  		// set up for continue/break in body
  1090  		prevContinue := s.continueTo
  1091  		prevBreak := s.breakTo
  1092  		s.continueTo = bIncr
  1093  		s.breakTo = bEnd
  1094  		lab := s.labeledNodes[n]
  1095  		if lab != nil {
  1096  			// labeled for loop
  1097  			lab.continueTarget = bIncr
  1098  			lab.breakTarget = bEnd
  1099  		}
  1100  
  1101  		// generate body
  1102  		s.startBlock(bBody)
  1103  		s.stmtList(n.Nbody)
  1104  
  1105  		// tear down continue/break
  1106  		s.continueTo = prevContinue
  1107  		s.breakTo = prevBreak
  1108  		if lab != nil {
  1109  			lab.continueTarget = nil
  1110  			lab.breakTarget = nil
  1111  		}
  1112  
  1113  		// done with body, goto incr
  1114  		if b := s.endBlock(); b != nil {
  1115  			b.AddEdgeTo(bIncr)
  1116  		}
  1117  
  1118  		// generate incr (and, for OFORUNTIL, condition)
  1119  		s.startBlock(bIncr)
  1120  		if n.Right != nil {
  1121  			s.stmt(n.Right)
  1122  		}
  1123  		if n.Op == OFOR {
  1124  			if b := s.endBlock(); b != nil {
  1125  				b.AddEdgeTo(bCond)
  1126  				// It can happen that bIncr ends in a block containing only VARKILL,
  1127  				// and that muddles the debugging experience.
  1128  				if n.Op != OFORUNTIL && b.Pos == src.NoXPos {
  1129  					b.Pos = bCond.Pos
  1130  				}
  1131  			}
  1132  		} else {
  1133  			// bCond is unused in OFORUNTIL, so repurpose it.
  1134  			bLateIncr := bCond
  1135  			// test condition
  1136  			s.condBranch(n.Left, bLateIncr, bEnd, 1)
  1137  			// generate late increment
  1138  			s.startBlock(bLateIncr)
  1139  			s.stmtList(n.List)
  1140  			s.endBlock().AddEdgeTo(bBody)
  1141  		}
  1142  
  1143  		s.startBlock(bEnd)
  1144  
  1145  	case OSWITCH, OSELECT:
  1146  		// These have been mostly rewritten by the front end into their Nbody fields.
  1147  		// Our main task is to correctly hook up any break statements.
  1148  		bEnd := s.f.NewBlock(ssa.BlockPlain)
  1149  
  1150  		prevBreak := s.breakTo
  1151  		s.breakTo = bEnd
  1152  		lab := s.labeledNodes[n]
  1153  		if lab != nil {
  1154  			// labeled
  1155  			lab.breakTarget = bEnd
  1156  		}
  1157  
  1158  		// generate body code
  1159  		s.stmtList(n.Nbody)
  1160  
  1161  		s.breakTo = prevBreak
  1162  		if lab != nil {
  1163  			lab.breakTarget = nil
  1164  		}
  1165  
  1166  		// walk adds explicit OBREAK nodes to the end of all reachable code paths.
  1167  		// If we still have a current block here, then mark it unreachable.
  1168  		if s.curBlock != nil {
  1169  			m := s.mem()
  1170  			b := s.endBlock()
  1171  			b.Kind = ssa.BlockExit
  1172  			b.SetControl(m)
  1173  		}
  1174  		s.startBlock(bEnd)
  1175  
  1176  	case OVARDEF:
  1177  		if !s.canSSA(n.Left) {
  1178  			s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, n.Left, s.mem(), false)
  1179  		}
  1180  	case OVARKILL:
  1181  		// Insert a varkill op to record that a variable is no longer live.
  1182  		// We only care about liveness info at call sites, so putting the
  1183  		// varkill in the store chain is enough to keep it correctly ordered
  1184  		// with respect to call ops.
  1185  		if !s.canSSA(n.Left) {
  1186  			s.vars[&memVar] = s.newValue1Apos(ssa.OpVarKill, types.TypeMem, n.Left, s.mem(), false)
  1187  		}
  1188  
  1189  	case OVARLIVE:
  1190  		// Insert a varlive op to record that a variable is still live.
  1191  		if !n.Left.Addrtaken() {
  1192  			s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
  1193  		}
  1194  		switch n.Left.Class() {
  1195  		case PAUTO, PPARAM, PPARAMOUT:
  1196  		default:
  1197  			s.Fatalf("VARLIVE variable %v must be Auto or Arg", n.Left)
  1198  		}
  1199  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, n.Left, s.mem())
  1200  
  1201  	case OCHECKNIL:
  1202  		p := s.expr(n.Left)
  1203  		s.nilCheck(p)
  1204  
  1205  	default:
  1206  		s.Fatalf("unhandled stmt %v", n.Op)
  1207  	}
  1208  }
  1209  
  1210  // exit processes any code that needs to be generated just before returning.
  1211  // It returns a BlockRet block that ends the control flow. Its control value
  1212  // will be set to the final memory state.
  1213  func (s *state) exit() *ssa.Block {
  1214  	if s.hasdefer {
  1215  		s.rtcall(Deferreturn, true, nil)
  1216  	}
  1217  
  1218  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
  1219  	// variables back to the stack.
  1220  	s.stmtList(s.curfn.Func.Exit)
  1221  
  1222  	// Store SSAable PPARAMOUT variables back to stack locations.
  1223  	for _, n := range s.returns {
  1224  		addr := s.decladdrs[n]
  1225  		val := s.variable(n, n.Type)
  1226  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
  1227  		s.store(n.Type, addr, val)
  1228  		// TODO: if val is ever spilled, we'd like to use the
  1229  		// PPARAMOUT slot for spilling it. That won't happen
  1230  		// currently.
  1231  	}
  1232  
  1233  	// Do actual return.
  1234  	m := s.mem()
  1235  	b := s.endBlock()
  1236  	b.Kind = ssa.BlockRet
  1237  	b.SetControl(m)
  1238  	return b
  1239  }
  1240  
  1241  type opAndType struct {
  1242  	op    Op
  1243  	etype types.EType
  1244  }
  1245  
  1246  var opToSSA = map[opAndType]ssa.Op{
  1247  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
  1248  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
  1249  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
  1250  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
  1251  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
  1252  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
  1253  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
  1254  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
  1255  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
  1256  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
  1257  
  1258  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
  1259  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
  1260  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
  1261  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
  1262  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
  1263  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
  1264  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
  1265  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
  1266  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
  1267  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
  1268  
  1269  	opAndType{ONOT, TBOOL}: ssa.OpNot,
  1270  
  1271  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
  1272  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
  1273  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
  1274  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
  1275  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
  1276  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
  1277  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
  1278  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
  1279  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1280  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1281  
  1282  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
  1283  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
  1284  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
  1285  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
  1286  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
  1287  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1288  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1289  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1290  
  1291  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1292  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1293  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1294  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1295  
  1296  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1297  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1298  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1299  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1300  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1301  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1302  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1303  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1304  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1305  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1306  
  1307  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1308  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1309  
  1310  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1311  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1312  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1313  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1314  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1315  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1316  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1317  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1318  
  1319  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1320  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1321  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1322  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1323  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1324  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1325  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1326  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1327  
  1328  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1329  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1330  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1331  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1332  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1333  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1334  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1335  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1336  
  1337  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1338  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1339  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1340  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1341  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1342  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1343  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1344  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1345  
  1346  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1347  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1348  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1349  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1350  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1351  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1352  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1353  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1354  
  1355  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1356  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1357  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1358  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1359  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1360  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1361  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1362  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1363  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1364  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1365  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1366  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1367  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1368  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1369  	opAndType{OEQ, TPTR}:       ssa.OpEqPtr,
  1370  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1371  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1372  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1373  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1374  
  1375  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1376  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1377  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1378  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1379  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1380  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1381  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1382  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1383  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1384  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1385  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1386  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1387  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1388  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1389  	opAndType{ONE, TPTR}:       ssa.OpNeqPtr,
  1390  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1391  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1392  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1393  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1394  
  1395  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1396  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1397  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1398  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1399  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1400  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1401  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1402  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1403  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1404  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1405  
  1406  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1407  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1408  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1409  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1410  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1411  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1412  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1413  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1414  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1415  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1416  
  1417  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1418  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1419  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1420  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1421  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1422  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1423  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1424  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1425  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1426  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1427  
  1428  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1429  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1430  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1431  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1432  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1433  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1434  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1435  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1436  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1437  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1438  }
  1439  
  1440  func (s *state) concreteEtype(t *types.Type) types.EType {
  1441  	e := t.Etype
  1442  	switch e {
  1443  	default:
  1444  		return e
  1445  	case TINT:
  1446  		if s.config.PtrSize == 8 {
  1447  			return TINT64
  1448  		}
  1449  		return TINT32
  1450  	case TUINT:
  1451  		if s.config.PtrSize == 8 {
  1452  			return TUINT64
  1453  		}
  1454  		return TUINT32
  1455  	case TUINTPTR:
  1456  		if s.config.PtrSize == 8 {
  1457  			return TUINT64
  1458  		}
  1459  		return TUINT32
  1460  	}
  1461  }
  1462  
  1463  func (s *state) ssaOp(op Op, t *types.Type) ssa.Op {
  1464  	etype := s.concreteEtype(t)
  1465  	x, ok := opToSSA[opAndType{op, etype}]
  1466  	if !ok {
  1467  		s.Fatalf("unhandled binary op %v %s", op, etype)
  1468  	}
  1469  	return x
  1470  }
  1471  
  1472  func floatForComplex(t *types.Type) *types.Type {
  1473  	if t.Size() == 8 {
  1474  		return types.Types[TFLOAT32]
  1475  	} else {
  1476  		return types.Types[TFLOAT64]
  1477  	}
  1478  }
  1479  
  1480  type opAndTwoTypes struct {
  1481  	op     Op
  1482  	etype1 types.EType
  1483  	etype2 types.EType
  1484  }
  1485  
  1486  type twoTypes struct {
  1487  	etype1 types.EType
  1488  	etype2 types.EType
  1489  }
  1490  
  1491  type twoOpsAndType struct {
  1492  	op1              ssa.Op
  1493  	op2              ssa.Op
  1494  	intermediateType types.EType
  1495  }
  1496  
  1497  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1498  
  1499  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1500  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1501  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1502  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1503  
  1504  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1505  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1506  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1507  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1508  
  1509  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1510  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1511  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1512  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1513  
  1514  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1515  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1516  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1517  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1518  	// unsigned
  1519  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1520  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1521  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1522  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1523  
  1524  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1525  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1526  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1527  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1528  
  1529  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1530  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1531  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1532  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1533  
  1534  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1535  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1536  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1537  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1538  
  1539  	// float
  1540  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1541  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64},
  1542  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32},
  1543  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1544  }
  1545  
  1546  // this map is used only for 32-bit arch, and only includes the difference
  1547  // on 32-bit arch, don't use int64<->float conversion for uint32
  1548  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1549  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1550  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1551  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1552  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1553  }
  1554  
  1555  // uint64<->float conversions, only on machines that have intructions for that
  1556  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1557  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1558  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1559  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1560  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1561  }
  1562  
  1563  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1564  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1565  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1566  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1567  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1568  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1569  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1570  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1571  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1572  
  1573  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1574  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1575  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1576  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1577  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1578  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1579  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1580  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1581  
  1582  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1583  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1584  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1585  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1586  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1587  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1588  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1589  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1590  
  1591  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1592  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1593  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1594  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1595  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1596  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1597  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1598  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1599  
  1600  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1601  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1602  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1603  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1604  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1605  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1606  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1607  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1608  
  1609  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1610  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1611  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1612  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1613  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1614  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1615  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1616  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1617  
  1618  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1619  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1620  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1621  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1622  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1623  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1624  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1625  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1626  
  1627  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1628  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1629  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1630  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1631  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1632  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1633  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1634  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1635  }
  1636  
  1637  func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op {
  1638  	etype1 := s.concreteEtype(t)
  1639  	etype2 := s.concreteEtype(u)
  1640  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1641  	if !ok {
  1642  		s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
  1643  	}
  1644  	return x
  1645  }
  1646  
  1647  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1648  func (s *state) expr(n *Node) *ssa.Value {
  1649  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1650  		// ONAMEs and named OLITERALs have the line number
  1651  		// of the decl, not the use. See issue 14742.
  1652  		s.pushLine(n.Pos)
  1653  		defer s.popLine()
  1654  	}
  1655  
  1656  	s.stmtList(n.Ninit)
  1657  	switch n.Op {
  1658  	case OARRAYBYTESTRTMP:
  1659  		slice := s.expr(n.Left)
  1660  		ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  1661  		len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  1662  		return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  1663  	case OSTRARRAYBYTETMP:
  1664  		str := s.expr(n.Left)
  1665  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str)
  1666  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str)
  1667  		return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
  1668  	case OCFUNC:
  1669  		aux := n.Left.Sym.Linksym()
  1670  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1671  	case ONAME:
  1672  		if n.Class() == PFUNC {
  1673  			// "value" of a function is the address of the function's closure
  1674  			sym := funcsym(n.Sym).Linksym()
  1675  			return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), sym, s.sb)
  1676  		}
  1677  		if s.canSSA(n) {
  1678  			return s.variable(n, n.Type)
  1679  		}
  1680  		addr := s.addr(n, false)
  1681  		return s.load(n.Type, addr)
  1682  	case OCLOSUREVAR:
  1683  		addr := s.addr(n, false)
  1684  		return s.load(n.Type, addr)
  1685  	case OLITERAL:
  1686  		switch u := n.Val().U.(type) {
  1687  		case *Mpint:
  1688  			i := u.Int64()
  1689  			switch n.Type.Size() {
  1690  			case 1:
  1691  				return s.constInt8(n.Type, int8(i))
  1692  			case 2:
  1693  				return s.constInt16(n.Type, int16(i))
  1694  			case 4:
  1695  				return s.constInt32(n.Type, int32(i))
  1696  			case 8:
  1697  				return s.constInt64(n.Type, i)
  1698  			default:
  1699  				s.Fatalf("bad integer size %d", n.Type.Size())
  1700  				return nil
  1701  			}
  1702  		case string:
  1703  			if u == "" {
  1704  				return s.constEmptyString(n.Type)
  1705  			}
  1706  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1707  		case bool:
  1708  			return s.constBool(u)
  1709  		case *NilVal:
  1710  			t := n.Type
  1711  			switch {
  1712  			case t.IsSlice():
  1713  				return s.constSlice(t)
  1714  			case t.IsInterface():
  1715  				return s.constInterface(t)
  1716  			default:
  1717  				return s.constNil(t)
  1718  			}
  1719  		case *Mpflt:
  1720  			switch n.Type.Size() {
  1721  			case 4:
  1722  				return s.constFloat32(n.Type, u.Float32())
  1723  			case 8:
  1724  				return s.constFloat64(n.Type, u.Float64())
  1725  			default:
  1726  				s.Fatalf("bad float size %d", n.Type.Size())
  1727  				return nil
  1728  			}
  1729  		case *Mpcplx:
  1730  			r := &u.Real
  1731  			i := &u.Imag
  1732  			switch n.Type.Size() {
  1733  			case 8:
  1734  				pt := types.Types[TFLOAT32]
  1735  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1736  					s.constFloat32(pt, r.Float32()),
  1737  					s.constFloat32(pt, i.Float32()))
  1738  			case 16:
  1739  				pt := types.Types[TFLOAT64]
  1740  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1741  					s.constFloat64(pt, r.Float64()),
  1742  					s.constFloat64(pt, i.Float64()))
  1743  			default:
  1744  				s.Fatalf("bad float size %d", n.Type.Size())
  1745  				return nil
  1746  			}
  1747  
  1748  		default:
  1749  			s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
  1750  			return nil
  1751  		}
  1752  	case OCONVNOP:
  1753  		to := n.Type
  1754  		from := n.Left.Type
  1755  
  1756  		// Assume everything will work out, so set up our return value.
  1757  		// Anything interesting that happens from here is a fatal.
  1758  		x := s.expr(n.Left)
  1759  
  1760  		// Special case for not confusing GC and liveness.
  1761  		// We don't want pointers accidentally classified
  1762  		// as not-pointers or vice-versa because of copy
  1763  		// elision.
  1764  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1765  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1766  		}
  1767  
  1768  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1769  
  1770  		// CONVNOP closure
  1771  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1772  			return v
  1773  		}
  1774  
  1775  		// named <--> unnamed type or typed <--> untyped const
  1776  		if from.Etype == to.Etype {
  1777  			return v
  1778  		}
  1779  
  1780  		// unsafe.Pointer <--> *T
  1781  		if to.Etype == TUNSAFEPTR && from.IsPtrShaped() || from.Etype == TUNSAFEPTR && to.IsPtrShaped() {
  1782  			return v
  1783  		}
  1784  
  1785  		// map <--> *hmap
  1786  		if to.Etype == TMAP && from.IsPtr() &&
  1787  			to.MapType().Hmap == from.Elem() {
  1788  			return v
  1789  		}
  1790  
  1791  		dowidth(from)
  1792  		dowidth(to)
  1793  		if from.Width != to.Width {
  1794  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1795  			return nil
  1796  		}
  1797  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1798  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1799  			return nil
  1800  		}
  1801  
  1802  		if instrumenting {
  1803  			// These appear to be fine, but they fail the
  1804  			// integer constraint below, so okay them here.
  1805  			// Sample non-integer conversion: map[string]string -> *uint8
  1806  			return v
  1807  		}
  1808  
  1809  		if etypesign(from.Etype) == 0 {
  1810  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1811  			return nil
  1812  		}
  1813  
  1814  		// integer, same width, same sign
  1815  		return v
  1816  
  1817  	case OCONV:
  1818  		x := s.expr(n.Left)
  1819  		ft := n.Left.Type // from type
  1820  		tt := n.Type      // to type
  1821  		if ft.IsBoolean() && tt.IsKind(TUINT8) {
  1822  			// Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
  1823  			return s.newValue1(ssa.OpCopy, n.Type, x)
  1824  		}
  1825  		if ft.IsInteger() && tt.IsInteger() {
  1826  			var op ssa.Op
  1827  			if tt.Size() == ft.Size() {
  1828  				op = ssa.OpCopy
  1829  			} else if tt.Size() < ft.Size() {
  1830  				// truncation
  1831  				switch 10*ft.Size() + tt.Size() {
  1832  				case 21:
  1833  					op = ssa.OpTrunc16to8
  1834  				case 41:
  1835  					op = ssa.OpTrunc32to8
  1836  				case 42:
  1837  					op = ssa.OpTrunc32to16
  1838  				case 81:
  1839  					op = ssa.OpTrunc64to8
  1840  				case 82:
  1841  					op = ssa.OpTrunc64to16
  1842  				case 84:
  1843  					op = ssa.OpTrunc64to32
  1844  				default:
  1845  					s.Fatalf("weird integer truncation %v -> %v", ft, tt)
  1846  				}
  1847  			} else if ft.IsSigned() {
  1848  				// sign extension
  1849  				switch 10*ft.Size() + tt.Size() {
  1850  				case 12:
  1851  					op = ssa.OpSignExt8to16
  1852  				case 14:
  1853  					op = ssa.OpSignExt8to32
  1854  				case 18:
  1855  					op = ssa.OpSignExt8to64
  1856  				case 24:
  1857  					op = ssa.OpSignExt16to32
  1858  				case 28:
  1859  					op = ssa.OpSignExt16to64
  1860  				case 48:
  1861  					op = ssa.OpSignExt32to64
  1862  				default:
  1863  					s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
  1864  				}
  1865  			} else {
  1866  				// zero extension
  1867  				switch 10*ft.Size() + tt.Size() {
  1868  				case 12:
  1869  					op = ssa.OpZeroExt8to16
  1870  				case 14:
  1871  					op = ssa.OpZeroExt8to32
  1872  				case 18:
  1873  					op = ssa.OpZeroExt8to64
  1874  				case 24:
  1875  					op = ssa.OpZeroExt16to32
  1876  				case 28:
  1877  					op = ssa.OpZeroExt16to64
  1878  				case 48:
  1879  					op = ssa.OpZeroExt32to64
  1880  				default:
  1881  					s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
  1882  				}
  1883  			}
  1884  			return s.newValue1(op, n.Type, x)
  1885  		}
  1886  
  1887  		if ft.IsFloat() || tt.IsFloat() {
  1888  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1889  			if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS && !s.softFloat {
  1890  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1891  					conv = conv1
  1892  				}
  1893  			}
  1894  			if thearch.LinkArch.Family == sys.ARM64 || thearch.LinkArch.Family == sys.Wasm || s.softFloat {
  1895  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1896  					conv = conv1
  1897  				}
  1898  			}
  1899  
  1900  			if thearch.LinkArch.Family == sys.MIPS && !s.softFloat {
  1901  				if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
  1902  					// tt is float32 or float64, and ft is also unsigned
  1903  					if tt.Size() == 4 {
  1904  						return s.uint32Tofloat32(n, x, ft, tt)
  1905  					}
  1906  					if tt.Size() == 8 {
  1907  						return s.uint32Tofloat64(n, x, ft, tt)
  1908  					}
  1909  				} else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
  1910  					// ft is float32 or float64, and tt is unsigned integer
  1911  					if ft.Size() == 4 {
  1912  						return s.float32ToUint32(n, x, ft, tt)
  1913  					}
  1914  					if ft.Size() == 8 {
  1915  						return s.float64ToUint32(n, x, ft, tt)
  1916  					}
  1917  				}
  1918  			}
  1919  
  1920  			if !ok {
  1921  				s.Fatalf("weird float conversion %v -> %v", ft, tt)
  1922  			}
  1923  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1924  
  1925  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1926  				// normal case, not tripping over unsigned 64
  1927  				if op1 == ssa.OpCopy {
  1928  					if op2 == ssa.OpCopy {
  1929  						return x
  1930  					}
  1931  					return s.newValueOrSfCall1(op2, n.Type, x)
  1932  				}
  1933  				if op2 == ssa.OpCopy {
  1934  					return s.newValueOrSfCall1(op1, n.Type, x)
  1935  				}
  1936  				return s.newValueOrSfCall1(op2, n.Type, s.newValueOrSfCall1(op1, types.Types[it], x))
  1937  			}
  1938  			// Tricky 64-bit unsigned cases.
