github.com/hikaru7719/go@v0.0.0-20181025140707-c8b2ac68906a/src/cmd/compile/internal/gc/syntax.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // “Abstract” syntax representation.
     6  
     7  package gc
     8  
     9  import (
    10  	"cmd/compile/internal/ssa"
    11  	"cmd/compile/internal/syntax"
    12  	"cmd/compile/internal/types"
    13  	"cmd/internal/obj"
    14  	"cmd/internal/src"
    15  )
    16  
    17  // A Node is a single node in the syntax tree.
    18  // Actually the syntax tree is a syntax DAG, because there is only one
    19  // node with Op=ONAME for a given instance of a variable x.
    20  // The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
    21  type Node struct {
    22  	// Tree structure.
    23  	// Generic recursive walks should follow these fields.
    24  	Left  *Node
    25  	Right *Node
    26  	Ninit Nodes
    27  	Nbody Nodes
    28  	List  Nodes
    29  	Rlist Nodes
    30  
    31  	// most nodes
    32  	Type *types.Type
    33  	Orig *Node // original form, for printing, and tracking copies of ONAMEs
    34  
    35  	// func
    36  	Func *Func
    37  
    38  	// ONAME, OTYPE, OPACK, OLABEL, some OLITERAL
    39  	Name *Name
    40  
    41  	Sym *types.Sym  // various
    42  	E   interface{} // Opt or Val, see methods below
    43  
    44  	// Various. Usually an offset into a struct. For example:
    45  	// - ONAME nodes that refer to local variables use it to identify their stack frame position.
    46  	// - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address.
    47  	// - OSTRUCTKEY uses it to store the named field's offset.
    48  	// - Named OLITERALs use it to store their ambient iota value.
    49  	// Possibly still more uses. If you find any, document them.
    50  	Xoffset int64
    51  
    52  	Pos src.XPos
    53  
    54  	flags bitset32
    55  
    56  	Esc uint16 // EscXXX
    57  
    58  	Op  Op
    59  	aux uint8
    60  }
    61  
    62  func (n *Node) ResetAux() {
    63  	n.aux = 0
    64  }
    65  
    66  func (n *Node) SubOp() Op {
    67  	switch n.Op {
    68  	case OASOP, ONAME:
    69  	default:
    70  		Fatalf("unexpected op: %v", n.Op)
    71  	}
    72  	return Op(n.aux)
    73  }
    74  
    75  func (n *Node) SetSubOp(op Op) {
    76  	switch n.Op {
    77  	case OASOP, ONAME:
    78  	default:
    79  		Fatalf("unexpected op: %v", n.Op)
    80  	}
    81  	n.aux = uint8(op)
    82  }
    83  
    84  func (n *Node) IndexMapLValue() bool {
    85  	if n.Op != OINDEXMAP {
    86  		Fatalf("unexpected op: %v", n.Op)
    87  	}
    88  	return n.aux != 0
    89  }
    90  
    91  func (n *Node) SetIndexMapLValue(b bool) {
    92  	if n.Op != OINDEXMAP {
    93  		Fatalf("unexpected op: %v", n.Op)
    94  	}
    95  	if b {
    96  		n.aux = 1
    97  	} else {
    98  		n.aux = 0
    99  	}
   100  }
   101  
   102  func (n *Node) TChanDir() types.ChanDir {
   103  	if n.Op != OTCHAN {
   104  		Fatalf("unexpected op: %v", n.Op)
   105  	}
   106  	return types.ChanDir(n.aux)
   107  }
   108  
   109  func (n *Node) SetTChanDir(dir types.ChanDir) {
   110  	if n.Op != OTCHAN {
   111  		Fatalf("unexpected op: %v", n.Op)
   112  	}
   113  	n.aux = uint8(dir)
   114  }
   115  
   116  func (n *Node) IsSynthetic() bool {
   117  	name := n.Sym.Name
   118  	return name[0] == '.' || name[0] == '~'
   119  }
   120  
   121  // IsAutoTmp indicates if n was created by the compiler as a temporary,
   122  // based on the setting of the .AutoTemp flag in n's Name.
   123  func (n *Node) IsAutoTmp() bool {
   124  	if n == nil || n.Op != ONAME {
   125  		return false
   126  	}
   127  	return n.Name.AutoTemp()
   128  }
   129  
   130  const (
   131  	nodeClass, _     = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed
   132  	_, _                               // second nodeClass bit
   133  	_, _                               // third nodeClass bit
   134  	nodeWalkdef, _                     // tracks state during typecheckdef; 2 == loop detected; two bits
   135  	_, _                               // second nodeWalkdef bit
   136  	nodeTypecheck, _                   // tracks state during typechecking; 2 == loop detected; two bits
   137  	_, _                               // second nodeTypecheck bit
   138  	nodeInitorder, _                   // tracks state during init1; two bits
   139  	_, _                               // second nodeInitorder bit
   140  	_, nodeHasBreak
   141  	_, nodeIsClosureVar
   142  	_, nodeIsOutputParamHeapAddr
   143  	_, nodeNoInline  // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
   144  	_, nodeAssigned  // is the variable ever assigned to
   145  	_, nodeAddrtaken // address taken, even if not moved to heap
   146  	_, nodeImplicit
   147  	_, nodeIsddd     // is the argument variadic
   148  	_, nodeDiag      // already printed error about this
   149  	_, nodeColas     // OAS resulting from :=
   150  	_, nodeNonNil    // guaranteed to be non-nil
   151  	_, nodeNoescape  // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
   152  	_, nodeBounded   // bounds check unnecessary
   153  	_, nodeAddable   // addressable
   154  	_, nodeHasCall   // expression contains a function call
   155  	_, nodeLikely    // if statement condition likely
   156  	_, nodeHasVal    // node.E contains a Val
   157  	_, nodeHasOpt    // node.E contains an Opt
   158  	_, nodeEmbedded  // ODCLFIELD embedded type
   159  	_, nodeInlFormal // OPAUTO created by inliner, derived from callee formal
   160  	_, nodeInlLocal  // OPAUTO created by inliner, derived from callee local
   161  )
   162  
   163  func (n *Node) Class() Class     { return Class(n.flags.get3(nodeClass)) }
   164  func (n *Node) Walkdef() uint8   { return n.flags.get2(nodeWalkdef) }
   165  func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) }
   166  func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) }
   167  
   168  func (n *Node) HasBreak() bool              { return n.flags&nodeHasBreak != 0 }
   169  func (n *Node) IsClosureVar() bool          { return n.flags&nodeIsClosureVar != 0 }
   170  func (n *Node) NoInline() bool              { return n.flags&nodeNoInline != 0 }
   171  func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 }
   172  func (n *Node) Assigned() bool              { return n.flags&nodeAssigned != 0 }
   173  func (n *Node) Addrtaken() bool             { return n.flags&nodeAddrtaken != 0 }
   174  func (n *Node) Implicit() bool              { return n.flags&nodeImplicit != 0 }
   175  func (n *Node) Isddd() bool                 { return n.flags&nodeIsddd != 0 }
   176  func (n *Node) Diag() bool                  { return n.flags&nodeDiag != 0 }
   177  func (n *Node) Colas() bool                 { return n.flags&nodeColas != 0 }
   178  func (n *Node) NonNil() bool                { return n.flags&nodeNonNil != 0 }
   179  func (n *Node) Noescape() bool              { return n.flags&nodeNoescape != 0 }
   180  func (n *Node) Bounded() bool               { return n.flags&nodeBounded != 0 }
   181  func (n *Node) Addable() bool               { return n.flags&nodeAddable != 0 }
   182  func (n *Node) HasCall() bool               { return n.flags&nodeHasCall != 0 }
   183  func (n *Node) Likely() bool                { return n.flags&nodeLikely != 0 }
   184  func (n *Node) HasVal() bool                { return n.flags&nodeHasVal != 0 }
   185  func (n *Node) HasOpt() bool                { return n.flags&nodeHasOpt != 0 }
   186  func (n *Node) Embedded() bool              { return n.flags&nodeEmbedded != 0 }
   187  func (n *Node) InlFormal() bool             { return n.flags&nodeInlFormal != 0 }
   188  func (n *Node) InlLocal() bool              { return n.flags&nodeInlLocal != 0 }
   189  
   190  func (n *Node) SetClass(b Class)     { n.flags.set3(nodeClass, uint8(b)) }
   191  func (n *Node) SetWalkdef(b uint8)   { n.flags.set2(nodeWalkdef, b) }
   192  func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) }
   193  func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) }
   194  
   195  func (n *Node) SetHasBreak(b bool)              { n.flags.set(nodeHasBreak, b) }
   196  func (n *Node) SetIsClosureVar(b bool)          { n.flags.set(nodeIsClosureVar, b) }
   197  func (n *Node) SetNoInline(b bool)              { n.flags.set(nodeNoInline, b) }
   198  func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) }
   199  func (n *Node) SetAssigned(b bool)              { n.flags.set(nodeAssigned, b) }
   200  func (n *Node) SetAddrtaken(b bool)             { n.flags.set(nodeAddrtaken, b) }
   201  func (n *Node) SetImplicit(b bool)              { n.flags.set(nodeImplicit, b) }
   202  func (n *Node) SetIsddd(b bool)                 { n.flags.set(nodeIsddd, b) }
   203  func (n *Node) SetDiag(b bool)                  { n.flags.set(nodeDiag, b) }
   204  func (n *Node) SetColas(b bool)                 { n.flags.set(nodeColas, b) }
   205  func (n *Node) SetNonNil(b bool)                { n.flags.set(nodeNonNil, b) }
   206  func (n *Node) SetNoescape(b bool)              { n.flags.set(nodeNoescape, b) }
   207  func (n *Node) SetBounded(b bool)               { n.flags.set(nodeBounded, b) }
   208  func (n *Node) SetAddable(b bool)               { n.flags.set(nodeAddable, b) }
   209  func (n *Node) SetHasCall(b bool)               { n.flags.set(nodeHasCall, b) }
   210  func (n *Node) SetLikely(b bool)                { n.flags.set(nodeLikely, b) }
   211  func (n *Node) SetHasVal(b bool)                { n.flags.set(nodeHasVal, b) }
   212  func (n *Node) SetHasOpt(b bool)                { n.flags.set(nodeHasOpt, b) }
   213  func (n *Node) SetEmbedded(b bool)              { n.flags.set(nodeEmbedded, b) }
   214  func (n *Node) SetInlFormal(b bool)             { n.flags.set(nodeInlFormal, b) }
   215  func (n *Node) SetInlLocal(b bool)              { n.flags.set(nodeInlLocal, b) }
   216  
   217  // Val returns the Val for the node.