  1939  			if ft.IsInteger() {
  1940  				// tt is float32 or float64, and ft is also unsigned
  1941  				if tt.Size() == 4 {
  1942  					return s.uint64Tofloat32(n, x, ft, tt)
  1943  				}
  1944  				if tt.Size() == 8 {
  1945  					return s.uint64Tofloat64(n, x, ft, tt)
  1946  				}
  1947  				s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
  1948  			}
  1949  			// ft is float32 or float64, and tt is unsigned integer
  1950  			if ft.Size() == 4 {
  1951  				return s.float32ToUint64(n, x, ft, tt)
  1952  			}
  1953  			if ft.Size() == 8 {
  1954  				return s.float64ToUint64(n, x, ft, tt)
  1955  			}
  1956  			s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
  1957  			return nil
  1958  		}
  1959  
  1960  		if ft.IsComplex() && tt.IsComplex() {
  1961  			var op ssa.Op
  1962  			if ft.Size() == tt.Size() {
  1963  				switch ft.Size() {
  1964  				case 8:
  1965  					op = ssa.OpRound32F
  1966  				case 16:
  1967  					op = ssa.OpRound64F
  1968  				default:
  1969  					s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1970  				}
  1971  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1972  				op = ssa.OpCvt32Fto64F
  1973  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1974  				op = ssa.OpCvt64Fto32F
  1975  			} else {
  1976  				s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1977  			}
  1978  			ftp := floatForComplex(ft)
  1979  			ttp := floatForComplex(tt)
  1980  			return s.newValue2(ssa.OpComplexMake, tt,
  1981  				s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1982  				s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1983  		}
  1984  
  1985  		s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1986  		return nil
  1987  
  1988  	case ODOTTYPE:
  1989  		res, _ := s.dottype(n, false)
  1990  		return res
  1991  
  1992  	// binary ops
  1993  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1994  		a := s.expr(n.Left)
  1995  		b := s.expr(n.Right)
  1996  		if n.Left.Type.IsComplex() {
  1997  			pt := floatForComplex(n.Left.Type)
  1998  			op := s.ssaOp(OEQ, pt)
  1999  			r := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  2000  			i := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  2001  			c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i)
  2002  			switch n.Op {
  2003  			case OEQ:
  2004  				return c
  2005  			case ONE:
  2006  				return s.newValue1(ssa.OpNot, types.Types[TBOOL], c)
  2007  			default:
  2008  				s.Fatalf("ordered complex compare %v", n.Op)
  2009  			}
  2010  		}
  2011  		if n.Left.Type.IsFloat() {
  2012  			return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b)
  2013  		}
  2014  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b)
  2015  	case OMUL:
  2016  		a := s.expr(n.Left)
  2017  		b := s.expr(n.Right)
  2018  		if n.Type.IsComplex() {
  2019  			mulop := ssa.OpMul64F
  2020  			addop := ssa.OpAdd64F
  2021  			subop := ssa.OpSub64F
  2022  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  2023  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  2024  
  2025  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  2026  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  2027  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  2028  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  2029  
  2030  			if pt != wt { // Widen for calculation
  2031  				areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
  2032  				breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
  2033  				aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
  2034  				bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
  2035  			}
  2036  
  2037  			xreal := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
  2038  			ximag := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, bimag), s.newValueOrSfCall2(mulop, wt, aimag, breal))
  2039  
  2040  			if pt != wt { // Narrow to store back
  2041  				xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
  2042  				ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
  2043  			}
  2044  
  2045  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  2046  		}
  2047  
  2048  		if n.Type.IsFloat() {
  2049  			return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  2050  		}
  2051  
  2052  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  2053  
  2054  	case ODIV:
  2055  		a := s.expr(n.Left)
  2056  		b := s.expr(n.Right)
  2057  		if n.Type.IsComplex() {
  2058  			// TODO this is not executed because the front-end substitutes a runtime call.
  2059  			// That probably ought to change; with modest optimization the widen/narrow
  2060  			// conversions could all be elided in larger expression trees.
  2061  			mulop := ssa.OpMul64F
  2062  			addop := ssa.OpAdd64F
  2063  			subop := ssa.OpSub64F
  2064  			divop := ssa.OpDiv64F
  2065  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  2066  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  2067  
  2068  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  2069  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  2070  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  2071  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  2072  
  2073  			if pt != wt { // Widen for calculation
  2074  				areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
  2075  				breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
  2076  				aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
  2077  				bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
  2078  			}
  2079  
  2080  			denom := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, breal, breal), s.newValueOrSfCall2(mulop, wt, bimag, bimag))
  2081  			xreal := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
  2082  			ximag := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, aimag, breal), s.newValueOrSfCall2(mulop, wt, areal, bimag))
  2083  
  2084  			// TODO not sure if this is best done in wide precision or narrow
  2085  			// Double-rounding might be an issue.
  2086  			// Note that the pre-SSA implementation does the entire calculation
  2087  			// in wide format, so wide is compatible.
  2088  			xreal = s.newValueOrSfCall2(divop, wt, xreal, denom)
  2089  			ximag = s.newValueOrSfCall2(divop, wt, ximag, denom)
  2090  
  2091  			if pt != wt { // Narrow to store back
  2092  				xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
  2093  				ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
  2094  			}
  2095  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  2096  		}
  2097  		if n.Type.IsFloat() {
  2098  			return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  2099  		}
  2100  		return s.intDivide(n, a, b)
  2101  	case OMOD:
  2102  		a := s.expr(n.Left)
  2103  		b := s.expr(n.Right)
  2104  		return s.intDivide(n, a, b)
  2105  	case OADD, OSUB:
  2106  		a := s.expr(n.Left)
  2107  		b := s.expr(n.Right)
  2108  		if n.Type.IsComplex() {
  2109  			pt := floatForComplex(n.Type)
  2110  			op := s.ssaOp(n.Op, pt)
  2111  			return s.newValue2(ssa.OpComplexMake, n.Type,
  2112  				s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  2113  				s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  2114  		}
  2115  		if n.Type.IsFloat() {
  2116  			return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  2117  		}
  2118  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  2119  	case OAND, OOR, OXOR:
  2120  		a := s.expr(n.Left)
  2121  		b := s.expr(n.Right)
  2122  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  2123  	case OLSH, ORSH:
  2124  		a := s.expr(n.Left)
  2125  		b := s.expr(n.Right)
  2126  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  2127  	case OANDAND, OOROR:
  2128  		// To implement OANDAND (and OOROR), we introduce a
  2129  		// new temporary variable to hold the result. The
  2130  		// variable is associated with the OANDAND node in the
  2131  		// s.vars table (normally variables are only
  2132  		// associated with ONAME nodes). We convert
  2133  		//     A && B
  2134  		// to
  2135  		//     var = A
  2136  		//     if var {
  2137  		//         var = B
  2138  		//     }
  2139  		// Using var in the subsequent block introduces the
  2140  		// necessary phi variable.
  2141  		el := s.expr(n.Left)
  2142  		s.vars[n] = el
  2143  
  2144  		b := s.endBlock()
  2145  		b.Kind = ssa.BlockIf
  2146  		b.SetControl(el)
  2147  		// In theory, we should set b.Likely here based on context.
  2148  		// However, gc only gives us likeliness hints
  2149  		// in a single place, for plain OIF statements,
  2150  		// and passing around context is finnicky, so don't bother for now.
  2151  
  2152  		bRight := s.f.NewBlock(ssa.BlockPlain)
  2153  		bResult := s.f.NewBlock(ssa.BlockPlain)
  2154  		if n.Op == OANDAND {
  2155  			b.AddEdgeTo(bRight)
  2156  			b.AddEdgeTo(bResult)
  2157  		} else if n.Op == OOROR {
  2158  			b.AddEdgeTo(bResult)
  2159  			b.AddEdgeTo(bRight)
  2160  		}
  2161  
  2162  		s.startBlock(bRight)
  2163  		er := s.expr(n.Right)
  2164  		s.vars[n] = er
  2165  
  2166  		b = s.endBlock()
  2167  		b.AddEdgeTo(bResult)
  2168  
  2169  		s.startBlock(bResult)
  2170  		return s.variable(n, types.Types[TBOOL])
  2171  	case OCOMPLEX:
  2172  		r := s.expr(n.Left)
  2173  		i := s.expr(n.Right)
  2174  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  2175  
  2176  	// unary ops
  2177  	case OMINUS:
  2178  		a := s.expr(n.Left)
  2179  		if n.Type.IsComplex() {
  2180  			tp := floatForComplex(n.Type)
  2181  			negop := s.ssaOp(n.Op, tp)
  2182  			return s.newValue2(ssa.OpComplexMake, n.Type,
  2183  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  2184  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  2185  		}
  2186  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  2187  	case ONOT, OCOM:
  2188  		a := s.expr(n.Left)
  2189  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  2190  	case OIMAG, OREAL:
  2191  		a := s.expr(n.Left)
  2192  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  2193  	case OPLUS:
  2194  		return s.expr(n.Left)
  2195  
  2196  	case OADDR:
  2197  		return s.addr(n.Left, n.Bounded())
  2198  
  2199  	case OINDREGSP:
  2200  		addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset)
  2201  		return s.load(n.Type, addr)
  2202  
  2203  	case OIND:
  2204  		p := s.exprPtr(n.Left, false, n.Pos)
  2205  		return s.load(n.Type, p)
  2206  
  2207  	case ODOT:
  2208  		if n.Left.Op == OSTRUCTLIT {
  2209  			// All literals with nonzero fields have already been
  2210  			// rewritten during walk. Any that remain are just T{}
  2211  			// or equivalents. Use the zero value.
  2212  			if !isZero(n.Left) {
  2213  				Fatalf("literal with nonzero value in SSA: %v", n.Left)
  2214  			}
  2215  			return s.zeroVal(n.Type)
  2216  		}
  2217  		// If n is addressable and can't be represented in
  2218  		// SSA, then load just the selected field. This
  2219  		// prevents false memory dependencies in race/msan
  2220  		// instrumentation.
  2221  		if islvalue(n) && !s.canSSA(n) {
  2222  			p := s.addr(n, false)
  2223  			return s.load(n.Type, p)
  2224  		}
  2225  		v := s.expr(n.Left)
  2226  		return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  2227  
  2228  	case ODOTPTR:
  2229  		p := s.exprPtr(n.Left, false, n.Pos)
  2230  		p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p)
  2231  		return s.load(n.Type, p)
  2232  
  2233  	case OINDEX:
  2234  		switch {
  2235  		case n.Left.Type.IsString():
  2236  			if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
  2237  				// Replace "abc"[1] with 'b'.
  2238  				// Delayed until now because "abc"[1] is not an ideal constant.
  2239  				// See test/fixedbugs/issue11370.go.
  2240  				return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()])))
  2241  			}
  2242  			a := s.expr(n.Left)
  2243  			i := s.expr(n.Right)
  2244  			i = s.extendIndex(i, panicindex)
  2245  			if !n.Bounded() {
  2246  				len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a)
  2247  				s.boundsCheck(i, len)
  2248  			}
  2249  			ptrtyp := s.f.Config.Types.BytePtr
  2250  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  2251  			if Isconst(n.Right, CTINT) {
  2252  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  2253  			} else {
  2254  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  2255  			}
  2256  			return s.load(types.Types[TUINT8], ptr)
  2257  		case n.Left.Type.IsSlice():
  2258  			p := s.addr(n, false)
  2259  			return s.load(n.Left.Type.Elem(), p)
  2260  		case n.Left.Type.IsArray():
  2261  			if canSSAType(n.Left.Type) {
  2262  				// SSA can handle arrays of length at most 1.
  2263  				bound := n.Left.Type.NumElem()
  2264  				a := s.expr(n.Left)
  2265  				i := s.expr(n.Right)
  2266  				if bound == 0 {
  2267  					// Bounds check will never succeed.  Might as well
  2268  					// use constants for the bounds check.
  2269  					z := s.constInt(types.Types[TINT], 0)
  2270  					s.boundsCheck(z, z)
  2271  					// The return value won't be live, return junk.
  2272  					return s.newValue0(ssa.OpUnknown, n.Type)
  2273  				}
  2274  				i = s.extendIndex(i, panicindex)
  2275  				if !n.Bounded() {
  2276  					s.boundsCheck(i, s.constInt(types.Types[TINT], bound))
  2277  				}
  2278  				return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
  2279  			}
  2280  			p := s.addr(n, false)
  2281  			return s.load(n.Left.Type.Elem(), p)
  2282  		default:
  2283  			s.Fatalf("bad type for index %v", n.Left.Type)
  2284  			return nil
  2285  		}
  2286  
  2287  	case OLEN, OCAP:
  2288  		switch {
  2289  		case n.Left.Type.IsSlice():
  2290  			op := ssa.OpSliceLen
  2291  			if n.Op == OCAP {
  2292  				op = ssa.OpSliceCap
  2293  			}
  2294  			return s.newValue1(op, types.Types[TINT], s.expr(n.Left))
  2295  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  2296  			return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left))
  2297  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  2298  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  2299  		default: // array
  2300  			return s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  2301  		}
  2302  
  2303  	case OSPTR:
  2304  		a := s.expr(n.Left)
  2305  		if n.Left.Type.IsSlice() {
  2306  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2307  		} else {
  2308  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2309  		}
  2310  
  2311  	case OITAB:
  2312  		a := s.expr(n.Left)
  2313  		return s.newValue1(ssa.OpITab, n.Type, a)
  2314  
  2315  	case OIDATA:
  2316  		a := s.expr(n.Left)
  2317  		return s.newValue1(ssa.OpIData, n.Type, a)
  2318  
  2319  	case OEFACE:
  2320  		tab := s.expr(n.Left)
  2321  		data := s.expr(n.Right)
  2322  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2323  
  2324  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2325  		v := s.expr(n.Left)
  2326  		var i, j, k *ssa.Value
  2327  		low, high, max := n.SliceBounds()
  2328  		if low != nil {
  2329  			i = s.extendIndex(s.expr(low), panicslice)
  2330  		}
  2331  		if high != nil {
  2332  			j = s.extendIndex(s.expr(high), panicslice)
  2333  		}
  2334  		if max != nil {
  2335  			k = s.extendIndex(s.expr(max), panicslice)
  2336  		}
  2337  		p, l, c := s.slice(n.Left.Type, v, i, j, k, n.Bounded())
  2338  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2339  
  2340  	case OSLICESTR:
  2341  		v := s.expr(n.Left)
  2342  		var i, j *ssa.Value
  2343  		low, high, _ := n.SliceBounds()
  2344  		if low != nil {
  2345  			i = s.extendIndex(s.expr(low), panicslice)
  2346  		}
  2347  		if high != nil {
  2348  			j = s.extendIndex(s.expr(high), panicslice)
  2349  		}
  2350  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil, n.Bounded())
  2351  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2352  
  2353  	case OCALLFUNC:
  2354  		if isIntrinsicCall(n) {
  2355  			return s.intrinsicCall(n)
  2356  		}
  2357  		fallthrough
  2358  
  2359  	case OCALLINTER, OCALLMETH:
  2360  		a := s.call(n, callNormal)
  2361  		return s.load(n.Type, a)
  2362  
  2363  	case OGETG:
  2364  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2365  
  2366  	case OAPPEND:
  2367  		return s.append(n, false)
  2368  
  2369  	case OSTRUCTLIT, OARRAYLIT:
  2370  		// All literals with nonzero fields have already been
  2371  		// rewritten during walk. Any that remain are just T{}
  2372  		// or equivalents. Use the zero value.
  2373  		if !isZero(n) {
  2374  			Fatalf("literal with nonzero value in SSA: %v", n)
  2375  		}
  2376  		return s.zeroVal(n.Type)
  2377  
  2378  	default:
  2379  		s.Fatalf("unhandled expr %v", n.Op)
  2380  		return nil
  2381  	}
  2382  }
  2383  
  2384  // append converts an OAPPEND node to SSA.
  2385  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2386  // adds it to s, and returns the Value.
  2387  // If inplace is true, it writes the result of the OAPPEND expression n
  2388  // back to the slice being appended to, and returns nil.
  2389  // inplace MUST be set to false if the slice can be SSA'd.
  2390  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2391  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2392  	//
  2393  	// ptr, len, cap := s
  2394  	// newlen := len + 3
  2395  	// if newlen > cap {
  2396  	//     ptr, len, cap = growslice(s, newlen)
  2397  	//     newlen = len + 3 // recalculate to avoid a spill
  2398  	// }
  2399  	// // with write barriers, if needed:
  2400  	// *(ptr+len) = e1
  2401  	// *(ptr+len+1) = e2
  2402  	// *(ptr+len+2) = e3
  2403  	// return makeslice(ptr, newlen, cap)
  2404  	//
  2405  	//
  2406  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2407  	//
  2408  	// a := &s
  2409  	// ptr, len, cap := s
  2410  	// newlen := len + 3
  2411  	// if newlen > cap {
  2412  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2413  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2414  	//    *a.cap = newcap // write before ptr to avoid a spill
  2415  	//    *a.ptr = newptr // with write barrier
  2416  	// }
  2417  	// newlen = len + 3 // recalculate to avoid a spill
  2418  	// *a.len = newlen
  2419  	// // with write barriers, if needed:
  2420  	// *(ptr+len) = e1
  2421  	// *(ptr+len+1) = e2
  2422  	// *(ptr+len+2) = e3
  2423  
  2424  	et := n.Type.Elem()
  2425  	pt := types.NewPtr(et)
  2426  
  2427  	// Evaluate slice
  2428  	sn := n.List.First() // the slice node is the first in the list
  2429  
  2430  	var slice, addr *ssa.Value
  2431  	if inplace {
  2432  		addr = s.addr(sn, false)
  2433  		slice = s.load(n.Type, addr)
  2434  	} else {
  2435  		slice = s.expr(sn)
  2436  	}
  2437  
  2438  	// Allocate new blocks
  2439  	grow := s.f.NewBlock(ssa.BlockPlain)
  2440  	assign := s.f.NewBlock(ssa.BlockPlain)
  2441  
  2442  	// Decide if we need to grow
  2443  	nargs := int64(n.List.Len() - 1)
  2444  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2445  	l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2446  	c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice)
  2447  	nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2448  
  2449  	cmp := s.newValue2(s.ssaOp(OGT, types.Types[TINT]), types.Types[TBOOL], nl, c)
  2450  	s.vars[&ptrVar] = p
  2451  
  2452  	if !inplace {
  2453  		s.vars[&newlenVar] = nl
  2454  		s.vars[&capVar] = c
  2455  	} else {
  2456  		s.vars[&lenVar] = l
  2457  	}
  2458  
  2459  	b := s.endBlock()
  2460  	b.Kind = ssa.BlockIf
  2461  	b.Likely = ssa.BranchUnlikely
  2462  	b.SetControl(cmp)
  2463  	b.AddEdgeTo(grow)
  2464  	b.AddEdgeTo(assign)
  2465  
  2466  	// Call growslice
  2467  	s.startBlock(grow)
  2468  	taddr := s.expr(n.Left)
  2469  	r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl)
  2470  
  2471  	if inplace {
  2472  		if sn.Op == ONAME && sn.Class() != PEXTERN {
  2473  			// Tell liveness we're about to build a new slice
  2474  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem())
  2475  		}
  2476  		capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_cap), addr)
  2477  		s.store(types.Types[TINT], capaddr, r[2])
  2478  		s.store(pt, addr, r[0])
  2479  		// load the value we just stored to avoid having to spill it
  2480  		s.vars[&ptrVar] = s.load(pt, addr)
  2481  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2482  	} else {
  2483  		s.vars[&ptrVar] = r[0]
  2484  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs))
  2485  		s.vars[&capVar] = r[2]
  2486  	}
  2487  
  2488  	b = s.endBlock()
  2489  	b.AddEdgeTo(assign)
  2490  
  2491  	// assign new elements to slots
  2492  	s.startBlock(assign)
  2493  
  2494  	if inplace {
  2495  		l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len
  2496  		nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2497  		lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_nel), addr)
  2498  		s.store(types.Types[TINT], lenaddr, nl)
  2499  	}
  2500  
  2501  	// Evaluate args
  2502  	type argRec struct {
  2503  		// if store is true, we're appending the value v.  If false, we're appending the
  2504  		// value at *v.