   218  func (n *Node) Val() Val {
   219  	if !n.HasVal() {
   220  		return Val{}
   221  	}
   222  	return Val{n.E}
   223  }
   224  
   225  // SetVal sets the Val for the node, which must not have been used with SetOpt.
   226  func (n *Node) SetVal(v Val) {
   227  	if n.HasOpt() {
   228  		Debug['h'] = 1
   229  		Dump("have Opt", n)
   230  		Fatalf("have Opt")
   231  	}
   232  	n.SetHasVal(true)
   233  	n.E = v.U
   234  }
   235  
   236  // Opt returns the optimizer data for the node.
   237  func (n *Node) Opt() interface{} {
   238  	if !n.HasOpt() {
   239  		return nil
   240  	}
   241  	return n.E
   242  }
   243  
   244  // SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
   245  // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
   246  func (n *Node) SetOpt(x interface{}) {
   247  	if x == nil && n.HasVal() {
   248  		return
   249  	}
   250  	if n.HasVal() {
   251  		Debug['h'] = 1
   252  		Dump("have Val", n)
   253  		Fatalf("have Val")
   254  	}
   255  	n.SetHasOpt(true)
   256  	n.E = x
   257  }
   258  
   259  func (n *Node) Iota() int64 {
   260  	return n.Xoffset
   261  }
   262  
   263  func (n *Node) SetIota(x int64) {
   264  	n.Xoffset = x
   265  }
   266  
   267  // mayBeShared reports whether n may occur in multiple places in the AST.
   268  // Extra care must be taken when mutating such a node.
   269  func (n *Node) mayBeShared() bool {
   270  	switch n.Op {
   271  	case ONAME, OLITERAL, OTYPE:
   272  		return true
   273  	}
   274  	return false
   275  }
   276  
   277  // isMethodExpression reports whether n represents a method expression T.M.
   278  func (n *Node) isMethodExpression() bool {
   279  	return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME
   280  }
   281  
   282  // funcname returns the name of the function n.
   283  func (n *Node) funcname() string {
   284  	if n == nil || n.Func == nil || n.Func.Nname == nil {
   285  		return "<nil>"
   286  	}
   287  	return n.Func.Nname.Sym.Name
   288  }
   289  
   290  // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).
   291  type Name struct {
   292  	Pack      *Node      // real package for import . names
   293  	Pkg       *types.Pkg // pkg for OPACK nodes
   294  	Defn      *Node      // initializing assignment
   295  	Curfn     *Node      // function for local variables
   296  	Param     *Param     // additional fields for ONAME, OTYPE
   297  	Decldepth int32      // declaration loop depth, increased for every loop or label
   298  	Vargen    int32      // unique name for ONAME within a function.  Function outputs are numbered starting at one.
   299  	flags     bitset8
   300  }
   301  
   302  const (
   303  	nameCaptured = 1 << iota // is the variable captured by a closure
   304  	nameReadonly
   305  	nameByval     // is the variable captured by value or by reference
   306  	nameNeedzero  // if it contains pointers, needs to be zeroed on function entry
   307  	nameKeepalive // mark value live across unknown assembly call
   308  	nameAutoTemp  // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
   309  	nameUsed      // for variable declared and not used error
   310  )
   311  
   312  func (n *Name) Captured() bool  { return n.flags&nameCaptured != 0 }
   313  func (n *Name) Readonly() bool  { return n.flags&nameReadonly != 0 }
   314  func (n *Name) Byval() bool     { return n.flags&nameByval != 0 }
   315  func (n *Name) Needzero() bool  { return n.flags&nameNeedzero != 0 }
   316  func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 }
   317  func (n *Name) AutoTemp() bool  { return n.flags&nameAutoTemp != 0 }
   318  func (n *Name) Used() bool      { return n.flags&nameUsed != 0 }
   319  
   320  func (n *Name) SetCaptured(b bool)  { n.flags.set(nameCaptured, b) }
   321  func (n *Name) SetReadonly(b bool)  { n.flags.set(nameReadonly, b) }
   322  func (n *Name) SetByval(b bool)     { n.flags.set(nameByval, b) }
   323  func (n *Name) SetNeedzero(b bool)  { n.flags.set(nameNeedzero, b) }
   324  func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) }
   325  func (n *Name) SetAutoTemp(b bool)  { n.flags.set(nameAutoTemp, b) }
   326  func (n *Name) SetUsed(b bool)      { n.flags.set(nameUsed, b) }
   327  
   328  type Param struct {
   329  	Ntype    *Node
   330  	Heapaddr *Node // temp holding heap address of param
   331  
   332  	// ONAME PAUTOHEAP
   333  	Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
   334  
   335  	// ONAME closure linkage
   336  	// Consider:
   337  	//
   338  	//	func f() {
   339  	//		x := 1 // x1
   340  	//		func() {
   341  	//			use(x) // x2
   342  	//			func() {
   343  	//				use(x) // x3
   344  	//				--- parser is here ---
   345  	//			}()
   346  	//		}()
   347  	//	}
   348  	//
   349  	// There is an original declaration of x and then a chain of mentions of x
   350  	// leading into the current function. Each time x is mentioned in a new closure,
   351  	// we create a variable representing x for use in that specific closure,
   352  	// since the way you get to x is different in each closure.
   353  	//
   354  	// Let's number the specific variables as shown in the code:
   355  	// x1 is the original x, x2 is when mentioned in the closure,
   356  	// and x3 is when mentioned in the closure in the closure.
   357  	//
   358  	// We keep these linked (assume N > 1):
   359  	//
   360  	//   - x1.Defn = original declaration statement for x (like most variables)
   361  	//   - x1.Innermost = current innermost closure x (in this case x3), or nil for none
   362  	//   - x1.IsClosureVar() = false
   363  	//
   364  	//   - xN.Defn = x1, N > 1
   365  	//   - xN.IsClosureVar() = true, N > 1
   366  	//   - x2.Outer = nil
   367  	//   - xN.Outer = x(N-1), N > 2
   368  	//
   369  	//
   370  	// When we look up x in the symbol table, we always get x1.
   371  	// Then we can use x1.Innermost (if not nil) to get the x
   372  	// for the innermost known closure function,
   373  	// but the first reference in a closure will find either no x1.Innermost
   374  	// or an x1.Innermost with .Funcdepth < Funcdepth.
   375  	// In that case, a new xN must be created, linked in with:
   376  	//
   377  	//     xN.Defn = x1
   378  	//     xN.Outer = x1.Innermost
   379  	//     x1.Innermost = xN
   380  	//
   381  	// When we finish the function, we'll process its closure variables
   382  	// and find xN and pop it off the list using:
   383  	//
   384  	//     x1 := xN.Defn
   385  	//     x1.Innermost = xN.Outer
   386  	//
   387  	// We leave xN.Innermost set so that we can still get to the original
   388  	// variable quickly. Not shown here, but once we're
   389  	// done parsing a function and no longer need xN.Outer for the
   390  	// lexical x reference links as described above, closurebody
   391  	// recomputes xN.Outer as the semantic x reference link tree,
   392  	// even filling in x in intermediate closures that might not
   393  	// have mentioned it along the way to inner closures that did.
   394  	// See closurebody for details.
   395  	//
   396  	// During the eventual compilation, then, for closure variables we have:
   397  	//
   398  	//     xN.Defn = original variable
   399  	//     xN.Outer = variable captured in next outward scope
   400  	//                to make closure where xN appears
   401  	//
   402  	// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
   403  	// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
   404  	Innermost *Node
   405  	Outer     *Node
   406  
   407  	// OTYPE
   408  	//
   409  	// TODO: Should Func pragmas also be stored on the Name?
   410  	Pragma syntax.Pragma
   411  	Alias  bool // node is alias for Ntype (only used when type-checking ODCLTYPE)
   412  }
   413  
   414  // Functions
   415  //
   416  // A simple function declaration is represented as an ODCLFUNC node f
   417  // and an ONAME node n. They're linked to one another through
   418  // f.Func.Nname == n and n.Name.Defn == f. When functions are
   419  // referenced by name in an expression, the function's ONAME node is
   420  // used directly.
   421  //
   422  // Function names have n.Class() == PFUNC. This distinguishes them
   423  // from variables of function type.
   424  //
   425  // Confusingly, n.Func and f.Func both exist, but commonly point to
   426  // different Funcs. (Exception: an OCALLPART's Func does point to its
   427  // ODCLFUNC's Func.)