  2505  		v     *ssa.Value
  2506  		store bool
  2507  	}
  2508  	args := make([]argRec, 0, nargs)
  2509  	for _, n := range n.List.Slice()[1:] {
  2510  		if canSSAType(n.Type) {
  2511  			args = append(args, argRec{v: s.expr(n), store: true})
  2512  		} else {
  2513  			v := s.addr(n, false)
  2514  			args = append(args, argRec{v: v})
  2515  		}
  2516  	}
  2517  
  2518  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2519  	if !inplace {
  2520  		nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl
  2521  		c = s.variable(&capVar, types.Types[TINT])     // generates phi for cap
  2522  	}
  2523  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2524  	for i, arg := range args {
  2525  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i)))
  2526  		if arg.store {
  2527  			s.storeType(et, addr, arg.v, 0, true)
  2528  		} else {
  2529  			s.move(et, addr, arg.v)
  2530  		}
  2531  	}
  2532  
  2533  	delete(s.vars, &ptrVar)
  2534  	if inplace {
  2535  		delete(s.vars, &lenVar)
  2536  		return nil
  2537  	}
  2538  	delete(s.vars, &newlenVar)
  2539  	delete(s.vars, &capVar)
  2540  	// make result
  2541  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2542  }
  2543  
  2544  // condBranch evaluates the boolean expression cond and branches to yes
  2545  // if cond is true and no if cond is false.
  2546  // This function is intended to handle && and || better than just calling
  2547  // s.expr(cond) and branching on the result.
  2548  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2549  	switch cond.Op {
  2550  	case OANDAND:
  2551  		mid := s.f.NewBlock(ssa.BlockPlain)
  2552  		s.stmtList(cond.Ninit)
  2553  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2554  		s.startBlock(mid)
  2555  		s.condBranch(cond.Right, yes, no, likely)
  2556  		return
  2557  		// Note: if likely==1, then both recursive calls pass 1.
  2558  		// If likely==-1, then we don't have enough information to decide
  2559  		// whether the first branch is likely or not. So we pass 0 for
  2560  		// the likeliness of the first branch.
  2561  		// TODO: have the frontend give us branch prediction hints for
  2562  		// OANDAND and OOROR nodes (if it ever has such info).
  2563  	case OOROR:
  2564  		mid := s.f.NewBlock(ssa.BlockPlain)
  2565  		s.stmtList(cond.Ninit)
  2566  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2567  		s.startBlock(mid)
  2568  		s.condBranch(cond.Right, yes, no, likely)
  2569  		return
  2570  		// Note: if likely==-1, then both recursive calls pass -1.
  2571  		// If likely==1, then we don't have enough info to decide
  2572  		// the likelihood of the first branch.
  2573  	case ONOT:
  2574  		s.stmtList(cond.Ninit)
  2575  		s.condBranch(cond.Left, no, yes, -likely)
  2576  		return
  2577  	}
  2578  	c := s.expr(cond)
  2579  	b := s.endBlock()
  2580  	b.Kind = ssa.BlockIf
  2581  	b.SetControl(c)
  2582  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2583  	b.AddEdgeTo(yes)
  2584  	b.AddEdgeTo(no)
  2585  }
  2586  
  2587  type skipMask uint8
  2588  
  2589  const (
  2590  	skipPtr skipMask = 1 << iota
  2591  	skipLen
  2592  	skipCap
  2593  )
  2594  
  2595  // assign does left = right.
  2596  // Right has already been evaluated to ssa, left has not.
  2597  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2598  // If deref is true and right == nil, just do left = 0.
  2599  // skip indicates assignments (at the top level) that can be avoided.
  2600  func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) {
  2601  	if left.Op == ONAME && left.isBlank() {
  2602  		return
  2603  	}
  2604  	t := left.Type
  2605  	dowidth(t)
  2606  	if s.canSSA(left) {
  2607  		if deref {
  2608  			s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
  2609  		}
  2610  		if left.Op == ODOT {
  2611  			// We're assigning to a field of an ssa-able value.
  2612  			// We need to build a new structure with the new value for the
  2613  			// field we're assigning and the old values for the other fields.
  2614  			// For instance:
  2615  			//   type T struct {a, b, c int}
  2616  			//   var T x
  2617  			//   x.b = 5
  2618  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2619  
  2620  			// Grab information about the structure type.
  2621  			t := left.Left.Type
  2622  			nf := t.NumFields()
  2623  			idx := fieldIdx(left)
  2624  
  2625  			// Grab old value of structure.
  2626  			old := s.expr(left.Left)
  2627  
  2628  			// Make new structure.
  2629  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2630  
  2631  			// Add fields as args.
  2632  			for i := 0; i < nf; i++ {
  2633  				if i == idx {
  2634  					new.AddArg(right)
  2635  				} else {
  2636  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2637  				}
  2638  			}
  2639  
  2640  			// Recursively assign the new value we've made to the base of the dot op.
  2641  			s.assign(left.Left, new, false, 0)
  2642  			// TODO: do we need to update named values here?
  2643  			return
  2644  		}
  2645  		if left.Op == OINDEX && left.Left.Type.IsArray() {
  2646  			// We're assigning to an element of an ssa-able array.
  2647  			// a[i] = v
  2648  			t := left.Left.Type
  2649  			n := t.NumElem()
  2650  
  2651  			i := s.expr(left.Right) // index
  2652  			if n == 0 {
  2653  				// The bounds check must fail.  Might as well
  2654  				// ignore the actual index and just use zeros.
  2655  				z := s.constInt(types.Types[TINT], 0)
  2656  				s.boundsCheck(z, z)
  2657  				return
  2658  			}
  2659  			if n != 1 {
  2660  				s.Fatalf("assigning to non-1-length array")
  2661  			}
  2662  			// Rewrite to a = [1]{v}
  2663  			i = s.extendIndex(i, panicindex)
  2664  			s.boundsCheck(i, s.constInt(types.Types[TINT], 1))
  2665  			v := s.newValue1(ssa.OpArrayMake1, t, right)
  2666  			s.assign(left.Left, v, false, 0)
  2667  			return
  2668  		}
  2669  		// Update variable assignment.
  2670  		s.vars[left] = right
  2671  		s.addNamedValue(left, right)
  2672  		return
  2673  	}
  2674  	// Left is not ssa-able. Compute its address.
  2675  	if left.Op == ONAME && left.Class() != PEXTERN && skip == 0 {
  2676  		s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, left, s.mem(), !left.IsAutoTmp())
  2677  	}
  2678  	addr := s.addr(left, false)
  2679  	if isReflectHeaderDataField(left) {
  2680  		// Package unsafe's documentation says storing pointers into
  2681  		// reflect.SliceHeader and reflect.StringHeader's Data fields
  2682  		// is valid, even though they have type uintptr (#19168).
  2683  		// Mark it pointer type to signal the writebarrier pass to
  2684  		// insert a write barrier.
  2685  		t = types.Types[TUNSAFEPTR]
  2686  	}
  2687  	if deref {
  2688  		// Treat as a mem->mem move.
  2689  		if right == nil {
  2690  			s.zero(t, addr)
  2691  		} else {
  2692  			s.move(t, addr, right)
  2693  		}
  2694  		return
  2695  	}
  2696  	// Treat as a store.
  2697  	s.storeType(t, addr, right, skip, !left.IsAutoTmp())
  2698  }
  2699  
  2700  // zeroVal returns the zero value for type t.
  2701  func (s *state) zeroVal(t *types.Type) *ssa.Value {
  2702  	switch {
  2703  	case t.IsInteger():
  2704  		switch t.Size() {
  2705  		case 1:
  2706  			return s.constInt8(t, 0)
  2707  		case 2:
  2708  			return s.constInt16(t, 0)
  2709  		case 4:
  2710  			return s.constInt32(t, 0)
  2711  		case 8:
  2712  			return s.constInt64(t, 0)
  2713  		default:
  2714  			s.Fatalf("bad sized integer type %v", t)
  2715  		}
  2716  	case t.IsFloat():
  2717  		switch t.Size() {
  2718  		case 4:
  2719  			return s.constFloat32(t, 0)
  2720  		case 8:
  2721  			return s.constFloat64(t, 0)
  2722  		default:
  2723  			s.Fatalf("bad sized float type %v", t)
  2724  		}
  2725  	case t.IsComplex():
  2726  		switch t.Size() {
  2727  		case 8:
  2728  			z := s.constFloat32(types.Types[TFLOAT32], 0)
  2729  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2730  		case 16:
  2731  			z := s.constFloat64(types.Types[TFLOAT64], 0)
  2732  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2733  		default:
  2734  			s.Fatalf("bad sized complex type %v", t)
  2735  		}
  2736  
  2737  	case t.IsString():
  2738  		return s.constEmptyString(t)
  2739  	case t.IsPtrShaped():
  2740  		return s.constNil(t)
  2741  	case t.IsBoolean():
  2742  		return s.constBool(false)
  2743  	case t.IsInterface():
  2744  		return s.constInterface(t)
  2745  	case t.IsSlice():
  2746  		return s.constSlice(t)
  2747  	case t.IsStruct():
  2748  		n := t.NumFields()
  2749  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2750  		for i := 0; i < n; i++ {
  2751  			v.AddArg(s.zeroVal(t.FieldType(i)))
  2752  		}
  2753  		return v
  2754  	case t.IsArray():
  2755  		switch t.NumElem() {
  2756  		case 0:
  2757  			return s.entryNewValue0(ssa.OpArrayMake0, t)
  2758  		case 1:
  2759  			return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
  2760  		}
  2761  	}
  2762  	s.Fatalf("zero for type %v not implemented", t)
  2763  	return nil
  2764  }
  2765  
  2766  type callKind int8
  2767  
  2768  const (
  2769  	callNormal callKind = iota
  2770  	callDefer
  2771  	callGo
  2772  )
  2773  
  2774  type sfRtCallDef struct {
  2775  	rtfn  *obj.LSym
  2776  	rtype types.EType
  2777  }
  2778  
  2779  var softFloatOps map[ssa.Op]sfRtCallDef
  2780  
  2781  func softfloatInit() {
  2782  	// Some of these operations get transformed by sfcall.
  2783  	softFloatOps = map[ssa.Op]sfRtCallDef{
  2784  		ssa.OpAdd32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32},
  2785  		ssa.OpAdd64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64},
  2786  		ssa.OpSub32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32},
  2787  		ssa.OpSub64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64},
  2788  		ssa.OpMul32F: sfRtCallDef{sysfunc("fmul32"), TFLOAT32},
  2789  		ssa.OpMul64F: sfRtCallDef{sysfunc("fmul64"), TFLOAT64},
  2790  		ssa.OpDiv32F: sfRtCallDef{sysfunc("fdiv32"), TFLOAT32},
  2791  		ssa.OpDiv64F: sfRtCallDef{sysfunc("fdiv64"), TFLOAT64},
  2792  
  2793  		ssa.OpEq64F:      sfRtCallDef{sysfunc("feq64"), TBOOL},
  2794  		ssa.OpEq32F:      sfRtCallDef{sysfunc("feq32"), TBOOL},
  2795  		ssa.OpNeq64F:     sfRtCallDef{sysfunc("feq64"), TBOOL},
  2796  		ssa.OpNeq32F:     sfRtCallDef{sysfunc("feq32"), TBOOL},
  2797  		ssa.OpLess64F:    sfRtCallDef{sysfunc("fgt64"), TBOOL},
  2798  		ssa.OpLess32F:    sfRtCallDef{sysfunc("fgt32"), TBOOL},
  2799  		ssa.OpGreater64F: sfRtCallDef{sysfunc("fgt64"), TBOOL},
  2800  		ssa.OpGreater32F: sfRtCallDef{sysfunc("fgt32"), TBOOL},
  2801  		ssa.OpLeq64F:     sfRtCallDef{sysfunc("fge64"), TBOOL},
  2802  		ssa.OpLeq32F:     sfRtCallDef{sysfunc("fge32"), TBOOL},
  2803  		ssa.OpGeq64F:     sfRtCallDef{sysfunc("fge64"), TBOOL},
  2804  		ssa.OpGeq32F:     sfRtCallDef{sysfunc("fge32"), TBOOL},
  2805  
  2806  		ssa.OpCvt32to32F:  sfRtCallDef{sysfunc("fint32to32"), TFLOAT32},
  2807  		ssa.OpCvt32Fto32:  sfRtCallDef{sysfunc("f32toint32"), TINT32},
  2808  		ssa.OpCvt64to32F:  sfRtCallDef{sysfunc("fint64to32"), TFLOAT32},
  2809  		ssa.OpCvt32Fto64:  sfRtCallDef{sysfunc("f32toint64"), TINT64},
  2810  		ssa.OpCvt64Uto32F: sfRtCallDef{sysfunc("fuint64to32"), TFLOAT32},
  2811  		ssa.OpCvt32Fto64U: sfRtCallDef{sysfunc("f32touint64"), TUINT64},
  2812  		ssa.OpCvt32to64F:  sfRtCallDef{sysfunc("fint32to64"), TFLOAT64},
  2813  		ssa.OpCvt64Fto32:  sfRtCallDef{sysfunc("f64toint32"), TINT32},
  2814  		ssa.OpCvt64to64F:  sfRtCallDef{sysfunc("fint64to64"), TFLOAT64},
  2815  		ssa.OpCvt64Fto64:  sfRtCallDef{sysfunc("f64toint64"), TINT64},
  2816  		ssa.OpCvt64Uto64F: sfRtCallDef{sysfunc("fuint64to64"), TFLOAT64},
  2817  		ssa.OpCvt64Fto64U: sfRtCallDef{sysfunc("f64touint64"), TUINT64},
  2818  		ssa.OpCvt32Fto64F: sfRtCallDef{sysfunc("f32to64"), TFLOAT64},
  2819  		ssa.OpCvt64Fto32F: sfRtCallDef{sysfunc("f64to32"), TFLOAT32},
  2820  	}
  2821  }
  2822  
  2823  // TODO: do not emit sfcall if operation can be optimized to constant in later
  2824  // opt phase
  2825  func (s *state) sfcall(op ssa.Op, args ...*ssa.Value) (*ssa.Value, bool) {
  2826  	if callDef, ok := softFloatOps[op]; ok {
  2827  		switch op {
  2828  		case ssa.OpLess32F,
  2829  			ssa.OpLess64F,
  2830  			ssa.OpLeq32F,
  2831  			ssa.OpLeq64F:
  2832  			args[0], args[1] = args[1], args[0]
  2833  		case ssa.OpSub32F,
  2834  			ssa.OpSub64F:
  2835  			args[1] = s.newValue1(s.ssaOp(OMINUS, types.Types[callDef.rtype]), args[1].Type, args[1])
  2836  		}
  2837  
  2838  		result := s.rtcall(callDef.rtfn, true, []*types.Type{types.Types[callDef.rtype]}, args...)[0]
  2839  		if op == ssa.OpNeq32F || op == ssa.OpNeq64F {
  2840  			result = s.newValue1(ssa.OpNot, result.Type, result)
  2841  		}
  2842  		return result, true
  2843  	}
  2844  	return nil, false
  2845  }
  2846  
  2847  var intrinsics map[intrinsicKey]intrinsicBuilder
  2848  
  2849  // An intrinsicBuilder converts a call node n into an ssa value that
  2850  // implements that call as an intrinsic. args is a list of arguments to the func.
  2851  type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value
  2852  
  2853  type intrinsicKey struct {
  2854  	arch *sys.Arch
  2855  	pkg  string
  2856  	fn   string
  2857  }
  2858  
  2859  func init() {
  2860  	intrinsics = map[intrinsicKey]intrinsicBuilder{}
  2861  
  2862  	var all []*sys.Arch
  2863  	var p4 []*sys.Arch
  2864  	var p8 []*sys.Arch
  2865  	var lwatomics []*sys.Arch
  2866  	for _, a := range sys.Archs {
  2867  		all = append(all, a)
  2868  		if a.PtrSize == 4 {
  2869  			p4 = append(p4, a)
  2870  		} else {
  2871  			p8 = append(p8, a)
  2872  		}
  2873  		if a.Family != sys.PPC64 {
  2874  			lwatomics = append(lwatomics, a)
  2875  		}
  2876  	}
  2877  
  2878  	// add adds the intrinsic b for pkg.fn for the given list of architectures.
  2879  	add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
  2880  		for _, a := range archs {
  2881  			intrinsics[intrinsicKey{a, pkg, fn}] = b
  2882  		}
  2883  	}
  2884  	// addF does the same as add but operates on architecture families.
  2885  	addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
  2886  		m := 0
  2887  		for _, f := range archFamilies {
  2888  			if f >= 32 {
  2889  				panic("too many architecture families")
  2890  			}
  2891  			m |= 1 << uint(f)
  2892  		}
  2893  		for _, a := range all {
  2894  			if m>>uint(a.Family)&1 != 0 {
  2895  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2896  			}
  2897  		}
  2898  	}
  2899  	// alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists.
  2900  	alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
  2901  		for _, a := range archs {
  2902  			if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok {
  2903  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2904  			}
  2905  		}
  2906  	}
  2907  
  2908  	/******** runtime ********/
  2909  	if !instrumenting {
  2910  		add("runtime", "slicebytetostringtmp",
  2911  			func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2912  				// Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes
  2913  				// for the backend instead of slicebytetostringtmp calls
  2914  				// when not instrumenting.
  2915  				slice := args[0]
  2916  				ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  2917  				len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2918  				return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  2919  			},
  2920  			all...)
  2921  	}
  2922  	addF("runtime/internal/math", "MulUintptr",
  2923  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2924  			if s.config.PtrSize == 4 {
  2925  				return s.newValue2(ssa.OpMul32uover, types.NewTuple(types.Types[TUINT], types.Types[TUINT]), args[0], args[1])
  2926  			}
  2927  			return s.newValue2(ssa.OpMul64uover, types.NewTuple(types.Types[TUINT], types.Types[TUINT]), args[0], args[1])
  2928  		},
  2929  		sys.AMD64, sys.I386)
  2930  	add("runtime", "KeepAlive",
  2931  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2932  			data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
  2933  			s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem())
  2934  			return nil
  2935  		},
  2936  		all...)
  2937  	add("runtime", "getclosureptr",
  2938  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2939  			return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr)
  2940  		},
  2941  		all...)
  2942  
  2943  	add("runtime", "getcallerpc",
  2944  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2945  			return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr)
  2946  		},
  2947  		all...)
  2948  
  2949  	add("runtime", "getcallersp",
  2950  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2951  			return s.newValue0(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr)
  2952  		},
  2953  		all...)
  2954  
  2955  	/******** runtime/internal/sys ********/
  2956  	addF("runtime/internal/sys", "Ctz32",
  2957  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2958  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2959  		},
  2960  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2961  	addF("runtime/internal/sys", "Ctz64",
  2962  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2963  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2964  		},
  2965  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2966  	addF("runtime/internal/sys", "Bswap32",
  2967  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2968  			return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0])
  2969  		},
  2970  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2971  	addF("runtime/internal/sys", "Bswap64",
  2972  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2973  			return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0])
  2974  		},
  2975  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2976  
  2977  	/******** runtime/internal/atomic ********/
  2978  	addF("runtime/internal/atomic", "Load",
  2979  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2980  			v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem())
  2981  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2982  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2983  		},
  2984  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2985  	addF("runtime/internal/atomic", "Load64",
  2986  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2987  			v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], s.mem())
  2988  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2989  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2990  		},
  2991  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2992  	addF("runtime/internal/atomic", "LoadAcq",
  2993  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2994  			v := s.newValue2(ssa.OpAtomicLoadAcq32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem())
  2995  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2996  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2997  		},
  2998  		sys.PPC64)
  2999  	addF("runtime/internal/atomic", "Loadp",
  3000  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3001  			v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem())
  3002  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  3003  			return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
  3004  		},
  3005  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  3006  
  3007  	addF("runtime/internal/atomic", "Store",
  3008  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3009  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem())
  3010  			return nil
  3011  		},
  3012  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  3013  	addF("runtime/internal/atomic", "Store64",
  3014  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3015  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem())
  3016  			return nil
  3017  		},
  3018  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  3019  	addF("runtime/internal/atomic", "StorepNoWB",
  3020  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3021  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem())
  3022  			return nil
  3023  		},
  3024  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64)
  3025  	addF("runtime/internal/atomic", "StoreRel",
  3026  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3027  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStoreRel32, types.TypeMem, args[0], args[1], s.mem())
  3028  			return nil
  3029  		},
  3030  		sys.PPC64)
  3031  
  3032  	addF("runtime/internal/atomic", "Xchg",
  3033  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3034  			v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
  3035  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  3036  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  3037  		},
  3038  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  3039  	addF("runtime/internal/atomic", "Xchg64",
  3040  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3041  			v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
  3042  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  3043  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  3044  		},
  3045  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  3046  
  3047  	addF("runtime/internal/atomic", "Xadd",
  3048  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3049  			v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
  3050  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  3051  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  3052  		},
  3053  		sys.AMD64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  3054  	addF("runtime/internal/atomic", "Xadd64",
  3055  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3056  			v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
  3057  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  3058  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  3059  		},
  3060  		sys.AMD64, sys.S390X, sys.MIPS64, sys.PPC64)
  3061  
  3062  	makeXaddARM64 := func(op0 ssa.Op, op1 ssa.Op, ty types.EType) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3063  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3064  			// Target Atomic feature is identified by dynamic detection
  3065  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), arm64SupportAtomics, s.sb)
  3066  			v := s.load(types.Types[TBOOL], addr)
  3067  			b := s.endBlock()
  3068  			b.Kind = ssa.BlockIf
  3069  			b.SetControl(v)
  3070  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  3071  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  3072  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  3073  			b.AddEdgeTo(bTrue)
  3074  			b.AddEdgeTo(bFalse)
  3075  			b.Likely = ssa.BranchUnlikely // most machines don't have Atomics nowadays
  3076  
  3077  			// We have atomic instructions - use it directly.
  3078  			s.startBlock(bTrue)
  3079  			v0 := s.newValue3(op1, types.NewTuple(types.Types[ty], types.TypeMem), args[0], args[1], s.mem())
  3080  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v0)
  3081  			s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[ty], v0)
  3082  			s.endBlock().AddEdgeTo(bEnd)
  3083  
  3084  			// Use original instruction sequence.
  3085  			s.startBlock(bFalse)
  3086  			v1 := s.newValue3(op0, types.NewTuple(types.Types[ty], types.TypeMem), args[0], args[1], s.mem())
  3087  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v1)
  3088  			s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[ty], v1)
  3089  			s.endBlock().AddEdgeTo(bEnd)
  3090  
  3091  			// Merge results.
  3092  			s.startBlock(bEnd)
  3093  			return s.variable(n, types.Types[ty])
  3094  		}
  3095  	}
  3096  
  3097  	addF("runtime/internal/atomic", "Xadd",
  3098  		makeXaddARM64(ssa.OpAtomicAdd32, ssa.OpAtomicAdd32Variant, TUINT32),
  3099  		sys.ARM64)
  3100  	addF("runtime/internal/atomic", "Xadd64",
  3101  		makeXaddARM64(ssa.OpAtomicAdd64, ssa.OpAtomicAdd64Variant, TUINT64),
  3102  		sys.ARM64)
  3103  
  3104  	addF("runtime/internal/atomic", "Cas",
  3105  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3106  			v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
  3107  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  3108  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  3109  		},
  3110  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  3111  	addF("runtime/internal/atomic", "Cas64",
  3112  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3113  			v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
  3114  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  3115  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  3116  		},
  3117  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  3118  	addF("runtime/internal/atomic", "CasRel",
  3119  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3120  			v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
  3121  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  3122  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  3123  		},
  3124  		sys.PPC64)
  3125  
  3126  	addF("runtime/internal/atomic", "And8",
  3127  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3128  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem())
  3129  			return nil
  3130  		},
  3131  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  3132  	addF("runtime/internal/atomic", "Or8",
  3133  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3134  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem())
  3135  			return nil
  3136  		},
  3137  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  3138  
  3139  	alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...)
  3140  	alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...)
  3141  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...)
  3142  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...)
  3143  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...)
  3144  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...)
  3145  	alias("runtime/internal/atomic", "LoadAcq", "runtime/internal/atomic", "Load", lwatomics...)
  3146  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...)
  3147  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...)
  3148  	alias("runtime/internal/atomic", "StoreRel", "runtime/internal/atomic", "Store", lwatomics...)
  3149  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...)
  3150  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...)
  3151  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...)
  3152  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...)
  3153  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...)
  3154  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...)
  3155  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...)
  3156  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...)
  3157  	alias("runtime/internal/atomic", "CasRel", "runtime/internal/atomic", "Cas", lwatomics...)
  3158  
  3159  	alias("runtime/internal/sys", "Ctz8", "math/bits", "TrailingZeros8", all...)
  3160  
  3161  	/******** math ********/
  3162  	addF("math", "Sqrt",
  3163  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3164  			return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0])
  3165  		},
  3166  		sys.I386, sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.S390X)
  3167  	addF("math", "Trunc",
  3168  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3169  			return s.newValue1(ssa.OpTrunc, types.Types[TFLOAT64], args[0])
  3170  		},
  3171  		sys.ARM64, sys.PPC64, sys.S390X)
  3172  	addF("math", "Ceil",
  3173  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3174  			return s.newValue1(ssa.OpCeil, types.Types[TFLOAT64], args[0])
  3175  		},
  3176  		sys.ARM64, sys.PPC64, sys.S390X)
  3177  	addF("math", "Floor",
  3178  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3179  			return s.newValue1(ssa.OpFloor, types.Types[TFLOAT64], args[0])
  3180  		},
  3181  		sys.ARM64, sys.PPC64, sys.S390X)
  3182  	addF("math", "Round",
  3183  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3184  			return s.newValue1(ssa.OpRound, types.Types[TFLOAT64], args[0])
  3185  		},
  3186  		sys.ARM64, sys.PPC64, sys.S390X)
  3187  	addF("math", "RoundToEven",
  3188  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3189  			return s.newValue1(ssa.OpRoundToEven, types.Types[TFLOAT64], args[0])
  3190  		},
  3191  		sys.ARM64, sys.S390X)
  3192  	addF("math", "Abs",
  3193  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3194  			return s.newValue1(ssa.OpAbs, types.Types[TFLOAT64], args[0])
  3195  		},
  3196  		sys.ARM64, sys.PPC64)
  3197  	addF("math", "Copysign",
  3198  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3199  			return s.newValue2(ssa.OpCopysign, types.Types[TFLOAT64], args[0], args[1])
  3200  		},
  3201  		sys.PPC64)
  3202  
  3203  	makeRoundAMD64 := func(op ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3204  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3205  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), supportSSE41, s.sb)
  3206  			v := s.load(types.Types[TBOOL], addr)
  3207  			b := s.endBlock()
  3208  			b.Kind = ssa.BlockIf
  3209  			b.SetControl(v)
  3210  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  3211  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  3212  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  3213  			b.AddEdgeTo(bTrue)
  3214  			b.AddEdgeTo(bFalse)
  3215  			b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays
  3216  
  3217  			// We have the intrinsic - use it directly.
  3218  			s.startBlock(bTrue)
  3219  			s.vars[n] = s.newValue1(op, types.Types[TFLOAT64], args[0])
  3220  			s.endBlock().AddEdgeTo(bEnd)
  3221  
  3222  			// Call the pure Go version.
  3223  			s.startBlock(bFalse)
  3224  			a := s.call(n, callNormal)
  3225  			s.vars[n] = s.load(types.Types[TFLOAT64], a)
  3226  			s.endBlock().AddEdgeTo(bEnd)
  3227  
  3228  			// Merge results.
  3229  			s.startBlock(bEnd)
  3230  			return s.variable(n, types.Types[TFLOAT64])
  3231  		}
  3232  	}
  3233  	addF("math", "RoundToEven",
  3234  		makeRoundAMD64(ssa.OpRoundToEven),
  3235  		sys.AMD64)
  3236  	addF("math", "Floor",
  3237  		makeRoundAMD64(ssa.OpFloor),
  3238  		sys.AMD64)
  3239  	addF("math", "Ceil",
  3240  		makeRoundAMD64(ssa.OpCeil),
  3241  		sys.AMD64)
  3242  	addF("math", "Trunc",
  3243  		makeRoundAMD64(ssa.OpTrunc),
  3244  		sys.AMD64)
  3245  
  3246  	/******** math/bits ********/
  3247  	addF("math/bits", "TrailingZeros64",
  3248  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3249  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  3250  		},
  3251  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3252  	addF("math/bits", "TrailingZeros32",
  3253  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3254  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  3255  		},
  3256  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3257  	addF("math/bits", "TrailingZeros16",
  3258  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3259  			x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  3260  			c := s.constInt32(types.Types[TUINT32], 1<<16)
  3261  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  3262  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  3263  		},
  3264  		sys.ARM, sys.MIPS)
  3265  	addF("math/bits", "TrailingZeros16",
  3266  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3267  			return s.newValue1(ssa.OpCtz16, types.Types[TINT], args[0])
  3268  		},
  3269  		sys.AMD64)
  3270  	addF("math/bits", "TrailingZeros16",
  3271  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3272  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  3273  			c := s.constInt64(types.Types[TUINT64], 1<<16)
  3274  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  3275  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  3276  		},
  3277  		sys.ARM64, sys.S390X, sys.PPC64)
  3278  	addF("math/bits", "TrailingZeros8",
  3279  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3280  			x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  3281  			c := s.constInt32(types.Types[TUINT32], 1<<8)
  3282  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  3283  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  3284  		},
  3285  		sys.ARM, sys.MIPS)
  3286  	addF("math/bits", "TrailingZeros8",
  3287  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3288  			return s.newValue1(ssa.OpCtz8, types.Types[TINT], args[0])
  3289  		},
  3290  		sys.AMD64)
  3291  	addF("math/bits", "TrailingZeros8",
  3292  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3293  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  3294  			c := s.constInt64(types.Types[TUINT64], 1<<8)
  3295  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  3296  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  3297  		},
  3298  		sys.ARM64, sys.S390X)
  3299  	alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...)
  3300  	alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...)
  3301  	// ReverseBytes inlines correctly, no need to intrinsify it.
  3302  	// ReverseBytes16 lowers to a rotate, no need for anything special here.
  3303  	addF("math/bits", "Len64",
  3304  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3305  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  3306  		},
  3307  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3308  	addF("math/bits", "Len32",
  3309  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3310  			return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  3311  		},
  3312  		sys.AMD64)
  3313  	addF("math/bits", "Len32",
  3314  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3315  			if s.config.PtrSize == 4 {
  3316  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  3317  			}
  3318  			x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0])
  3319  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  3320  		},
  3321  		sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3322  	addF("math/bits", "Len16",
  3323  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3324  			if s.config.PtrSize == 4 {
  3325  				x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  3326  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  3327  			}
  3328  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  3329  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  3330  		},
  3331  		sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3332  	addF("math/bits", "Len16",
  3333  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3334  			return s.newValue1(ssa.OpBitLen16, types.Types[TINT], args[0])
  3335  		},
  3336  		sys.AMD64)
  3337  	addF("math/bits", "Len8",
  3338  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3339  			if s.config.PtrSize == 4 {
  3340  				x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  3341  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  3342  			}
  3343  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  3344  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  3345  		},
  3346  		sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3347  	addF("math/bits", "Len8",
  3348  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3349  			return s.newValue1(ssa.OpBitLen8, types.Types[TINT], args[0])
  3350  		},
  3351  		sys.AMD64)
  3352  	addF("math/bits", "Len",
  3353  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3354  			if s.config.PtrSize == 4 {
  3355  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  3356  			}
  3357  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  3358  		},
  3359  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  3360  	// LeadingZeros is handled because it trivially calls Len.
  3361  	addF("math/bits", "Reverse64",
  3362  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3363  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  3364  		},
  3365  		sys.ARM64)
  3366  	addF("math/bits", "Reverse32",
  3367  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3368  			return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  3369  		},
  3370  		sys.ARM64)
  3371  	addF("math/bits", "Reverse16",
  3372  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3373  			return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0])
  3374  		},
  3375  		sys.ARM64)
  3376  	addF("math/bits", "Reverse8",
  3377  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3378  			return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0])
  3379  		},
  3380  		sys.ARM64)
  3381  	addF("math/bits", "Reverse",
  3382  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3383  			if s.config.PtrSize == 4 {
  3384  				return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  3385  			}
  3386  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  3387  		},
  3388  		sys.ARM64)
  3389  	addF("math/bits", "RotateLeft8",
  3390  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3391  			return s.newValue2(ssa.OpRotateLeft8, types.Types[TUINT8], args[0], args[1])
  3392  		},
  3393  		sys.AMD64)
  3394  	addF("math/bits", "RotateLeft16",
  3395  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3396  			return s.newValue2(ssa.OpRotateLeft16, types.Types[TUINT16], args[0], args[1])
  3397  		},
  3398  		sys.AMD64)
  3399  	addF("math/bits", "RotateLeft32",
  3400  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3401  			return s.newValue2(ssa.OpRotateLeft32, types.Types[TUINT32], args[0], args[1])
  3402  		},
  3403  		sys.AMD64, sys.ARM64, sys.S390X)
  3404  	addF("math/bits", "RotateLeft64",
  3405  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3406  			return s.newValue2(ssa.OpRotateLeft64, types.Types[TUINT64], args[0], args[1])
  3407  		},
  3408  		sys.AMD64, sys.ARM64, sys.S390X)
  3409  	alias("math/bits", "RotateLeft", "math/bits", "RotateLeft64", p8...)
  3410  
  3411  	makeOnesCountAMD64 := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3412  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3413  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), supportPopcnt, s.sb)
  3414  			v := s.load(types.Types[TBOOL], addr)
  3415  			b := s.endBlock()
  3416  			b.Kind = ssa.BlockIf
  3417  			b.SetControl(v)
  3418  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  3419  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  3420  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  3421  			b.AddEdgeTo(bTrue)
  3422  			b.AddEdgeTo(bFalse)
  3423  			b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
  3424  
  3425  			// We have the intrinsic - use it directly.
  3426  			s.startBlock(bTrue)
  3427  			op := op64
  3428  			if s.config.PtrSize == 4 {
  3429  				op = op32
  3430  			}
  3431  			s.vars[n] = s.newValue1(op, types.Types[TINT], args[0])
  3432  			s.endBlock().AddEdgeTo(bEnd)
  3433  
  3434  			// Call the pure Go version.
  3435  			s.startBlock(bFalse)
  3436  			a := s.call(n, callNormal)
  3437  			s.vars[n] = s.load(types.Types[TINT], a)
  3438  			s.endBlock().AddEdgeTo(bEnd)
  3439  
  3440  			// Merge results.
  3441  			s.startBlock(bEnd)
  3442  			return s.variable(n, types.Types[TINT])
  3443  		}
  3444  	}
  3445  	addF("math/bits", "OnesCount64",
  3446  		makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount64),
  3447  		sys.AMD64)
  3448  	addF("math/bits", "OnesCount64",
  3449  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3450  			return s.newValue1(ssa.OpPopCount64, types.Types[TINT], args[0])
  3451  		},
  3452  		sys.PPC64, sys.ARM64, sys.S390X)
  3453  	addF("math/bits", "OnesCount32",
  3454  		makeOnesCountAMD64(ssa.OpPopCount32, ssa.OpPopCount32),
  3455  		sys.AMD64)
  3456  	addF("math/bits", "OnesCount32",
  3457  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3458  			return s.newValue1(ssa.OpPopCount32, types.Types[TINT], args[0])
  3459  		},
  3460  		sys.PPC64, sys.ARM64, sys.S390X)
  3461  	addF("math/bits", "OnesCount16",
  3462  		makeOnesCountAMD64(ssa.OpPopCount16, ssa.OpPopCount16),
  3463  		sys.AMD64)
  3464  	addF("math/bits", "OnesCount16",
  3465  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3466  			return s.newValue1(ssa.OpPopCount16, types.Types[TINT], args[0])
  3467  		},
  3468  		sys.ARM64, sys.S390X, sys.PPC64)
  3469  	addF("math/bits", "OnesCount8",
  3470  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3471  			return s.newValue1(ssa.OpPopCount8, types.Types[TINT], args[0])
  3472  		},
  3473  		sys.S390X, sys.PPC64)
  3474  	addF("math/bits", "OnesCount",
  3475  		makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount32),
  3476  		sys.AMD64)
  3477  	alias("math/bits", "Mul", "math/bits", "Mul64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64)
  3478  	addF("math/bits", "Mul64",
  3479  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3480  			return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1])
  3481  		},
  3482  		sys.AMD64, sys.ARM64, sys.PPC64)
  3483  
  3484  	/******** sync/atomic ********/
  3485  
  3486  	// Note: these are disabled by flag_race in findIntrinsic below.
  3487  	alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...)
  3488  	alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...)
  3489  	alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...)
  3490  	alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...)
  3491  	alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...)
  3492  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...)
  3493  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...)
  3494  
  3495  	alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...)
  3496  	alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...)
  3497  	// Note: not StorePointer, that needs a write barrier.  Same below for {CompareAnd}Swap.
  3498  	alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...)
  3499  	alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...)
  3500  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...)
  3501  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...)
  3502  
  3503  	alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...)
  3504  	alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...)
  3505  	alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...)
  3506  	alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...)
  3507  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...)
  3508  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...)
  3509  
  3510  	alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...)
  3511  	alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...)
  3512  	alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...)
  3513  	alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...)
  3514  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...)
  3515  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...)
  3516  
  3517  	alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...)
  3518  	alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...)
  3519  	alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...)
  3520  	alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...)
  3521  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...)
  3522  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...)
  3523  
  3524  	/******** math/big ********/
  3525  	add("math/big", "mulWW",
  3526  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3527  			return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1])
  3528  		},
  3529  		sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64LE, sys.ArchPPC64)
  3530  	add("math/big", "divWW",
  3531  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3532  			return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
  3533  		},
  3534  		sys.ArchAMD64)
  3535  }
  3536  
  3537  // findIntrinsic returns a function which builds the SSA equivalent of the
  3538  // function identified by the symbol sym.  If sym is not an intrinsic call, returns nil.
  3539  func findIntrinsic(sym *types.Sym) intrinsicBuilder {
  3540  	if ssa.IntrinsicsDisable {
  3541  		return nil
  3542  	}
  3543  	if sym == nil || sym.Pkg == nil {
  3544  		return nil
  3545  	}
  3546  	pkg := sym.Pkg.Path
  3547  	if sym.Pkg == localpkg {
  3548  		pkg = myimportpath
  3549  	}
  3550  	if flag_race && pkg == "sync/atomic" {
  3551  		// The race detector needs to be able to intercept these calls.
  3552  		// We can't intrinsify them.
  3553  		return nil
  3554  	}
  3555  	// Skip intrinsifying math functions (which may contain hard-float
  3556  	// instructions) when soft-float
  3557  	if thearch.SoftFloat && pkg == "math" {
  3558  		return nil
  3559  	}
  3560  
  3561  	fn := sym.Name
  3562  	return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}]
  3563  }
  3564  
  3565  func isIntrinsicCall(n *Node) bool {
  3566  	if n == nil || n.Left == nil {
  3567  		return false
  3568  	}
  3569  	return findIntrinsic(n.Left.Sym) != nil
  3570  }
  3571  
  3572  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  3573  func (s *state) intrinsicCall(n *Node) *ssa.Value {
  3574  	v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n))
  3575  	if ssa.IntrinsicsDebug > 0 {
  3576  		x := v
  3577  		if x == nil {
  3578  			x = s.mem()
  3579  		}
  3580  		if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
  3581  			x = x.Args[0]
  3582  		}
  3583  		Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
  3584  	}
  3585  	return v
  3586  }
  3587  
  3588  // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
  3589  func (s *state) intrinsicArgs(n *Node) []*ssa.Value {
  3590  	// Construct map of temps; see comments in s.call about the structure of n.
  3591  	temps := map[*Node]*ssa.Value{}
  3592  	for _, a := range n.List.Slice() {
  3593  		if a.Op != OAS {
  3594  			s.Fatalf("non-assignment as a temp function argument %v", a.Op)
  3595  		}
  3596  		l, r := a.Left, a.Right
  3597  		if l.Op != ONAME {
  3598  			s.Fatalf("non-ONAME temp function argument %v", a.Op)
  3599  		}
  3600  		// Evaluate and store to "temporary".
  3601  		// Walk ensures these temporaries are dead outside of n.
  3602  		temps[l] = s.expr(r)
  3603  	}
  3604  	args := make([]*ssa.Value, n.Rlist.Len())
  3605  	for i, n := range n.Rlist.Slice() {
  3606  		// Store a value to an argument slot.
  3607  		if x, ok := temps[n]; ok {
  3608  			// This is a previously computed temporary.
  3609  			args[i] = x
  3610  			continue
  3611  		}
  3612  		// This is an explicit value; evaluate it.
  3613  		args[i] = s.expr(n)
  3614  	}
  3615  	return args
  3616  }
  3617  
  3618  // Calls the function n using the specified call type.
  3619  // Returns the address of the return value (or nil if none).