   428  //
   429  // A method declaration is represented like functions, except n.Sym
   430  // will be the qualified method name (e.g., "T.m") and
   431  // f.Func.Shortname is the bare method name (e.g., "m").
   432  //
   433  // Method expressions are represented as ONAME/PFUNC nodes like
   434  // function names, but their Left and Right fields still point to the
   435  // type and method, respectively. They can be distinguished from
   436  // normal functions with isMethodExpression. Also, unlike function
   437  // name nodes, method expression nodes exist for each method
   438  // expression. The declaration ONAME can be accessed with
   439  // x.Type.Nname(), where x is the method expression ONAME node.
   440  //
   441  // Method values are represented by ODOTMETH/ODOTINTER when called
   442  // immediately, and OCALLPART otherwise. They are like method
   443  // expressions, except that for ODOTMETH/ODOTINTER the method name is
   444  // stored in Sym instead of Right.
   445  //
   446  // Closures are represented by OCLOSURE node c. They link back and
   447  // forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure
   448  // == f and f.Func.Closure == c.
   449  //
   450  // Function bodies are stored in f.Nbody, and inline function bodies
   451  // are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma.
   452  //
   453  // Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They
   454  // also use Dcl instead of Inldcl.
   455  
   456  // Func holds Node fields used only with function-like nodes.
   457  type Func struct {
   458  	Shortname *types.Sym
   459  	Enter     Nodes // for example, allocate and initialize memory for escaping parameters
   460  	Exit      Nodes
   461  	Cvars     Nodes   // closure params
   462  	Dcl       []*Node // autodcl for this func/closure
   463  
   464  	// Parents records the parent scope of each scope within a
   465  	// function. The root scope (0) has no parent, so the i'th
   466  	// scope's parent is stored at Parents[i-1].
   467  	Parents []ScopeID
   468  
   469  	// Marks records scope boundary changes.
   470  	Marks []Mark
   471  
   472  	// Closgen tracks how many closures have been generated within
   473  	// this function. Used by closurename for creating unique
   474  	// function names.
   475  	Closgen int
   476  
   477  	FieldTrack map[*types.Sym]struct{}
   478  	DebugInfo  *ssa.FuncDebug
   479  	Ntype      *Node // signature
   480  	Top        int   // top context (Ecall, Eproc, etc)
   481  	Closure    *Node // OCLOSURE <-> ODCLFUNC
   482  	Nname      *Node
   483  	lsym       *obj.LSym
   484  
   485  	Inl *Inline
   486  
   487  	Label int32 // largest auto-generated label in this function
   488  
   489  	Endlineno src.XPos
   490  	WBPos     src.XPos // position of first write barrier; see SetWBPos
   491  
   492  	Pragma syntax.Pragma // go:xxx function annotations
   493  
   494  	flags bitset16
   495  
   496  	// nwbrCalls records the LSyms of functions called by this
   497  	// function for go:nowritebarrierrec analysis. Only filled in
   498  	// if nowritebarrierrecCheck != nil.
   499  	nwbrCalls *[]nowritebarrierrecCallSym
   500  }
   501  
   502  // An Inline holds fields used for function bodies that can be inlined.
   503  type Inline struct {
   504  	Cost int32 // heuristic cost of inlining this function
   505  
   506  	// Copies of Func.Dcl and Nbody for use during inlining.
   507  	Dcl  []*Node
   508  	Body []*Node
   509  }
   510  
   511  // A Mark represents a scope boundary.
   512  type Mark struct {
   513  	// Pos is the position of the token that marks the scope
   514  	// change.
   515  	Pos src.XPos
   516  
   517  	// Scope identifies the innermost scope to the right of Pos.
   518  	Scope ScopeID
   519  }
   520  
   521  // A ScopeID represents a lexical scope within a function.