  3620  func (s *state) call(n *Node, k callKind) *ssa.Value {
  3621  	var sym *types.Sym     // target symbol (if static)
  3622  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  3623  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  3624  	var rcvr *ssa.Value    // receiver to set
  3625  	fn := n.Left
  3626  	switch n.Op {
  3627  	case OCALLFUNC:
  3628  		if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC {
  3629  			sym = fn.Sym
  3630  			break
  3631  		}
  3632  		closure = s.expr(fn)
  3633  		if thearch.LinkArch.Family == sys.Wasm {
  3634  			// TODO(neelance): On other architectures this should be eliminated by the optimization steps
  3635  			s.nilCheck(closure)
  3636  		}
  3637  	case OCALLMETH:
  3638  		if fn.Op != ODOTMETH {
  3639  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  3640  		}
  3641  		if k == callNormal {
  3642  			sym = fn.Sym
  3643  			break
  3644  		}
  3645  		// Make a name n2 for the function.
  3646  		// fn.Sym might be sync.(*Mutex).Unlock.
  3647  		// Make a PFUNC node out of that, then evaluate it.
  3648  		// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
  3649  		// We can then pass that to defer or go.
  3650  		n2 := newnamel(fn.Pos, fn.Sym)
  3651  		n2.Name.Curfn = s.curfn
  3652  		n2.SetClass(PFUNC)
  3653  		n2.Pos = fn.Pos
  3654  		n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
  3655  		closure = s.expr(n2)
  3656  		// Note: receiver is already present in n.Rlist, so we don't
  3657  		// want to set it here.
  3658  	case OCALLINTER:
  3659  		if fn.Op != ODOTINTER {
  3660  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  3661  		}
  3662  		i := s.expr(fn.Left)
  3663  		itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i)
  3664  		s.nilCheck(itab)
  3665  		itabidx := fn.Xoffset + 2*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  3666  		itab = s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
  3667  		if k == callNormal {
  3668  			codeptr = s.load(types.Types[TUINTPTR], itab)
  3669  		} else {
  3670  			closure = itab
  3671  		}
  3672  		rcvr = s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i)
  3673  	}
  3674  	dowidth(fn.Type)
  3675  	stksize := fn.Type.ArgWidth() // includes receiver
  3676  
  3677  	// Run all assignments of temps.
  3678  	// The temps are introduced to avoid overwriting argument
  3679  	// slots when arguments themselves require function calls.
  3680  	s.stmtList(n.List)
  3681  
  3682  	// Store arguments to stack, including defer/go arguments and receiver for method calls.
  3683  	// These are written in SP-offset order.
  3684  	argStart := Ctxt.FixedFrameSize()
  3685  	// Defer/go args.
  3686  	if k != callNormal {
  3687  		// Write argsize and closure (args to newproc/deferproc).
  3688  		argsize := s.constInt32(types.Types[TUINT32], int32(stksize))
  3689  		addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart)
  3690  		s.store(types.Types[TUINT32], addr, argsize)
  3691  		addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr))
  3692  		s.store(types.Types[TUINTPTR], addr, closure)
  3693  		stksize += 2 * int64(Widthptr)
  3694  		argStart += 2 * int64(Widthptr)
  3695  	}
  3696  
  3697  	// Set receiver (for interface calls).
  3698  	if rcvr != nil {
  3699  		addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart)
  3700  		s.store(types.Types[TUINTPTR], addr, rcvr)
  3701  	}
  3702  
  3703  	// Write args.
  3704  	t := n.Left.Type
  3705  	args := n.Rlist.Slice()
  3706  	if n.Op == OCALLMETH {
  3707  		f := t.Recv()
  3708  		s.storeArg(args[0], f.Type, argStart+f.Offset)
  3709  		args = args[1:]
  3710  	}
  3711  	for i, n := range args {
  3712  		f := t.Params().Field(i)
  3713  		s.storeArg(n, f.Type, argStart+f.Offset)
  3714  	}
  3715  
  3716  	// call target
  3717  	var call *ssa.Value
  3718  	switch {
  3719  	case k == callDefer:
  3720  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, deferproc, s.mem())
  3721  	case k == callGo:
  3722  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, newproc, s.mem())
  3723  	case closure != nil:
  3724  		// rawLoad because loading the code pointer from a
  3725  		// closure is always safe, but IsSanitizerSafeAddr
  3726  		// can't always figure that out currently, and it's
  3727  		// critical that we not clobber any arguments already
  3728  		// stored onto the stack.
  3729  		codeptr = s.rawLoad(types.Types[TUINTPTR], closure)
  3730  		call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, closure, s.mem())
  3731  	case codeptr != nil:
  3732  		call = s.newValue2(ssa.OpInterCall, types.TypeMem, codeptr, s.mem())
  3733  	case sym != nil:
  3734  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, sym.Linksym(), s.mem())
  3735  	default:
  3736  		Fatalf("bad call type %v %v", n.Op, n)
  3737  	}
  3738  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  3739  	s.vars[&memVar] = call
  3740  
  3741  	// Finish block for defers
  3742  	if k == callDefer {
  3743  		b := s.endBlock()
  3744  		b.Kind = ssa.BlockDefer
  3745  		b.SetControl(call)
  3746  		bNext := s.f.NewBlock(ssa.BlockPlain)
  3747  		b.AddEdgeTo(bNext)
  3748  		// Add recover edge to exit code.
  3749  		r := s.f.NewBlock(ssa.BlockPlain)
  3750  		s.startBlock(r)
  3751  		s.exit()
  3752  		b.AddEdgeTo(r)
  3753  		b.Likely = ssa.BranchLikely
  3754  		s.startBlock(bNext)
  3755  	}
  3756  
  3757  	res := n.Left.Type.Results()
  3758  	if res.NumFields() == 0 || k != callNormal {
  3759  		// call has no return value. Continue with the next statement.
  3760  		return nil
  3761  	}
  3762  	fp := res.Field(0)
  3763  	return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize())
  3764  }
  3765  
  3766  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  3767  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  3768  func etypesign(e types.EType) int8 {
  3769  	switch e {
  3770  	case TINT8, TINT16, TINT32, TINT64, TINT:
  3771  		return -1
  3772  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  3773  		return +1
  3774  	}
  3775  	return 0
  3776  }
  3777  
  3778  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  3779  // The value that the returned Value represents is guaranteed to be non-nil.
  3780  // If bounded is true then this address does not require a nil check for its operand
  3781  // even if that would otherwise be implied.
  3782  func (s *state) addr(n *Node, bounded bool) *ssa.Value {
  3783  	t := types.NewPtr(n.Type)
  3784  	switch n.Op {
  3785  	case ONAME:
  3786  		switch n.Class() {
  3787  		case PEXTERN:
  3788  			// global variable
  3789  			v := s.entryNewValue1A(ssa.OpAddr, t, n.Sym.Linksym(), s.sb)
  3790  			// TODO: Make OpAddr use AuxInt as well as Aux.
  3791  			if n.Xoffset != 0 {
  3792  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  3793  			}
  3794  			return v
  3795  		case PPARAM:
  3796  			// parameter slot
  3797  			v := s.decladdrs[n]
  3798  			if v != nil {
  3799  				return v
  3800  			}
  3801  			if n == nodfp {
  3802  				// Special arg that points to the frame pointer (Used by ORECOVER).
  3803  				return s.entryNewValue2A(ssa.OpLocalAddr, t, n, s.sp, s.startmem)
  3804  			}
  3805  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  3806  			return nil
  3807  		case PAUTO:
  3808  			return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), !n.IsAutoTmp())
  3809  
  3810  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  3811  			// ensure that we reuse symbols for out parameters so
  3812  			// that cse works on their addresses
  3813  			return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), true)
  3814  		default:
  3815  			s.Fatalf("variable address class %v not implemented", n.Class())
  3816  			return nil
  3817  		}
  3818  	case OINDREGSP:
  3819  		// indirect off REGSP
  3820  		// used for storing/loading arguments/returns to/from callees
  3821  		return s.constOffPtrSP(t, n.Xoffset)
  3822  	case OINDEX:
  3823  		if n.Left.Type.IsSlice() {
  3824  			a := s.expr(n.Left)
  3825  			i := s.expr(n.Right)
  3826  			i = s.extendIndex(i, panicindex)
  3827  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a)
  3828  			if !n.Bounded() {
  3829  				s.boundsCheck(i, len)
  3830  			}
  3831  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  3832  			return s.newValue2(ssa.OpPtrIndex, t, p, i)
  3833  		} else { // array
  3834  			a := s.addr(n.Left, bounded)
  3835  			i := s.expr(n.Right)
  3836  			i = s.extendIndex(i, panicindex)
  3837  			len := s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  3838  			if !n.Bounded() {
  3839  				s.boundsCheck(i, len)
  3840  			}
  3841  			return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i)
  3842  		}
  3843  	case OIND:
  3844  		return s.exprPtr(n.Left, bounded, n.Pos)
  3845  	case ODOT:
  3846  		p := s.addr(n.Left, bounded)
  3847  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3848  	case ODOTPTR:
  3849  		p := s.exprPtr(n.Left, bounded, n.Pos)
  3850  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3851  	case OCLOSUREVAR:
  3852  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  3853  			s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr))
  3854  	case OCONVNOP:
  3855  		addr := s.addr(n.Left, bounded)
  3856  		return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
  3857  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  3858  		return s.call(n, callNormal)
  3859  	case ODOTTYPE:
  3860  		v, _ := s.dottype(n, false)
  3861  		if v.Op != ssa.OpLoad {
  3862  			s.Fatalf("dottype of non-load")
  3863  		}
  3864  		if v.Args[1] != s.mem() {
  3865  			s.Fatalf("memory no longer live from dottype load")
  3866  		}
  3867  		return v.Args[0]
  3868  	default:
  3869  		s.Fatalf("unhandled addr %v", n.Op)
  3870  		return nil
  3871  	}
  3872  }
  3873  
  3874  // canSSA reports whether n is SSA-able.
  3875  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  3876  func (s *state) canSSA(n *Node) bool {
  3877  	if Debug['N'] != 0 {
  3878  		return false
  3879  	}
  3880  	for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
  3881  		n = n.Left
  3882  	}
  3883  	if n.Op != ONAME {
  3884  		return false
  3885  	}
  3886  	if n.Addrtaken() {
  3887  		return false
  3888  	}
  3889  	if n.isParamHeapCopy() {
  3890  		return false
  3891  	}
  3892  	if n.Class() == PAUTOHEAP {
  3893  		Fatalf("canSSA of PAUTOHEAP %v", n)
  3894  	}
  3895  	switch n.Class() {
  3896  	case PEXTERN:
  3897  		return false
  3898  	case PPARAMOUT:
  3899  		if s.hasdefer {
  3900  			// TODO: handle this case? Named return values must be
  3901  			// in memory so that the deferred function can see them.
  3902  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  3903  			// Or maybe not, see issue 18860.  Even unnamed return values
  3904  			// must be written back so if a defer recovers, the caller can see them.
  3905  			return false
  3906  		}
  3907  		if s.cgoUnsafeArgs {
  3908  			// Cgo effectively takes the address of all result args,
  3909  			// but the compiler can't see that.
  3910  			return false
  3911  		}
  3912  	}
  3913  	if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" {
  3914  		// wrappers generated by genwrapper need to update
  3915  		// the .this pointer in place.
  3916  		// TODO: treat as a PPARMOUT?
  3917  		return false
  3918  	}
  3919  	return canSSAType(n.Type)
  3920  	// TODO: try to make more variables SSAable?
  3921  }
  3922  
  3923  // canSSA reports whether variables of type t are SSA-able.
  3924  func canSSAType(t *types.Type) bool {
  3925  	dowidth(t)
  3926  	if t.Width > int64(4*Widthptr) {
  3927  		// 4*Widthptr is an arbitrary constant. We want it
  3928  		// to be at least 3*Widthptr so slices can be registerized.
  3929  		// Too big and we'll introduce too much register pressure.
  3930  		return false
  3931  	}
  3932  	switch t.Etype {
  3933  	case TARRAY:
  3934  		// We can't do larger arrays because dynamic indexing is
  3935  		// not supported on SSA variables.
  3936  		// TODO: allow if all indexes are constant.
  3937  		if t.NumElem() <= 1 {
  3938  			return canSSAType(t.Elem())
  3939  		}
  3940  		return false
  3941  	case TSTRUCT:
  3942  		if t.NumFields() > ssa.MaxStruct {
  3943  			return false
  3944  		}
  3945  		for _, t1 := range t.Fields().Slice() {
  3946  			if !canSSAType(t1.Type) {
  3947  				return false
  3948  			}
  3949  		}
  3950  		return true
  3951  	default:
  3952  		return true
  3953  	}
  3954  }
  3955  
  3956  // exprPtr evaluates n to a pointer and nil-checks it.
  3957  func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value {
  3958  	p := s.expr(n)
  3959  	if bounded || n.NonNil() {
  3960  		if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 {
  3961  			s.f.Warnl(lineno, "removed nil check")
  3962  		}
  3963  		return p
  3964  	}
  3965  	s.nilCheck(p)
  3966  	return p
  3967  }
  3968  
  3969  // nilCheck generates nil pointer checking code.
  3970  // Used only for automatically inserted nil checks,
  3971  // not for user code like 'x != nil'.
  3972  func (s *state) nilCheck(ptr *ssa.Value) {
  3973  	if disable_checknil != 0 || s.curfn.Func.NilCheckDisabled() {
  3974  		return
  3975  	}
  3976  	s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem())
  3977  }
  3978  
  3979  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  3980  // Starts a new block on return.
  3981  // idx is already converted to full int width.
  3982  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3983  	if Debug['B'] != 0 {
  3984  		return
  3985  	}
  3986  
  3987  	// bounds check
  3988  	cmp := s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len)
  3989  	s.check(cmp, panicindex)
  3990  }
  3991  
  3992  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3993  // Starts a new block on return.
  3994  // idx and len are already converted to full int width.
  3995  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3996  	if Debug['B'] != 0 {
  3997  		return
  3998  	}
  3999  
  4000  	// bounds check
  4001  	cmp := s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len)
  4002  	s.check(cmp, panicslice)
  4003  }
  4004  
  4005  // If cmp (a bool) is false, panic using the given function.
  4006  func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
  4007  	b := s.endBlock()
  4008  	b.Kind = ssa.BlockIf
  4009  	b.SetControl(cmp)
  4010  	b.Likely = ssa.BranchLikely
  4011  	bNext := s.f.NewBlock(ssa.BlockPlain)
  4012  	line := s.peekPos()
  4013  	pos := Ctxt.PosTable.Pos(line)
  4014  	fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()}
  4015  	bPanic := s.panics[fl]
  4016  	if bPanic == nil {
  4017  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  4018  		s.panics[fl] = bPanic
  4019  		s.startBlock(bPanic)
  4020  		// The panic call takes/returns memory to ensure that the right
  4021  		// memory state is observed if the panic happens.
  4022  		s.rtcall(fn, false, nil)
  4023  	}
  4024  	b.AddEdgeTo(bNext)
  4025  	b.AddEdgeTo(bPanic)
  4026  	s.startBlock(bNext)
  4027  }
  4028  
  4029  func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
  4030  	needcheck := true
  4031  	switch b.Op {
  4032  	case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
  4033  		if b.AuxInt != 0 {
  4034  			needcheck = false
  4035  		}
  4036  	}
  4037  	if needcheck {
  4038  		// do a size-appropriate check for zero
  4039  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type))
  4040  		s.check(cmp, panicdivide)
  4041  	}
  4042  	return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  4043  }
  4044  
  4045  // rtcall issues a call to the given runtime function fn with the listed args.
  4046  // Returns a slice of results of the given result types.
  4047  // The call is added to the end of the current block.
  4048  // If returns is false, the block is marked as an exit block.
  4049  func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value {
  4050  	// Write args to the stack
  4051  	off := Ctxt.FixedFrameSize()
  4052  	for _, arg := range args {
  4053  		t := arg.Type
  4054  		off = Rnd(off, t.Alignment())
  4055  		ptr := s.constOffPtrSP(t.PtrTo(), off)
  4056  		size := t.Size()
  4057  		s.store(t, ptr, arg)
  4058  		off += size
  4059  	}
  4060  	off = Rnd(off, int64(Widthreg))
  4061  
  4062  	// Issue call
  4063  	call := s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn, s.mem())
  4064  	s.vars[&memVar] = call
  4065  
  4066  	if !returns {
  4067  		// Finish block
  4068  		b := s.endBlock()
  4069  		b.Kind = ssa.BlockExit
  4070  		b.SetControl(call)
  4071  		call.AuxInt = off - Ctxt.FixedFrameSize()
  4072  		if len(results) > 0 {
  4073  			Fatalf("panic call can't have results")
  4074  		}
  4075  		return nil
  4076  	}
  4077  
  4078  	// Load results
  4079  	res := make([]*ssa.Value, len(results))
  4080  	for i, t := range results {
  4081  		off = Rnd(off, t.Alignment())
  4082  		ptr := s.constOffPtrSP(types.NewPtr(t), off)
  4083  		res[i] = s.load(t, ptr)
  4084  		off += t.Size()
  4085  	}
  4086  	off = Rnd(off, int64(Widthptr))
  4087  
  4088  	// Remember how much callee stack space we needed.
  4089  	call.AuxInt = off
  4090  
  4091  	return res
  4092  }
  4093  
  4094  // do *left = right for type t.
  4095  func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask, leftIsStmt bool) {
  4096  	s.instrument(t, left, true)
  4097  
  4098  	if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) {
  4099  		// Known to not have write barrier. Store the whole type.
  4100  		s.vars[&memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, left, right, s.mem(), leftIsStmt)
  4101  		return
  4102  	}
  4103  
  4104  	// store scalar fields first, so write barrier stores for
  4105  	// pointer fields can be grouped together, and scalar values
  4106  	// don't need to be live across the write barrier call.
  4107  	// TODO: if the writebarrier pass knows how to reorder stores,
  4108  	// we can do a single store here as long as skip==0.
  4109  	s.storeTypeScalars(t, left, right, skip)
  4110  	if skip&skipPtr == 0 && types.Haspointers(t) {
  4111  		s.storeTypePtrs(t, left, right)
  4112  	}
  4113  }
  4114  
  4115  // do *left = right for all scalar (non-pointer) parts of t.
  4116  func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) {
  4117  	switch {
  4118  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  4119  		s.store(t, left, right)
  4120  	case t.IsPtrShaped():
  4121  		// no scalar fields.
  4122  	case t.IsString():
  4123  		if skip&skipLen != 0 {
  4124  			return
  4125  		}
  4126  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right)
  4127  		lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  4128  		s.store(types.Types[TINT], lenAddr, len)
  4129  	case t.IsSlice():
  4130  		if skip&skipLen == 0 {
  4131  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right)
  4132  			lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  4133  			s.store(types.Types[TINT], lenAddr, len)
  4134  		}
  4135  		if skip&skipCap == 0 {
  4136  			cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right)
  4137  			capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left)
  4138  			s.store(types.Types[TINT], capAddr, cap)
  4139  		}
  4140  	case t.IsInterface():
  4141  		// itab field doesn't need a write barrier (even though it is a pointer).
  4142  		itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right)
  4143  		s.store(types.Types[TUINTPTR], left, itab)
  4144  	case t.IsStruct():
  4145  		n := t.NumFields()
  4146  		for i := 0; i < n; i++ {
  4147  			ft := t.FieldType(i)
  4148  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  4149  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  4150  			s.storeTypeScalars(ft, addr, val, 0)
  4151  		}
  4152  	case t.IsArray() && t.NumElem() == 0:
  4153  		// nothing
  4154  	case t.IsArray() && t.NumElem() == 1:
  4155  		s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
  4156  	default:
  4157  		s.Fatalf("bad write barrier type %v", t)
  4158  	}
  4159  }
  4160  
  4161  // do *left = right for all pointer parts of t.
  4162  func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
  4163  	switch {
  4164  	case t.IsPtrShaped():
  4165  		s.store(t, left, right)
  4166  	case t.IsString():
  4167  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right)
  4168  		s.store(s.f.Config.Types.BytePtr, left, ptr)
  4169  	case t.IsSlice():
  4170  		elType := types.NewPtr(t.Elem())
  4171  		ptr := s.newValue1(ssa.OpSlicePtr, elType, right)
  4172  		s.store(elType, left, ptr)
  4173  	case t.IsInterface():
  4174  		// itab field is treated as a scalar.
  4175  		idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right)
  4176  		idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left)
  4177  		s.store(s.f.Config.Types.BytePtr, idataAddr, idata)
  4178  	case t.IsStruct():
  4179  		n := t.NumFields()
  4180  		for i := 0; i < n; i++ {
  4181  			ft := t.FieldType(i)
  4182  			if !types.Haspointers(ft) {
  4183  				continue
  4184  			}
  4185  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  4186  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  4187  			s.storeTypePtrs(ft, addr, val)
  4188  		}
  4189  	case t.IsArray() && t.NumElem() == 0:
  4190  		// nothing
  4191  	case t.IsArray() && t.NumElem() == 1:
  4192  		s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  4193  	default:
  4194  		s.Fatalf("bad write barrier type %v", t)
  4195  	}
  4196  }
  4197  
  4198  func (s *state) storeArg(n *Node, t *types.Type, off int64) {
  4199  	pt := types.NewPtr(t)
  4200  	sp := s.constOffPtrSP(pt, off)
  4201  
  4202  	if !canSSAType(t) {
  4203  		a := s.addr(n, false)
  4204  		s.move(t, sp, a)
  4205  		return
  4206  	}
  4207  
  4208  	a := s.expr(n)
  4209  	s.storeType(t, sp, a, 0, false)
  4210  }
  4211  
  4212  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  4213  // i,j,k may be nil, in which case they are set to their default value.
  4214  // t is a slice, ptr to array, or string type.
  4215  func (s *state) slice(t *types.Type, v, i, j, k *ssa.Value, bounded bool) (p, l, c *ssa.Value) {
  4216  	var elemtype *types.Type
  4217  	var ptrtype *types.Type
  4218  	var ptr *ssa.Value
  4219  	var len *ssa.Value
  4220  	var cap *ssa.Value
  4221  	zero := s.constInt(types.Types[TINT], 0)
  4222  	switch {
  4223  	case t.IsSlice():
  4224  		elemtype = t.Elem()
  4225  		ptrtype = types.NewPtr(elemtype)
  4226  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  4227  		len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v)
  4228  		cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v)
  4229  	case t.IsString():
  4230  		elemtype = types.Types[TUINT8]
  4231  		ptrtype = types.NewPtr(elemtype)
  4232  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  4233  		len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v)
  4234  		cap = len
  4235  	case t.IsPtr():
  4236  		if !t.Elem().IsArray() {
  4237  			s.Fatalf("bad ptr to array in slice %v\n", t)
  4238  		}
  4239  		elemtype = t.Elem().Elem()
  4240  		ptrtype = types.NewPtr(elemtype)
  4241  		s.nilCheck(v)
  4242  		ptr = v
  4243  		len = s.constInt(types.Types[TINT], t.Elem().NumElem())
  4244  		cap = len
  4245  	default:
  4246  		s.Fatalf("bad type in slice %v\n", t)
  4247  	}
  4248  
  4249  	// Set default values
  4250  	if i == nil {
  4251  		i = zero
  4252  	}
  4253  	if j == nil {
  4254  		j = len
  4255  	}
  4256  	if k == nil {
  4257  		k = cap
  4258  	}
  4259  
  4260  	if !bounded {
  4261  		// Panic if slice indices are not in bounds.
  4262  		s.sliceBoundsCheck(i, j)
  4263  		if j != k {
  4264  			s.sliceBoundsCheck(j, k)
  4265  		}
  4266  		if k != cap {
  4267  			s.sliceBoundsCheck(k, cap)
  4268  		}
  4269  	}
  4270  
  4271  	// Generate the following code assuming that indexes are in bounds.
  4272  	// The masking is to make sure that we don't generate a slice
  4273  	// that points to the next object in memory.
  4274  	// rlen = j - i
  4275  	// rcap = k - i
  4276  	// delta = i * elemsize
  4277  	// rptr = p + delta&mask(rcap)
  4278  	// result = (SliceMake rptr rlen rcap)
  4279  	// where mask(x) is 0 if x==0 and -1 if x>0.
  4280  	subOp := s.ssaOp(OSUB, types.Types[TINT])
  4281  	mulOp := s.ssaOp(OMUL, types.Types[TINT])
  4282  	andOp := s.ssaOp(OAND, types.Types[TINT])
  4283  	rlen := s.newValue2(subOp, types.Types[TINT], j, i)
  4284  	var rcap *ssa.Value
  4285  	switch {
  4286  	case t.IsString():
  4287  		// Capacity of the result is unimportant. However, we use
  4288  		// rcap to test if we've generated a zero-length slice.
  4289  		// Use length of strings for that.
  4290  		rcap = rlen
  4291  	case j == k:
  4292  		rcap = rlen
  4293  	default:
  4294  		rcap = s.newValue2(subOp, types.Types[TINT], k, i)
  4295  	}
  4296  
  4297  	var rptr *ssa.Value
  4298  	if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
  4299  		// No pointer arithmetic necessary.
  4300  		rptr = ptr
  4301  	} else {
  4302  		// delta = # of bytes to offset pointer by.
  4303  		delta := s.newValue2(mulOp, types.Types[TINT], i, s.constInt(types.Types[TINT], elemtype.Width))
  4304  		// If we're slicing to the point where the capacity is zero,
  4305  		// zero out the delta.
  4306  		mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap)
  4307  		delta = s.newValue2(andOp, types.Types[TINT], delta, mask)
  4308  		// Compute rptr = ptr + delta
  4309  		rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta)
  4310  	}
  4311  
  4312  	return rptr, rlen, rcap
  4313  }
  4314  
  4315  type u642fcvtTab struct {
  4316  	geq, cvt2F, and, rsh, or, add ssa.Op
  4317  	one                           func(*state, *types.Type, int64) *ssa.Value
  4318  }
  4319  
  4320  var u64_f64 = u642fcvtTab{
  4321  	geq:   ssa.OpGeq64,
  4322  	cvt2F: ssa.OpCvt64to64F,
  4323  	and:   ssa.OpAnd64,
  4324  	rsh:   ssa.OpRsh64Ux64,
  4325  	or:    ssa.OpOr64,
  4326  	add:   ssa.OpAdd64F,
  4327  	one:   (*state).constInt64,
  4328  }
  4329  
  4330  var u64_f32 = u642fcvtTab{
  4331  	geq:   ssa.OpGeq64,
  4332  	cvt2F: ssa.OpCvt64to32F,
  4333  	and:   ssa.OpAnd64,
  4334  	rsh:   ssa.OpRsh64Ux64,
  4335  	or:    ssa.OpOr64,
  4336  	add:   ssa.OpAdd32F,
  4337  	one:   (*state).constInt64,
  4338  }
  4339  
  4340  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4341  	return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
  4342  }
  4343  
  4344  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4345  	return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
  4346  }
  4347  
  4348  func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4349  	// if x >= 0 {
  4350  	//    result = (floatY) x
  4351  	// } else {
  4352  	// 	  y = uintX(x) ; y = x & 1
  4353  	// 	  z = uintX(x) ; z = z >> 1
  4354  	// 	  z = z >> 1
  4355  	// 	  z = z | y
  4356  	// 	  result = floatY(z)
  4357  	// 	  result = result + result
  4358  	// }
  4359  	//
  4360  	// Code borrowed from old code generator.
  4361  	// What's going on: large 64-bit "unsigned" looks like
  4362  	// negative number to hardware's integer-to-float
  4363  	// conversion. However, because the mantissa is only
  4364  	// 63 bits, we don't need the LSB, so instead we do an
  4365  	// unsigned right shift (divide by two), convert, and
  4366  	// double. However, before we do that, we need to be
  4367  	// sure that we do not lose a "1" if that made the
  4368  	// difference in the resulting rounding. Therefore, we
  4369  	// preserve it, and OR (not ADD) it back in. The case
  4370  	// that matters is when the eleven discarded bits are
  4371  	// equal to 10000000001; that rounds up, and the 1 cannot
  4372  	// be lost else it would round down if the LSB of the
  4373  	// candidate mantissa is 0.
  4374  	cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft))
  4375  	b := s.endBlock()
  4376  	b.Kind = ssa.BlockIf
  4377  	b.SetControl(cmp)
  4378  	b.Likely = ssa.BranchLikely
  4379  
  4380  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4381  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4382  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4383  
  4384  	b.AddEdgeTo(bThen)
  4385  	s.startBlock(bThen)
  4386  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  4387  	s.vars[n] = a0
  4388  	s.endBlock()
  4389  	bThen.AddEdgeTo(bAfter)
  4390  
  4391  	b.AddEdgeTo(bElse)
  4392  	s.startBlock(bElse)
  4393  	one := cvttab.one(s, ft, 1)
  4394  	y := s.newValue2(cvttab.and, ft, x, one)
  4395  	z := s.newValue2(cvttab.rsh, ft, x, one)
  4396  	z = s.newValue2(cvttab.or, ft, z, y)
  4397  	a := s.newValue1(cvttab.cvt2F, tt, z)
  4398  	a1 := s.newValue2(cvttab.add, tt, a, a)
  4399  	s.vars[n] = a1
  4400  	s.endBlock()
  4401  	bElse.AddEdgeTo(bAfter)
  4402  
  4403  	s.startBlock(bAfter)
  4404  	return s.variable(n, n.Type)
  4405  }
  4406  
  4407  type u322fcvtTab struct {
  4408  	cvtI2F, cvtF2F ssa.Op
  4409  }
  4410  
  4411  var u32_f64 = u322fcvtTab{
  4412  	cvtI2F: ssa.OpCvt32to64F,
  4413  	cvtF2F: ssa.OpCopy,
  4414  }
  4415  
  4416  var u32_f32 = u322fcvtTab{
  4417  	cvtI2F: ssa.OpCvt32to32F,
  4418  	cvtF2F: ssa.OpCvt64Fto32F,
  4419  }
  4420  
  4421  func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4422  	return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
  4423  }
  4424  
  4425  func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4426  	return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
  4427  }
  4428  
  4429  func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4430  	// if x >= 0 {
  4431  	// 	result = floatY(x)
  4432  	// } else {
  4433  	// 	result = floatY(float64(x) + (1<<32))
  4434  	// }
  4435  	cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft))
  4436  	b := s.endBlock()
  4437  	b.Kind = ssa.BlockIf
  4438  	b.SetControl(cmp)
  4439  	b.Likely = ssa.BranchLikely
  4440  
  4441  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4442  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4443  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4444  
  4445  	b.AddEdgeTo(bThen)
  4446  	s.startBlock(bThen)
  4447  	a0 := s.newValue1(cvttab.cvtI2F, tt, x)
  4448  	s.vars[n] = a0
  4449  	s.endBlock()
  4450  	bThen.AddEdgeTo(bAfter)
  4451  
  4452  	b.AddEdgeTo(bElse)
  4453  	s.startBlock(bElse)
  4454  	a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x)
  4455  	twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32))
  4456  	a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32)
  4457  	a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
  4458  
  4459  	s.vars[n] = a3
  4460  	s.endBlock()
  4461  	bElse.AddEdgeTo(bAfter)
  4462  
  4463  	s.startBlock(bAfter)
  4464  	return s.variable(n, n.Type)
  4465  }
  4466  
  4467  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  4468  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  4469  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  4470  		s.Fatalf("node must be a map or a channel")
  4471  	}
  4472  	// if n == nil {
  4473  	//   return 0
  4474  	// } else {
  4475  	//   // len
  4476  	//   return *((*int)n)
  4477  	//   // cap
  4478  	//   return *(((*int)n)+1)
  4479  	// }
  4480  	lenType := n.Type
  4481  	nilValue := s.constNil(types.Types[TUINTPTR])
  4482  	cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue)
  4483  	b := s.endBlock()
  4484  	b.Kind = ssa.BlockIf
  4485  	b.SetControl(cmp)
  4486  	b.Likely = ssa.BranchUnlikely
  4487  
  4488  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4489  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4490  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4491  
  4492  	// length/capacity of a nil map/chan is zero
  4493  	b.AddEdgeTo(bThen)
  4494  	s.startBlock(bThen)
  4495  	s.vars[n] = s.zeroVal(lenType)
  4496  	s.endBlock()
  4497  	bThen.AddEdgeTo(bAfter)
  4498  
  4499  	b.AddEdgeTo(bElse)
  4500  	s.startBlock(bElse)
  4501  	switch n.Op {
  4502  	case OLEN:
  4503  		// length is stored in the first word for map/chan
  4504  		s.vars[n] = s.load(lenType, x)
  4505  	case OCAP:
  4506  		// capacity is stored in the second word for chan
  4507  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  4508  		s.vars[n] = s.load(lenType, sw)
  4509  	default:
  4510  		s.Fatalf("op must be OLEN or OCAP")
  4511  	}
  4512  	s.endBlock()
  4513  	bElse.AddEdgeTo(bAfter)
  4514  
  4515  	s.startBlock(bAfter)
  4516  	return s.variable(n, lenType)
  4517  }
  4518  
  4519  type f2uCvtTab struct {
  4520  	ltf, cvt2U, subf, or ssa.Op
  4521  	floatValue           func(*state, *types.Type, float64) *ssa.Value
  4522  	intValue             func(*state, *types.Type, int64) *ssa.Value
  4523  	cutoff               uint64
  4524  }
  4525  
  4526  var f32_u64 = f2uCvtTab{
  4527  	ltf:        ssa.OpLess32F,
  4528  	cvt2U:      ssa.OpCvt32Fto64,
  4529  	subf:       ssa.OpSub32F,
  4530  	or:         ssa.OpOr64,
  4531  	floatValue: (*state).constFloat32,
  4532  	intValue:   (*state).constInt64,
  4533  	cutoff:     9223372036854775808,
  4534  }
  4535  
  4536  var f64_u64 = f2uCvtTab{
  4537  	ltf:        ssa.OpLess64F,
  4538  	cvt2U:      ssa.OpCvt64Fto64,
  4539  	subf:       ssa.OpSub64F,
  4540  	or:         ssa.OpOr64,
  4541  	floatValue: (*state).constFloat64,
  4542  	intValue:   (*state).constInt64,
  4543  	cutoff:     9223372036854775808,
  4544  }
  4545  
  4546  var f32_u32 = f2uCvtTab{
  4547  	ltf:        ssa.OpLess32F,
  4548  	cvt2U:      ssa.OpCvt32Fto32,
  4549  	subf:       ssa.OpSub32F,
  4550  	or:         ssa.OpOr32,
  4551  	floatValue: (*state).constFloat32,
  4552  	intValue:   func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  4553  	cutoff:     2147483648,
  4554  }
  4555  
  4556  var f64_u32 = f2uCvtTab{
  4557  	ltf:        ssa.OpLess64F,
  4558  	cvt2U:      ssa.OpCvt64Fto32,
  4559  	subf:       ssa.OpSub64F,
  4560  	or:         ssa.OpOr32,
  4561  	floatValue: (*state).constFloat64,
  4562  	intValue:   func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  4563  	cutoff:     2147483648,
  4564  }
  4565  
  4566  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4567  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  4568  }
  4569  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4570  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  4571  }
  4572  
  4573  func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4574  	return s.floatToUint(&f32_u32, n, x, ft, tt)
  4575  }
  4576  
  4577  func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4578  	return s.floatToUint(&f64_u32, n, x, ft, tt)
  4579  }
  4580  
  4581  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4582  	// cutoff:=1<<(intY_Size-1)
  4583  	// if x < floatX(cutoff) {
  4584  	// 	result = uintY(x)
  4585  	// } else {
  4586  	// 	y = x - floatX(cutoff)
  4587  	// 	z = uintY(y)
  4588  	// 	result = z | -(cutoff)
  4589  	// }
  4590  	cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
  4591  	cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff)
  4592  	b := s.endBlock()
  4593  	b.Kind = ssa.BlockIf
  4594  	b.SetControl(cmp)
  4595  	b.Likely = ssa.BranchLikely
  4596  
  4597  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4598  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4599  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4600  
  4601  	b.AddEdgeTo(bThen)
  4602  	s.startBlock(bThen)
  4603  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  4604  	s.vars[n] = a0
  4605  	s.endBlock()
  4606  	bThen.AddEdgeTo(bAfter)
  4607  
  4608  	b.AddEdgeTo(bElse)
  4609  	s.startBlock(bElse)
  4610  	y := s.newValue2(cvttab.subf, ft, x, cutoff)
  4611  	y = s.newValue1(cvttab.cvt2U, tt, y)
  4612  	z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
  4613  	a1 := s.newValue2(cvttab.or, tt, y, z)
  4614  	s.vars[n] = a1
  4615  	s.endBlock()
  4616  	bElse.AddEdgeTo(bAfter)
  4617  
  4618  	s.startBlock(bAfter)
  4619  	return s.variable(n, n.Type)
  4620  }
  4621  
  4622  // dottype generates SSA for a type assertion node.
  4623  // commaok indicates whether to panic or return a bool.
  4624  // If commaok is false, resok will be nil.
  4625  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  4626  	iface := s.expr(n.Left)   // input interface
  4627  	target := s.expr(n.Right) // target type
  4628  	byteptr := s.f.Config.Types.BytePtr
  4629  
  4630  	if n.Type.IsInterface() {
  4631  		if n.Type.IsEmptyInterface() {
  4632  			// Converting to an empty interface.
  4633  			// Input could be an empty or nonempty interface.
  4634  			if Debug_typeassert > 0 {
  4635  				Warnl(n.Pos, "type assertion inlined")
  4636  			}
  4637  
  4638  			// Get itab/type field from input.
  4639  			itab := s.newValue1(ssa.OpITab, byteptr, iface)
  4640  			// Conversion succeeds iff that field is not nil.
  4641  			cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr))
  4642  
  4643  			if n.Left.Type.IsEmptyInterface() && commaok {
  4644  				// Converting empty interface to empty interface with ,ok is just a nil check.
  4645  				return iface, cond
  4646  			}
  4647  
  4648  			// Branch on nilness.
  4649  			b := s.endBlock()
  4650  			b.Kind = ssa.BlockIf
  4651  			b.SetControl(cond)
  4652  			b.Likely = ssa.BranchLikely
  4653  			bOk := s.f.NewBlock(ssa.BlockPlain)
  4654  			bFail := s.f.NewBlock(ssa.BlockPlain)
  4655  			b.AddEdgeTo(bOk)
  4656  			b.AddEdgeTo(bFail)
  4657  
  4658  			if !commaok {
  4659  				// On failure, panic by calling panicnildottype.
  4660  				s.startBlock(bFail)
  4661  				s.rtcall(panicnildottype, false, nil, target)
  4662  
  4663  				// On success, return (perhaps modified) input interface.
  4664  				s.startBlock(bOk)
  4665  				if n.Left.Type.IsEmptyInterface() {
  4666  					res = iface // Use input interface unchanged.
  4667  					return
  4668  				}
  4669  				// Load type out of itab, build interface with existing idata.
  4670  				off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4671  				typ := s.load(byteptr, off)
  4672  				idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4673  				res = s.newValue2(ssa.OpIMake, n.Type, typ, idata)
  4674  				return
  4675  			}
  4676  
  4677  			s.startBlock(bOk)
  4678  			// nonempty -> empty
  4679  			// Need to load type from itab
  4680  			off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4681  			s.vars[&typVar] = s.load(byteptr, off)
  4682  			s.endBlock()
  4683  
  4684  			// itab is nil, might as well use that as the nil result.
  4685  			s.startBlock(bFail)
  4686  			s.vars[&typVar] = itab
  4687  			s.endBlock()
  4688  
  4689  			// Merge point.
  4690  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  4691  			bOk.AddEdgeTo(bEnd)
  4692  			bFail.AddEdgeTo(bEnd)
  4693  			s.startBlock(bEnd)
  4694  			idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4695  			res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata)
  4696  			resok = cond
  4697  			delete(s.vars, &typVar)
  4698  			return
  4699  		}
  4700  		// converting to a nonempty interface needs a runtime call.
  4701  		if Debug_typeassert > 0 {
  4702  			Warnl(n.Pos, "type assertion not inlined")
  4703  		}
  4704  		if n.Left.Type.IsEmptyInterface() {
  4705  			if commaok {
  4706  				call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4707  				return call[0], call[1]
  4708  			}
  4709  			return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4710  		}
  4711  		if commaok {
  4712  			call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4713  			return call[0], call[1]
  4714  		}
  4715  		return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4716  	}
  4717  
  4718  	if Debug_typeassert > 0 {
  4719  		Warnl(n.Pos, "type assertion inlined")
  4720  	}
  4721  
  4722  	// Converting to a concrete type.
  4723  	direct := isdirectiface(n.Type)
  4724  	itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
  4725  	if Debug_typeassert > 0 {
  4726  		Warnl(n.Pos, "type assertion inlined")
  4727  	}
  4728  	var targetITab *ssa.Value
  4729  	if n.Left.Type.IsEmptyInterface() {
  4730  		// Looking for pointer to target type.
  4731  		targetITab = target
  4732  	} else {
  4733  		// Looking for pointer to itab for target type and source interface.
  4734  		targetITab = s.expr(n.List.First())
  4735  	}
  4736  
  4737  	var tmp *Node       // temporary for use with large types
  4738  	var addr *ssa.Value // address of tmp
  4739  	if commaok && !canSSAType(n.Type) {
  4740  		// unSSAable type, use temporary.
  4741  		// TODO: get rid of some of these temporaries.