   522  type ScopeID int32
   523  
   524  const (
   525  	funcDupok         = 1 << iota // duplicate definitions ok
   526  	funcWrapper                   // is method wrapper
   527  	funcNeedctxt                  // function uses context register (has closure variables)
   528  	funcReflectMethod             // function calls reflect.Type.Method or MethodByName
   529  	funcIsHiddenClosure
   530  	funcHasDefer            // contains a defer statement
   531  	funcNilCheckDisabled    // disable nil checks when compiling this function
   532  	funcInlinabilityChecked // inliner has already determined whether the function is inlinable
   533  	funcExportInline        // include inline body in export data
   534  	funcInstrumentBody      // add race/msan instrumentation during SSA construction
   535  )
   536  
   537  func (f *Func) Dupok() bool               { return f.flags&funcDupok != 0 }
   538  func (f *Func) Wrapper() bool             { return f.flags&funcWrapper != 0 }
   539  func (f *Func) Needctxt() bool            { return f.flags&funcNeedctxt != 0 }
   540  func (f *Func) ReflectMethod() bool       { return f.flags&funcReflectMethod != 0 }
   541  func (f *Func) IsHiddenClosure() bool     { return f.flags&funcIsHiddenClosure != 0 }
   542  func (f *Func) HasDefer() bool            { return f.flags&funcHasDefer != 0 }
   543  func (f *Func) NilCheckDisabled() bool    { return f.flags&funcNilCheckDisabled != 0 }
   544  func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 }
   545  func (f *Func) ExportInline() bool        { return f.flags&funcExportInline != 0 }
   546  func (f *Func) InstrumentBody() bool      { return f.flags&funcInstrumentBody != 0 }
   547  
   548  func (f *Func) SetDupok(b bool)               { f.flags.set(funcDupok, b) }
   549  func (f *Func) SetWrapper(b bool)             { f.flags.set(funcWrapper, b) }
   550  func (f *Func) SetNeedctxt(b bool)            { f.flags.set(funcNeedctxt, b) }
   551  func (f *Func) SetReflectMethod(b bool)       { f.flags.set(funcReflectMethod, b) }
   552  func (f *Func) SetIsHiddenClosure(b bool)     { f.flags.set(funcIsHiddenClosure, b) }
   553  func (f *Func) SetHasDefer(b bool)            { f.flags.set(funcHasDefer, b) }
   554  func (f *Func) SetNilCheckDisabled(b bool)    { f.flags.set(funcNilCheckDisabled, b) }
   555  func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) }
   556  func (f *Func) SetExportInline(b bool)        { f.flags.set(funcExportInline, b) }
   557  func (f *Func) SetInstrumentBody(b bool)      { f.flags.set(funcInstrumentBody, b) }
   558  
   559  func (f *Func) setWBPos(pos src.XPos) {
   560  	if Debug_wb != 0 {
   561  		Warnl(pos, "write barrier")
   562  	}
   563  	if !f.WBPos.IsKnown() {
   564  		f.WBPos = pos
   565  	}
   566  }
   567  
   568  //go:generate stringer -type=Op -trimprefix=O
   569  
   570  type Op uint8
   571  
   572  // Node ops.
   573  const (
   574  	OXXX Op = iota
   575  
   576  	// names
   577  	ONAME    // var, const or func name
   578  	ONONAME  // unnamed arg or return value: f(int, string) (int, error) { etc }
   579  	OTYPE    // type name
   580  	OPACK    // import
   581  	OLITERAL // literal
   582  
   583  	// expressions
   584  	OADD             // Left + Right
   585  	OSUB             // Left - Right
   586  	OOR              // Left | Right
   587  	OXOR             // Left ^ Right
   588  	OADDSTR          // +{List} (string addition, list elements are strings)
   589  	OADDR            // &Left
   590  	OANDAND          // Left && Right
   591  	OAPPEND          // append(List); after walk, Left may contain elem type descriptor
   592  	OARRAYBYTESTR    // Type(Left) (Type is string, Left is a []byte)
   593  	OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
   594  	OARRAYRUNESTR    // Type(Left) (Type is string, Left is a []rune)
   595  	OSTRARRAYBYTE    // Type(Left) (Type is []byte, Left is a string)
   596  	OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
   597  	OSTRARRAYRUNE    // Type(Left) (Type is []rune, Left is a string)
   598  	OAS              // Left = Right or (if Colas=true) Left := Right
   599  	OAS2             // List = Rlist (x, y, z = a, b, c)
   600  	OAS2FUNC         // List = Rlist (x, y = f())
   601  	OAS2RECV         // List = Rlist (x, ok = <-c)
   602  	OAS2MAPR         // List = Rlist (x, ok = m["foo"])
   603  	OAS2DOTTYPE      // List = Rlist (x, ok = I.(int))
   604  	OASOP            // Left Etype= Right (x += y)
   605  	OCALL            // Left(List) (function call, method call or type conversion)
   606  
   607  	// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
   608  	// Prior to walk, they are: Left(List), where List is all regular arguments.
   609  	// If present, Right is an ODDDARG that holds the
   610  	// generated slice used in a call to a variadic function.
   611  	// After walk, List is a series of assignments to temporaries,
   612  	// and Rlist is an updated set of arguments, including any ODDDARG slice.