  4742  		tmp = tempAt(n.Pos, s.curfn, n.Type)
  4743  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem())
  4744  		addr = s.addr(tmp, false)
  4745  	}
  4746  
  4747  	cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab)
  4748  	b := s.endBlock()
  4749  	b.Kind = ssa.BlockIf
  4750  	b.SetControl(cond)
  4751  	b.Likely = ssa.BranchLikely
  4752  
  4753  	bOk := s.f.NewBlock(ssa.BlockPlain)
  4754  	bFail := s.f.NewBlock(ssa.BlockPlain)
  4755  	b.AddEdgeTo(bOk)
  4756  	b.AddEdgeTo(bFail)
  4757  
  4758  	if !commaok {
  4759  		// on failure, panic by calling panicdottype
  4760  		s.startBlock(bFail)
  4761  		taddr := s.expr(n.Right.Right)
  4762  		if n.Left.Type.IsEmptyInterface() {
  4763  			s.rtcall(panicdottypeE, false, nil, itab, target, taddr)
  4764  		} else {
  4765  			s.rtcall(panicdottypeI, false, nil, itab, target, taddr)
  4766  		}
  4767  
  4768  		// on success, return data from interface
  4769  		s.startBlock(bOk)
  4770  		if direct {
  4771  			return s.newValue1(ssa.OpIData, n.Type, iface), nil
  4772  		}
  4773  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4774  		return s.load(n.Type, p), nil
  4775  	}
  4776  
  4777  	// commaok is the more complicated case because we have
  4778  	// a control flow merge point.
  4779  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  4780  	// Note that we need a new valVar each time (unlike okVar where we can
  4781  	// reuse the variable) because it might have a different type every time.
  4782  	valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}}
  4783  
  4784  	// type assertion succeeded
  4785  	s.startBlock(bOk)
  4786  	if tmp == nil {
  4787  		if direct {
  4788  			s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  4789  		} else {
  4790  			p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4791  			s.vars[valVar] = s.load(n.Type, p)
  4792  		}
  4793  	} else {
  4794  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4795  		s.move(n.Type, addr, p)
  4796  	}
  4797  	s.vars[&okVar] = s.constBool(true)
  4798  	s.endBlock()
  4799  	bOk.AddEdgeTo(bEnd)
  4800  
  4801  	// type assertion failed
  4802  	s.startBlock(bFail)
  4803  	if tmp == nil {
  4804  		s.vars[valVar] = s.zeroVal(n.Type)
  4805  	} else {
  4806  		s.zero(n.Type, addr)
  4807  	}
  4808  	s.vars[&okVar] = s.constBool(false)
  4809  	s.endBlock()
  4810  	bFail.AddEdgeTo(bEnd)
  4811  
  4812  	// merge point
  4813  	s.startBlock(bEnd)
  4814  	if tmp == nil {
  4815  		res = s.variable(valVar, n.Type)
  4816  		delete(s.vars, valVar)
  4817  	} else {
  4818  		res = s.load(n.Type, addr)
  4819  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp, s.mem())
  4820  	}
  4821  	resok = s.variable(&okVar, types.Types[TBOOL])
  4822  	delete(s.vars, &okVar)
  4823  	return res, resok
  4824  }
  4825  
  4826  // variable returns the value of a variable at the current location.
  4827  func (s *state) variable(name *Node, t *types.Type) *ssa.Value {
  4828  	v := s.vars[name]
  4829  	if v != nil {
  4830  		return v
  4831  	}
  4832  	v = s.fwdVars[name]
  4833  	if v != nil {
  4834  		return v
  4835  	}
  4836  
  4837  	if s.curBlock == s.f.Entry {
  4838  		// No variable should be live at entry.
  4839  		s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
  4840  	}
  4841  	// Make a FwdRef, which records a value that's live on block input.
  4842  	// We'll find the matching definition as part of insertPhis.
  4843  	v = s.newValue0A(ssa.OpFwdRef, t, name)
  4844  	s.fwdVars[name] = v
  4845  	s.addNamedValue(name, v)
  4846  	return v
  4847  }
  4848  
  4849  func (s *state) mem() *ssa.Value {
  4850  	return s.variable(&memVar, types.TypeMem)
  4851  }
  4852  
  4853  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  4854  	if n.Class() == Pxxx {
  4855  		// Don't track our dummy nodes (&memVar etc.).
  4856  		return
  4857  	}
  4858  	if n.IsAutoTmp() {
  4859  		// Don't track temporary variables.
  4860  		return
  4861  	}
  4862  	if n.Class() == PPARAMOUT {
  4863  		// Don't track named output values.  This prevents return values
  4864  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  4865  		return
  4866  	}
  4867  	if n.Class() == PAUTO && n.Xoffset != 0 {
  4868  		s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
  4869  	}
  4870  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  4871  	values, ok := s.f.NamedValues[loc]
  4872  	if !ok {
  4873  		s.f.Names = append(s.f.Names, loc)
  4874  	}
  4875  	s.f.NamedValues[loc] = append(values, v)
  4876  }
  4877  
  4878  // Branch is an unresolved branch.
  4879  type Branch struct {
  4880  	P *obj.Prog  // branch instruction
  4881  	B *ssa.Block // target
  4882  }
  4883  
  4884  // SSAGenState contains state needed during Prog generation.
  4885  type SSAGenState struct {
  4886  	pp *Progs
  4887  
  4888  	// Branches remembers all the branch instructions we've seen
  4889  	// and where they would like to go.
  4890  	Branches []Branch
  4891  
  4892  	// bstart remembers where each block starts (indexed by block ID)
  4893  	bstart []*obj.Prog
  4894  
  4895  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4896  	SSEto387 map[int16]int16
  4897  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4898  	ScratchFpMem *Node
  4899  
  4900  	maxarg int64 // largest frame size for arguments to calls made by the function
  4901  
  4902  	// Map from GC safe points to liveness index, generated by
  4903  	// liveness analysis.
  4904  	livenessMap LivenessMap
  4905  
  4906  	// lineRunStart records the beginning of the current run of instructions
  4907  	// within a single block sharing the same line number
  4908  	// Used to move statement marks to the beginning of such runs.
  4909  	lineRunStart *obj.Prog
  4910  
  4911  	// wasm: The number of values on the WebAssembly stack. This is only used as a safeguard.
  4912  	OnWasmStackSkipped int
  4913  }
  4914  
  4915  // Prog appends a new Prog.
  4916  func (s *SSAGenState) Prog(as obj.As) *obj.Prog {
  4917  	p := s.pp.Prog(as)
  4918  	if ssa.LosesStmtMark(as) {
  4919  		return p
  4920  	}
  4921  	// Float a statement start to the beginning of any same-line run.
  4922  	// lineRunStart is reset at block boundaries, which appears to work well.
  4923  	if s.lineRunStart == nil || s.lineRunStart.Pos.Line() != p.Pos.Line() {
  4924  		s.lineRunStart = p
  4925  	} else if p.Pos.IsStmt() == src.PosIsStmt {
  4926  		s.lineRunStart.Pos = s.lineRunStart.Pos.WithIsStmt()
  4927  		p.Pos = p.Pos.WithNotStmt()
  4928  	}
  4929  	return p
  4930  }
  4931  
  4932  // Pc returns the current Prog.
  4933  func (s *SSAGenState) Pc() *obj.Prog {
  4934  	return s.pp.next
  4935  }
  4936  
  4937  // SetPos sets the current source position.
  4938  func (s *SSAGenState) SetPos(pos src.XPos) {
  4939  	s.pp.pos = pos
  4940  }
  4941  
  4942  // Br emits a single branch instruction and returns the instruction.
  4943  // Not all architectures need the returned instruction, but otherwise
  4944  // the boilerplate is common to all.
  4945  func (s *SSAGenState) Br(op obj.As, target *ssa.Block) *obj.Prog {
  4946  	p := s.Prog(op)
  4947  	p.To.Type = obj.TYPE_BRANCH
  4948  	s.Branches = append(s.Branches, Branch{P: p, B: target})
  4949  	return p
  4950  }
  4951  
  4952  // DebugFriendlySetPos adjusts Pos.IsStmt subject to heuristics
  4953  // that reduce "jumpy" line number churn when debugging.
  4954  // Spill/fill/copy instructions from the register allocator,
  4955  // phi functions, and instructions with a no-pos position
  4956  // are examples of instructions that can cause churn.
  4957  func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) {
  4958  	switch v.Op {
  4959  	case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg:
  4960  		// These are not statements
  4961  		s.SetPos(v.Pos.WithNotStmt())
  4962  	default:
  4963  		p := v.Pos
  4964  		if p != src.NoXPos {
  4965  			// If the position is defined, update the position.
  4966  			// Also convert default IsStmt to NotStmt; only
  4967  			// explicit statement boundaries should appear
  4968  			// in the generated code.
  4969  			if p.IsStmt() != src.PosIsStmt {
  4970  				p = p.WithNotStmt()
  4971  			}
  4972  			s.SetPos(p)
  4973  		}
  4974  	}
  4975  }
  4976  
  4977  // byXoffset implements sort.Interface for []*Node using Xoffset as the ordering.
  4978  type byXoffset []*Node
  4979  
  4980  func (s byXoffset) Len() int           { return len(s) }
  4981  func (s byXoffset) Less(i, j int) bool { return s[i].Xoffset < s[j].Xoffset }
  4982  func (s byXoffset) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
  4983  
  4984  func emitStackObjects(e *ssafn, pp *Progs) {
  4985  	var vars []*Node
  4986  	for _, n := range e.curfn.Func.Dcl {
  4987  		if livenessShouldTrack(n) && n.Addrtaken() {
  4988  			vars = append(vars, n)
  4989  		}
  4990  	}
  4991  	if len(vars) == 0 {
  4992  		return
  4993  	}
  4994  
  4995  	// Sort variables from lowest to highest address.
  4996  	sort.Sort(byXoffset(vars))
  4997  
  4998  	// Populate the stack object data.
  4999  	// Format must match runtime/stack.go:stackObjectRecord.
  5000  	x := e.curfn.Func.lsym.Func.StackObjects
  5001  	off := 0
  5002  	off = duintptr(x, off, uint64(len(vars)))
  5003  	for _, v := range vars {
  5004  		// Note: arguments and return values have non-negative Xoffset,
  5005  		// in which case the offset is relative to argp.
  5006  		// Locals have a negative Xoffset, in which case the offset is relative to varp.
  5007  		off = duintptr(x, off, uint64(v.Xoffset))
  5008  		if !typesym(v.Type).Siggen() {
  5009  			Fatalf("stack object's type symbol not generated for type %s", v.Type)
  5010  		}
  5011  		off = dsymptr(x, off, dtypesym(v.Type), 0)
  5012  	}
  5013  
  5014  	// Emit a funcdata pointing at the stack object data.
  5015  	p := pp.Prog(obj.AFUNCDATA)
  5016  	Addrconst(&p.From, objabi.FUNCDATA_StackObjects)
  5017  	p.To.Type = obj.TYPE_MEM
  5018  	p.To.Name = obj.NAME_EXTERN
  5019  	p.To.Sym = x
  5020  
  5021  	if debuglive != 0 {
  5022  		for _, v := range vars {
  5023  			Warnl(v.Pos, "stack object %v %s", v, v.Type.String())
  5024  		}
  5025  	}
  5026  }
  5027  
  5028  // genssa appends entries to pp for each instruction in f.
  5029  func genssa(f *ssa.Func, pp *Progs) {
  5030  	var s SSAGenState
  5031  
  5032  	e := f.Frontend().(*ssafn)
  5033  
  5034  	s.livenessMap = liveness(e, f)
  5035  	emitStackObjects(e, pp)
  5036  
  5037  	// Remember where each block starts.
  5038  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  5039  	s.pp = pp
  5040  	var progToValue map[*obj.Prog]*ssa.Value
  5041  	var progToBlock map[*obj.Prog]*ssa.Block
  5042  	var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point.
  5043  	if f.PrintOrHtmlSSA {
  5044  		progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  5045  		progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  5046  		f.Logf("genssa %s\n", f.Name)
  5047  		progToBlock[s.pp.next] = f.Blocks[0]
  5048  	}
  5049  
  5050  	if thearch.Use387 {
  5051  		s.SSEto387 = map[int16]int16{}
  5052  	}
  5053  
  5054  	s.ScratchFpMem = e.scratchFpMem
  5055  
  5056  	if Ctxt.Flag_locationlists {
  5057  		if cap(f.Cache.ValueToProgAfter) < f.NumValues() {
  5058  			f.Cache.ValueToProgAfter = make([]*obj.Prog, f.NumValues())
  5059  		}
  5060  		valueToProgAfter = f.Cache.ValueToProgAfter[:f.NumValues()]
  5061  		for i := range valueToProgAfter {
  5062  			valueToProgAfter[i] = nil
  5063  		}
  5064  	}
  5065  
  5066  	// If the very first instruction is not tagged as a statement,
  5067  	// debuggers may attribute it to previous function in program.
  5068  	firstPos := src.NoXPos
  5069  	for _, v := range f.Entry.Values {
  5070  		if v.Pos.IsStmt() == src.PosIsStmt {
  5071  			firstPos = v.Pos
  5072  			v.Pos = firstPos.WithDefaultStmt()
  5073  			break
  5074  		}
  5075  	}
  5076  
  5077  	// Emit basic blocks
  5078  	for i, b := range f.Blocks {
  5079  		s.bstart[b.ID] = s.pp.next
  5080  		s.pp.nextLive = LivenessInvalid
  5081  		s.lineRunStart = nil
  5082  
  5083  		// Emit values in block
  5084  		thearch.SSAMarkMoves(&s, b)
  5085  		for _, v := range b.Values {
  5086  			x := s.pp.next
  5087  			s.DebugFriendlySetPosFrom(v)
  5088  			// Attach this safe point to the next
  5089  			// instruction.
  5090  			s.pp.nextLive = s.livenessMap.Get(v)
  5091  			switch v.Op {
  5092  			case ssa.OpInitMem:
  5093  				// memory arg needs no code
  5094  			case ssa.OpArg:
  5095  				// input args need no code
  5096  			case ssa.OpSP, ssa.OpSB:
  5097  				// nothing to do
  5098  			case ssa.OpSelect0, ssa.OpSelect1:
  5099  				// nothing to do
  5100  			case ssa.OpGetG:
  5101  				// nothing to do when there's a g register,
  5102  				// and checkLower complains if there's not
  5103  			case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive, ssa.OpVarKill:
  5104  				// nothing to do; already used by liveness
  5105  			case ssa.OpPhi:
  5106  				CheckLoweredPhi(v)
  5107  			case ssa.OpConvert:
  5108  				// nothing to do; no-op conversion for liveness
  5109  				if v.Args[0].Reg() != v.Reg() {
  5110  					v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString())
  5111  				}
  5112  			default:
  5113  				// let the backend handle it
  5114  				// Special case for first line in function; move it to the start.
  5115  				if firstPos != src.NoXPos {
  5116  					s.SetPos(firstPos)
  5117  					firstPos = src.NoXPos
  5118  				}
  5119  				thearch.SSAGenValue(&s, v)
  5120  			}
  5121  
  5122  			if Ctxt.Flag_locationlists {
  5123  				valueToProgAfter[v.ID] = s.pp.next
  5124  			}
  5125  
  5126  			if f.PrintOrHtmlSSA {
  5127  				for ; x != s.pp.next; x = x.Link {
  5128  					progToValue[x] = v
  5129  				}
  5130  			}
  5131  		}
  5132  		// Emit control flow instructions for block
  5133  		var next *ssa.Block
  5134  		if i < len(f.Blocks)-1 && Debug['N'] == 0 {
  5135  			// If -N, leave next==nil so every block with successors
  5136  			// ends in a JMP (except call blocks - plive doesn't like
  5137  			// select{send,recv} followed by a JMP call).  Helps keep
  5138  			// line numbers for otherwise empty blocks.
  5139  			next = f.Blocks[i+1]
  5140  		}
  5141  		x := s.pp.next
  5142  		s.SetPos(b.Pos)
  5143  		thearch.SSAGenBlock(&s, b, next)
  5144  		if f.PrintOrHtmlSSA {
  5145  			for ; x != s.pp.next; x = x.Link {
  5146  				progToBlock[x] = b
  5147  			}
  5148  		}
  5149  	}
  5150  
  5151  	if Ctxt.Flag_locationlists {
  5152  		e.curfn.Func.DebugInfo = ssa.BuildFuncDebug(Ctxt, f, Debug_locationlist > 1, stackOffset)
  5153  		bstart := s.bstart
  5154  		// Note that at this moment, Prog.Pc is a sequence number; it's
  5155  		// not a real PC until after assembly, so this mapping has to
  5156  		// be done later.
  5157  		e.curfn.Func.DebugInfo.GetPC = func(b, v ssa.ID) int64 {
  5158  			switch v {
  5159  			case ssa.BlockStart.ID:
  5160  				return bstart[b].Pc
  5161  			case ssa.BlockEnd.ID:
  5162  				return e.curfn.Func.lsym.Size
  5163  			default:
  5164  				return valueToProgAfter[v].Pc
  5165  			}
  5166  		}
  5167  	}
  5168  
  5169  	// Resolove branchers, and relax DefaultStmt into NotStmt
  5170  	for _, br := range s.Branches {
  5171  		br.P.To.Val = s.bstart[br.B.ID]
  5172  		if br.P.Pos.IsStmt() != src.PosIsStmt {
  5173  			br.P.Pos = br.P.Pos.WithNotStmt()
  5174  		}
  5175  	}
  5176  
  5177  	if e.log { // spew to stdout
  5178  		filename := ""
  5179  		for p := pp.Text; p != nil; p = p.Link {
  5180  			if p.Pos.IsKnown() && p.InnermostFilename() != filename {
  5181  				filename = p.InnermostFilename()
  5182  				f.Logf("# %s\n", filename)
  5183  			}
  5184  
  5185  			var s string
  5186  			if v, ok := progToValue[p]; ok {
  5187  				s = v.String()
  5188  			} else if b, ok := progToBlock[p]; ok {
  5189  				s = b.String()
  5190  			} else {
  5191  				s = "   " // most value and branch strings are 2-3 characters long
  5192  			}
  5193  			f.Logf(" %-6s\t%.5d (%s)\t%s\n", s, p.Pc, p.InnermostLineNumber(), p.InstructionString())
  5194  		}
  5195  	}
  5196  	if f.HTMLWriter != nil { // spew to ssa.html
  5197  		var buf bytes.Buffer
  5198  		buf.WriteString("<code>")
  5199  		buf.WriteString("<dl class=\"ssa-gen\">")
  5200  		filename := ""
  5201  		for p := pp.Text; p != nil; p = p.Link {
  5202  			// Don't spam every line with the file name, which is often huge.
  5203  			// Only print changes, and "unknown" is not a change.
  5204  			if p.Pos.IsKnown() && p.InnermostFilename() != filename {
  5205  				filename = p.InnermostFilename()
  5206  				buf.WriteString("<dt class=\"ssa-prog-src\"></dt><dd class=\"ssa-prog\">")
  5207  				buf.WriteString(html.EscapeString("# " + filename))
  5208  				buf.WriteString("</dd>")
  5209  			}
  5210  
  5211  			buf.WriteString("<dt class=\"ssa-prog-src\">")
  5212  			if v, ok := progToValue[p]; ok {
  5213  				buf.WriteString(v.HTML())
  5214  			} else if b, ok := progToBlock[p]; ok {
  5215  				buf.WriteString("<b>" + b.HTML() + "</b>")
  5216  			}
  5217  			buf.WriteString("</dt>")
  5218  			buf.WriteString("<dd class=\"ssa-prog\">")
  5219  			buf.WriteString(fmt.Sprintf("%.5d <span class=\"l%v line-number\">(%s)</span> %s", p.Pc, p.InnermostLineNumber(), p.InnermostLineNumberHTML(), html.EscapeString(p.InstructionString())))
  5220  			buf.WriteString("</dd>")
  5221  		}
  5222  		buf.WriteString("</dl>")
  5223  		buf.WriteString("</code>")
  5224  		f.HTMLWriter.WriteColumn("genssa", "genssa", "ssa-prog", buf.String())
  5225  	}
  5226  
  5227  	defframe(&s, e)
  5228  	if Debug['f'] != 0 {
  5229  		frame(0)
  5230  	}
  5231  
  5232  	f.HTMLWriter.Close()
  5233  	f.HTMLWriter = nil
  5234  }
  5235  
  5236  func defframe(s *SSAGenState, e *ssafn) {
  5237  	pp := s.pp
  5238  
  5239  	frame := Rnd(s.maxarg+e.stksize, int64(Widthreg))
  5240  	if thearch.PadFrame != nil {
  5241  		frame = thearch.PadFrame(frame)
  5242  	}
  5243  
  5244  	// Fill in argument and frame size.
  5245  	pp.Text.To.Type = obj.TYPE_TEXTSIZE
  5246  	pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg)))
  5247  	pp.Text.To.Offset = frame
  5248  
  5249  	// Insert code to zero ambiguously live variables so that the
  5250  	// garbage collector only sees initialized values when it
  5251  	// looks for pointers.
  5252  	p := pp.Text
  5253  	var lo, hi int64
  5254  
  5255  	// Opaque state for backend to use. Current backends use it to
  5256  	// keep track of which helper registers have been zeroed.
  5257  	var state uint32
  5258  
  5259  	// Iterate through declarations. They are sorted in decreasing Xoffset order.