   613  	// TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
   614  	OCALLFUNC  // Left(List/Rlist) (function call f(args))
   615  	OCALLMETH  // Left(List/Rlist) (direct method call x.Method(args))
   616  	OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
   617  	OCALLPART  // Left.Right (method expression x.Method, not called)
   618  	OCAP       // cap(Left)
   619  	OCLOSE     // close(Left)
   620  	OCLOSURE   // func Type { Body } (func literal)
   621  	OCOMPLIT   // Right{List} (composite literal, not yet lowered to specific form)
   622  	OMAPLIT    // Type{List} (composite literal, Type is map)
   623  	OSTRUCTLIT // Type{List} (composite literal, Type is struct)
   624  	OARRAYLIT  // Type{List} (composite literal, Type is array)
   625  	OSLICELIT  // Type{List} (composite literal, Type is slice)
   626  	OPTRLIT    // &Left (left is composite literal)
   627  	OCONV      // Type(Left) (type conversion)
   628  	OCONVIFACE // Type(Left) (type conversion, to interface)
   629  	OCONVNOP   // Type(Left) (type conversion, no effect)
   630  	OCOPY      // copy(Left, Right)
   631  	ODCL       // var Left (declares Left of type Left.Type)
   632  
   633  	// Used during parsing but don't last.
   634  	ODCLFUNC  // func f() or func (r) f()
   635  	ODCLFIELD // struct field, interface field, or func/method argument/return value.
   636  	ODCLCONST // const pi = 3.14
   637  	ODCLTYPE  // type Int int or type Int = int
   638  
   639  	ODELETE    // delete(Left, Right)
   640  	ODOT       // Left.Sym (Left is of struct type)
   641  	ODOTPTR    // Left.Sym (Left is of pointer to struct type)
   642  	ODOTMETH   // Left.Sym (Left is non-interface, Right is method name)
   643  	ODOTINTER  // Left.Sym (Left is interface, Right is method name)
   644  	OXDOT      // Left.Sym (before rewrite to one of the preceding)
   645  	ODOTTYPE   // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
   646  	ODOTTYPE2  // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
   647  	OEQ        // Left == Right
   648  	ONE        // Left != Right
   649  	OLT        // Left < Right
   650  	OLE        // Left <= Right
   651  	OGE        // Left >= Right
   652  	OGT        // Left > Right
   653  	OIND       // *Left
   654  	OINDEX     // Left[Right] (index of array or slice)
   655  	OINDEXMAP  // Left[Right] (index of map)
   656  	OKEY       // Left:Right (key:value in struct/array/map literal)
   657  	OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
   658  	OLEN       // len(Left)
   659  	OMAKE      // make(List) (before type checking converts to one of the following)
   660  	OMAKECHAN  // make(Type, Left) (type is chan)
   661  	OMAKEMAP   // make(Type, Left) (type is map)
   662  	OMAKESLICE // make(Type, Left, Right) (type is slice)
   663  	OMUL       // Left * Right
   664  	ODIV       // Left / Right
   665  	OMOD       // Left % Right
   666  	OLSH       // Left << Right
   667  	ORSH       // Left >> Right
   668  	OAND       // Left & Right
   669  	OANDNOT    // Left &^ Right
   670  	ONEW       // new(Left)
   671  	ONOT       // !Left
   672  	OCOM       // ^Left
   673  	OPLUS      // +Left
   674  	OMINUS     // -Left
   675  	OOROR      // Left || Right
   676  	OPANIC     // panic(Left)
   677  	OPRINT     // print(List)
   678  	OPRINTN    // println(List)
   679  	OPAREN     // (Left)
   680  	OSEND      // Left <- Right
   681  	OSLICE     // Left[List[0] : List[1]] (Left is untypechecked or slice)
   682  	OSLICEARR  // Left[List[0] : List[1]] (Left is array)
   683  	OSLICESTR  // Left[List[0] : List[1]] (Left is string)
   684  	OSLICE3    // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
   685  	OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
   686  	ORECOVER   // recover()
   687  	ORECV      // <-Left
   688  	ORUNESTR   // Type(Left) (Type is string, Left is rune)
   689  	OSELRECV   // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
   690  	OSELRECV2  // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
   691  	OIOTA      // iota
   692  	OREAL      // real(Left)
   693  	OIMAG      // imag(Left)
   694  	OCOMPLEX   // complex(Left, Right)
   695  	OALIGNOF   // unsafe.Alignof(Left)
   696  	OOFFSETOF  // unsafe.Offsetof(Left)
   697  	OSIZEOF    // unsafe.Sizeof(Left)
   698  
   699  	// statements
   700  	OBLOCK    // { List } (block of code)
   701  	OBREAK    // break
   702  	OCASE     // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default)
   703  	OXCASE    // case List: Nbody (select case before processing; List==nil means default)
   704  	OCONTINUE // continue
   705  	ODEFER    // defer Left (Left must be call)
   706  	OEMPTY    // no-op (empty statement)
   707  	OFALL     // fallthrough
   708  	OFOR      // for Ninit; Left; Right { Nbody }
   709  	// OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
   710  	// 	Ninit
   711  	// 	top: { Nbody }   // Execute the body at least once
   712  	// 	cont: Right
   713  	// 	if Left {        // And then test the loop condition
   714  	// 		List     // Before looping to top, execute List
   715  	// 		goto top
   716  	// 	}
   717  	// OFORUNTIL is created by walk. There's no way to write this in Go code.