  5260  	for _, n := range e.curfn.Func.Dcl {
  5261  		if !n.Name.Needzero() {
  5262  			continue
  5263  		}
  5264  		if n.Class() != PAUTO {
  5265  			Fatalf("needzero class %d", n.Class())
  5266  		}
  5267  		if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 {
  5268  			Fatalf("var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset)
  5269  		}
  5270  
  5271  		if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) {
  5272  			// Merge with range we already have.
  5273  			lo = n.Xoffset
  5274  			continue
  5275  		}
  5276  
  5277  		// Zero old range
  5278  		p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  5279  
  5280  		// Set new range.
  5281  		lo = n.Xoffset
  5282  		hi = lo + n.Type.Size()
  5283  	}
  5284  
  5285  	// Zero final range.
  5286  	thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  5287  }
  5288  
  5289  type FloatingEQNEJump struct {
  5290  	Jump  obj.As
  5291  	Index int
  5292  }
  5293  
  5294  func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) {
  5295  	p := s.Prog(jumps.Jump)
  5296  	p.To.Type = obj.TYPE_BRANCH
  5297  	p.Pos = b.Pos
  5298  	to := jumps.Index
  5299  	s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()})
  5300  }
  5301  
  5302  func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  5303  	switch next {
  5304  	case b.Succs[0].Block():
  5305  		s.oneFPJump(b, &jumps[0][0])
  5306  		s.oneFPJump(b, &jumps[0][1])
  5307  	case b.Succs[1].Block():
  5308  		s.oneFPJump(b, &jumps[1][0])
  5309  		s.oneFPJump(b, &jumps[1][1])
  5310  	default:
  5311  		s.oneFPJump(b, &jumps[1][0])
  5312  		s.oneFPJump(b, &jumps[1][1])
  5313  		q := s.Prog(obj.AJMP)
  5314  		q.Pos = b.Pos
  5315  		q.To.Type = obj.TYPE_BRANCH
  5316  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  5317  	}
  5318  }
  5319  
  5320  func AuxOffset(v *ssa.Value) (offset int64) {
  5321  	if v.Aux == nil {
  5322  		return 0
  5323  	}
  5324  	n, ok := v.Aux.(*Node)
  5325  	if !ok {
  5326  		v.Fatalf("bad aux type in %s\n", v.LongString())
  5327  	}
  5328  	if n.Class() == PAUTO {
  5329  		return n.Xoffset
  5330  	}
  5331  	return 0
  5332  }
  5333  
  5334  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  5335  func AddAux(a *obj.Addr, v *ssa.Value) {
  5336  	AddAux2(a, v, v.AuxInt)
  5337  }
  5338  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  5339  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  5340  		v.Fatalf("bad AddAux addr %v", a)
  5341  	}
  5342  	// add integer offset
  5343  	a.Offset += offset
  5344  
  5345  	// If no additional symbol offset, we're done.
  5346  	if v.Aux == nil {
  5347  		return
  5348  	}
  5349  	// Add symbol's offset from its base register.
  5350  	switch n := v.Aux.(type) {
  5351  	case *obj.LSym:
  5352  		a.Name = obj.NAME_EXTERN
  5353  		a.Sym = n
  5354  	case *Node:
  5355  		if n.Class() == PPARAM || n.Class() == PPARAMOUT {
  5356  			a.Name = obj.NAME_PARAM
  5357  			a.Sym = n.Orig.Sym.Linksym()
  5358  			a.Offset += n.Xoffset
  5359  			break
  5360  		}
  5361  		a.Name = obj.NAME_AUTO
  5362  		a.Sym = n.Sym.Linksym()
  5363  		a.Offset += n.Xoffset
  5364  	default:
  5365  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  5366  	}
  5367  }
  5368  
  5369  // extendIndex extends v to a full int width.
  5370  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  5371  func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value {
  5372  	size := v.Type.Size()
  5373  	if size == s.config.PtrSize {
  5374  		return v
  5375  	}
  5376  	if size > s.config.PtrSize {
  5377  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  5378  		// high word and branch to out-of-bounds failure if it is not 0.
  5379  		if Debug['B'] == 0 {
  5380  			hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], v)
  5381  			cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0))
  5382  			s.check(cmp, panicfn)
  5383  		}
  5384  		return s.newValue1(ssa.OpTrunc64to32, types.Types[TINT], v)
  5385  	}
  5386  
  5387  	// Extend value to the required size
  5388  	var op ssa.Op
  5389  	if v.Type.IsSigned() {
  5390  		switch 10*size + s.config.PtrSize {
  5391  		case 14:
  5392  			op = ssa.OpSignExt8to32
  5393  		case 18:
  5394  			op = ssa.OpSignExt8to64
  5395  		case 24:
  5396  			op = ssa.OpSignExt16to32
  5397  		case 28:
  5398  			op = ssa.OpSignExt16to64
  5399  		case 48:
  5400  			op = ssa.OpSignExt32to64
  5401  		default:
  5402  			s.Fatalf("bad signed index extension %s", v.Type)
  5403  		}
  5404  	} else {
  5405  		switch 10*size + s.config.PtrSize {
  5406  		case 14:
  5407  			op = ssa.OpZeroExt8to32
  5408  		case 18:
  5409  			op = ssa.OpZeroExt8to64
  5410  		case 24:
  5411  			op = ssa.OpZeroExt16to32
  5412  		case 28:
  5413  			op = ssa.OpZeroExt16to64
  5414  		case 48:
  5415  			op = ssa.OpZeroExt32to64
  5416  		default:
  5417  			s.Fatalf("bad unsigned index extension %s", v.Type)
  5418  		}
  5419  	}
  5420  	return s.newValue1(op, types.Types[TINT], v)
  5421  }
  5422  
  5423  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  5424  // Called during ssaGenValue.
  5425  func CheckLoweredPhi(v *ssa.Value) {
  5426  	if v.Op != ssa.OpPhi {
  5427  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  5428  	}
  5429  	if v.Type.IsMemory() {
  5430  		return
  5431  	}
  5432  	f := v.Block.Func
  5433  	loc := f.RegAlloc[v.ID]
  5434  	for _, a := range v.Args {
  5435  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  5436  			v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func)
  5437  		}
  5438  	}
  5439  }
  5440  
  5441  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  5442  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  5443  // That register contains the closure pointer on closure entry.
  5444  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  5445  	entry := v.Block.Func.Entry
  5446  	if entry != v.Block || entry.Values[0] != v {
  5447  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  5448  	}
  5449  }
  5450  
  5451  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  5452  // where v should be spilled.
  5453  func AutoVar(v *ssa.Value) (*Node, int64) {
  5454  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  5455  	if v.Type.Size() > loc.Type.Size() {
  5456  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  5457  	}
  5458  	return loc.N.(*Node), loc.Off
  5459  }
  5460  
  5461  func AddrAuto(a *obj.Addr, v *ssa.Value) {
  5462  	n, off := AutoVar(v)
  5463  	a.Type = obj.TYPE_MEM
  5464  	a.Sym = n.Sym.Linksym()
  5465  	a.Reg = int16(thearch.REGSP)
  5466  	a.Offset = n.Xoffset + off
  5467  	if n.Class() == PPARAM || n.Class() == PPARAMOUT {
  5468  		a.Name = obj.NAME_PARAM
  5469  	} else {
  5470  		a.Name = obj.NAME_AUTO
  5471  	}
  5472  }
  5473  
  5474  func (s *SSAGenState) AddrScratch(a *obj.Addr) {
  5475  	if s.ScratchFpMem == nil {
  5476  		panic("no scratch memory available; forgot to declare usesScratch for Op?")
  5477  	}
  5478  	a.Type = obj.TYPE_MEM
  5479  	a.Name = obj.NAME_AUTO
  5480  	a.Sym = s.ScratchFpMem.Sym.Linksym()
  5481  	a.Reg = int16(thearch.REGSP)
  5482  	a.Offset = s.ScratchFpMem.Xoffset
  5483  }
  5484  
  5485  // Call returns a new CALL instruction for the SSA value v.
  5486  // It uses PrepareCall to prepare the call.
  5487  func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
  5488  	s.PrepareCall(v)
  5489  
  5490  	p := s.Prog(obj.ACALL)
  5491  	if sym, ok := v.Aux.(*obj.LSym); ok {
  5492  		p.To.Type = obj.TYPE_MEM
  5493  		p.To.Name = obj.NAME_EXTERN
  5494  		p.To.Sym = sym
  5495  	} else {
  5496  		// TODO(mdempsky): Can these differences be eliminated?
  5497  		switch thearch.LinkArch.Family {
  5498  		case sys.AMD64, sys.I386, sys.PPC64, sys.S390X, sys.Wasm:
  5499  			p.To.Type = obj.TYPE_REG
  5500  		case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
  5501  			p.To.Type = obj.TYPE_MEM
  5502  		default:
  5503  			Fatalf("unknown indirect call family")
  5504  		}
  5505  		p.To.Reg = v.Args[0].Reg()
  5506  	}
  5507  	return p
  5508  }
  5509  
  5510  // PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping.
  5511  // It must be called immediately before emitting the actual CALL instruction,
  5512  // since it emits PCDATA for the stack map at the call (calls are safe points).
  5513  func (s *SSAGenState) PrepareCall(v *ssa.Value) {
  5514  	idx := s.livenessMap.Get(v)
  5515  	if !idx.Valid() {
  5516  		// typedmemclr and typedmemmove are write barriers and
  5517  		// deeply non-preemptible. They are unsafe points and
  5518  		// hence should not have liveness maps.
  5519  		if sym, _ := v.Aux.(*obj.LSym); !(sym == typedmemclr || sym == typedmemmove) {
  5520  			Fatalf("missing stack map index for %v", v.LongString())
  5521  		}
  5522  	}
  5523  
  5524  	if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn {
  5525  		// Deferred calls will appear to be returning to
  5526  		// the CALL deferreturn(SB) that we are about to emit.
  5527  		// However, the stack trace code will show the line
  5528  		// of the instruction byte before the return PC.
  5529  		// To avoid that being an unrelated instruction,
  5530  		// insert an actual hardware NOP that will have the right line number.
  5531  		// This is different from obj.ANOP, which is a virtual no-op
  5532  		// that doesn't make it into the instruction stream.
  5533  		thearch.Ginsnop(s.pp)
  5534  	}
  5535  
  5536  	if sym, ok := v.Aux.(*obj.LSym); ok {
  5537  		// Record call graph information for nowritebarrierrec
  5538  		// analysis.
  5539  		if nowritebarrierrecCheck != nil {
  5540  			nowritebarrierrecCheck.recordCall(s.pp.curfn, sym, v.Pos)
  5541  		}
  5542  	}
  5543  
  5544  	if s.maxarg < v.AuxInt {
  5545  		s.maxarg = v.AuxInt
  5546  	}
  5547  }
  5548  
  5549  // fieldIdx finds the index of the field referred to by the ODOT node n.
  5550  func fieldIdx(n *Node) int {
  5551  	t := n.Left.Type
  5552  	f := n.Sym
  5553  	if !t.IsStruct() {
  5554  		panic("ODOT's LHS is not a struct")
  5555  	}
  5556  
  5557  	var i int
  5558  	for _, t1 := range t.Fields().Slice() {
  5559  		if t1.Sym != f {
  5560  			i++
  5561  			continue
  5562  		}
  5563  		if t1.Offset != n.Xoffset {
  5564  			panic("field offset doesn't match")
  5565  		}
  5566  		return i
  5567  	}
  5568  	panic(fmt.Sprintf("can't find field in expr %v\n", n))
  5569  
  5570  	// TODO: keep the result of this function somewhere in the ODOT Node
  5571  	// so we don't have to recompute it each time we need it.
  5572  }
  5573  
  5574  // ssafn holds frontend information about a function that the backend is processing.
  5575  // It also exports a bunch of compiler services for the ssa backend.
  5576  type ssafn struct {
  5577  	curfn        *Node
  5578  	strings      map[string]interface{} // map from constant string to data symbols
  5579  	scratchFpMem *Node                  // temp for floating point register / memory moves on some architectures
  5580  	stksize      int64                  // stack size for current frame
  5581  	stkptrsize   int64                  // prefix of stack containing pointers
  5582  	log          bool                   // print ssa debug to the stdout
  5583  }
  5584  
  5585  // StringData returns a symbol (a *types.Sym wrapped in an interface) which
  5586  // is the data component of a global string constant containing s.
  5587  func (e *ssafn) StringData(s string) interface{} {
  5588  	if aux, ok := e.strings[s]; ok {
  5589  		return aux
  5590  	}
  5591  	if e.strings == nil {
  5592  		e.strings = make(map[string]interface{})
  5593  	}
  5594  	data := stringsym(e.curfn.Pos, s)
  5595  	e.strings[s] = data
  5596  	return data
  5597  }
  5598  
  5599  func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode {
  5600  	n := tempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list
  5601  	return n
  5602  }
  5603  
  5604  func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5605  	n := name.N.(*Node)
  5606  	ptrType := types.NewPtr(types.Types[TUINT8])
  5607  	lenType := types.Types[TINT]
  5608  	if n.Class() == PAUTO && !n.Addrtaken() {
  5609  		// Split this string up into two separate variables.
  5610  		p := e.splitSlot(&name, ".ptr", 0, ptrType)
  5611  		l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
  5612  		return p, l
  5613  	}
  5614  	// Return the two parts of the larger variable.
  5615  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  5616  }
  5617  
  5618  func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5619  	n := name.N.(*Node)
  5620  	u := types.Types[TUINTPTR]
  5621  	t := types.NewPtr(types.Types[TUINT8])
  5622  	if n.Class() == PAUTO && !n.Addrtaken() {
  5623  		// Split this interface up into two separate variables.
  5624  		f := ".itab"
  5625  		if n.Type.IsEmptyInterface() {
  5626  			f = ".type"
  5627  		}
  5628  		c := e.splitSlot(&name, f, 0, u) // see comment in plive.go:onebitwalktype1.
  5629  		d := e.splitSlot(&name, ".data", u.Size(), t)
  5630  		return c, d
  5631  	}
  5632  	// Return the two parts of the larger variable.
  5633  	return ssa.LocalSlot{N: n, Type: u, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  5634  }
  5635  
  5636  func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  5637  	n := name.N.(*Node)
  5638  	ptrType := types.NewPtr(name.Type.Elem())
  5639  	lenType := types.Types[TINT]
  5640  	if n.Class() == PAUTO && !n.Addrtaken() {
  5641  		// Split this slice up into three separate variables.
  5642  		p := e.splitSlot(&name, ".ptr", 0, ptrType)
  5643  		l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
  5644  		c := e.splitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType)
  5645  		return p, l, c
  5646  	}
  5647  	// Return the three parts of the larger variable.
  5648  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  5649  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  5650  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  5651  }
  5652  
  5653  func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5654  	n := name.N.(*Node)
  5655  	s := name.Type.Size() / 2
  5656  	var t *types.Type
  5657  	if s == 8 {
  5658  		t = types.Types[TFLOAT64]
  5659  	} else {
  5660  		t = types.Types[TFLOAT32]
  5661  	}
  5662  	if n.Class() == PAUTO && !n.Addrtaken() {
  5663  		// Split this complex up into two separate variables.
  5664  		r := e.splitSlot(&name, ".real", 0, t)
  5665  		i := e.splitSlot(&name, ".imag", t.Size(), t)
  5666  		return r, i
  5667  	}
  5668  	// Return the two parts of the larger variable.
  5669  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  5670  }
  5671  
  5672  func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5673  	n := name.N.(*Node)
  5674  	var t *types.Type
  5675  	if name.Type.IsSigned() {
  5676  		t = types.Types[TINT32]
  5677  	} else {
  5678  		t = types.Types[TUINT32]
  5679  	}
  5680  	if n.Class() == PAUTO && !n.Addrtaken() {
  5681  		// Split this int64 up into two separate variables.
  5682  		if thearch.LinkArch.ByteOrder == binary.BigEndian {
  5683  			return e.splitSlot(&name, ".hi", 0, t), e.splitSlot(&name, ".lo", t.Size(), types.Types[TUINT32])
  5684  		}
  5685  		return e.splitSlot(&name, ".hi", t.Size(), t), e.splitSlot(&name, ".lo", 0, types.Types[TUINT32])
  5686  	}
  5687  	// Return the two parts of the larger variable.
  5688  	if thearch.LinkArch.ByteOrder == binary.BigEndian {
  5689  		return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4}
  5690  	}
  5691  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off}
  5692  }
  5693  
  5694  func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  5695  	n := name.N.(*Node)
  5696  	st := name.Type
  5697  	ft := st.FieldType(i)
  5698  	var offset int64
  5699  	for f := 0; f < i; f++ {
  5700  		offset += st.FieldType(f).Size()
  5701  	}
  5702  	if n.Class() == PAUTO && !n.Addrtaken() {
  5703  		// Note: the _ field may appear several times.  But
  5704  		// have no fear, identically-named but distinct Autos are
  5705  		// ok, albeit maybe confusing for a debugger.
  5706  		return e.splitSlot(&name, "."+st.FieldName(i), offset, ft)
  5707  	}
  5708  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  5709  }
  5710  
  5711  func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
  5712  	n := name.N.(*Node)
  5713  	at := name.Type
  5714  	if at.NumElem() != 1 {
  5715  		Fatalf("bad array size")
  5716  	}
  5717  	et := at.Elem()
  5718  	if n.Class() == PAUTO && !n.Addrtaken() {
  5719  		return e.splitSlot(&name, "[0]", 0, et)
  5720  	}
  5721  	return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
  5722  }
  5723  
  5724  func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym {
  5725  	return itabsym(it, offset)
  5726  }
  5727  
  5728  // splitSlot returns a slot representing the data of parent starting at offset.
  5729  func (e *ssafn) splitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot {
  5730  	s := &types.Sym{Name: parent.N.(*Node).Sym.Name + suffix, Pkg: localpkg}
  5731  
  5732  	n := &Node{
  5733  		Name: new(Name),
  5734  		Op:   ONAME,
  5735  		Pos:  parent.N.(*Node).Pos,
  5736  	}
  5737  	n.Orig = n
  5738  
  5739  	s.Def = asTypesNode(n)
  5740  	asNode(s.Def).Name.SetUsed(true)
  5741  	n.Sym = s
  5742  	n.Type = t
  5743  	n.SetClass(PAUTO)
  5744  	n.SetAddable(true)
  5745  	n.Esc = EscNever
  5746  	n.Name.Curfn = e.curfn
  5747  	e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n)
  5748  	dowidth(t)
  5749  	return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset}
  5750  }
  5751  
  5752  func (e *ssafn) CanSSA(t *types.Type) bool {
  5753  	return canSSAType(t)
  5754  }
  5755  
  5756  func (e *ssafn) Line(pos src.XPos) string {
  5757  	return linestr(pos)
  5758  }
  5759  
  5760  // Log logs a message from the compiler.
  5761  func (e *ssafn) Logf(msg string, args ...interface{}) {
  5762  	if e.log {
  5763  		fmt.Printf(msg, args...)
  5764  	}
  5765  }
  5766  
  5767  func (e *ssafn) Log() bool {
  5768  	return e.log
  5769  }
  5770  
  5771  // Fatal reports a compiler error and exits.
  5772  func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) {
  5773  	lineno = pos
  5774  	nargs := append([]interface{}{e.curfn.funcname()}, args...)
  5775  	Fatalf("'%s': "+msg, nargs...)
  5776  }
  5777  
  5778  // Warnl reports a "warning", which is usually flag-triggered
  5779  // logging output for the benefit of tests.
  5780  func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
  5781  	Warnl(pos, fmt_, args...)
  5782  }
  5783  
  5784  func (e *ssafn) Debug_checknil() bool {
  5785  	return Debug_checknil != 0
  5786  }
  5787  
  5788  func (e *ssafn) UseWriteBarrier() bool {
  5789  	return use_writebarrier
  5790  }
  5791  
  5792  func (e *ssafn) Syslook(name string) *obj.LSym {
  5793  	switch name {
  5794  	case "goschedguarded":
  5795  		return goschedguarded
  5796  	case "writeBarrier":
  5797  		return writeBarrier
  5798  	case "gcWriteBarrier":
  5799  		return gcWriteBarrier
  5800  	case "typedmemmove":
  5801  		return typedmemmove
  5802  	case "typedmemclr":
  5803  		return typedmemclr
  5804  	}
  5805  	Fatalf("unknown Syslook func %v", name)
  5806  	return nil
  5807  }
  5808  
  5809  func (e *ssafn) SetWBPos(pos src.XPos) {
  5810  	e.curfn.Func.setWBPos(pos)
  5811  }
  5812  
  5813  func (n *Node) Typ() *types.Type {
  5814  	return n.Type
  5815  }
  5816  func (n *Node) StorageClass() ssa.StorageClass {
  5817  	switch n.Class() {
  5818  	case PPARAM:
  5819  		return ssa.ClassParam
  5820  	case PPARAMOUT:
  5821  		return ssa.ClassParamOut
  5822  	case PAUTO:
  5823  		return ssa.ClassAuto
  5824  	default:
  5825  		Fatalf("untranslatable storage class for %v: %s", n, n.Class())
  5826  		return 0
  5827  	}
  5828  }