   718  	OFORUNTIL
   719  	OGOTO   // goto Left
   720  	OIF     // if Ninit; Left { Nbody } else { Rlist }
   721  	OLABEL  // Left:
   722  	OPROC   // go Left (Left must be call)
   723  	ORANGE  // for List = range Right { Nbody }
   724  	ORETURN // return List
   725  	OSELECT // select { List } (List is list of OXCASE or OCASE)
   726  	OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
   727  	OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH)
   728  
   729  	// types
   730  	OTCHAN   // chan int
   731  	OTMAP    // map[string]int
   732  	OTSTRUCT // struct{}
   733  	OTINTER  // interface{}
   734  	OTFUNC   // func()
   735  	OTARRAY  // []int, [8]int, [N]int or [...]int
   736  
   737  	// misc
   738  	ODDD        // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
   739  	ODDDARG     // func f(args ...int), introduced by escape analysis.
   740  	OINLCALL    // intermediary representation of an inlined call.
   741  	OEFACE      // itable and data words of an empty-interface value.
   742  	OITAB       // itable word of an interface value.
   743  	OIDATA      // data word of an interface value in Left
   744  	OSPTR       // base pointer of a slice or string.
   745  	OCLOSUREVAR // variable reference at beginning of closure function
   746  	OCFUNC      // reference to c function pointer (not go func value)
   747  	OCHECKNIL   // emit code to ensure pointer/interface not nil
   748  	OVARDEF     // variable is about to be fully initialized
   749  	OVARKILL    // variable is dead
   750  	OVARLIVE    // variable is alive
   751  	OINDREGSP   // offset plus indirect of REGSP, such as 8(SP).
   752  
   753  	// arch-specific opcodes
   754  	ORETJMP // return to other function
   755  	OGETG   // runtime.getg() (read g pointer)
   756  
   757  	OEND
   758  )
   759  
   760  // Nodes is a pointer to a slice of *Node.
   761  // For fields that are not used in most nodes, this is used instead of
   762  // a slice to save space.
   763  type Nodes struct{ slice *[]*Node }
   764  
   765  // asNodes returns a slice of *Node as a Nodes value.
   766  func asNodes(s []*Node) Nodes {
   767  	return Nodes{&s}
   768  }
   769  
   770  // Slice returns the entries in Nodes as a slice.
   771  // Changes to the slice entries (as in s[i] = n) will be reflected in
   772  // the Nodes.
   773  func (n Nodes) Slice() []*Node {
   774  	if n.slice == nil {
   775  		return nil
   776  	}
   777  	return *n.slice
   778  }
   779  
   780  // Len returns the number of entries in Nodes.
   781  func (n Nodes) Len() int {
   782  	if n.slice == nil {
   783  		return 0
   784  	}
   785  	return len(*n.slice)
   786  }
   787  
   788  // Index returns the i'th element of Nodes.
   789  // It panics if n does not have at least i+1 elements.
   790  func (n Nodes) Index(i int) *Node {
   791  	return (*n.slice)[i]
   792  }
   793  
   794  // First returns the first element of Nodes (same as n.Index(0)).
   795  // It panics if n has no elements.
   796  func (n Nodes) First() *Node {
   797  	return (*n.slice)[0]
   798  }
   799  
   800  // Second returns the second element of Nodes (same as n.Index(1)).
   801  // It panics if n has fewer than two elements.
   802  func (n Nodes) Second() *Node {
   803  	return (*n.slice)[1]
   804  }
   805  
   806  // Set sets n to a slice.
   807  // This takes ownership of the slice.
   808  func (n *Nodes) Set(s []*Node) {
   809  	if len(s) == 0 {
   810  		n.slice = nil
   811  	} else {
   812  		// Copy s and take address of t rather than s to avoid
   813  		// allocation in the case where len(s) == 0 (which is
   814  		// over 3x more common, dynamically, for make.bash).
   815  		t := s
   816  		n.slice = &t
   817  	}
   818  }
   819  
   820  // Set1 sets n to a slice containing a single node.
   821  func (n *Nodes) Set1(n1 *Node) {
   822  	n.slice = &[]*Node{n1}
   823  }
   824  
   825  // Set2 sets n to a slice containing two nodes.
   826  func (n *Nodes) Set2(n1, n2 *Node) {
   827  	n.slice = &[]*Node{n1, n2}
   828  }
   829  
   830  // Set3 sets n to a slice containing three nodes.
   831  func (n *Nodes) Set3(n1, n2, n3 *Node) {
   832  	n.slice = &[]*Node{n1, n2, n3}
   833  }
   834  
   835  // MoveNodes sets n to the contents of n2, then clears n2.
   836  func (n *Nodes) MoveNodes(n2 *Nodes) {
   837  	n.slice = n2.slice
   838  	n2.slice = nil
   839  }
   840  
   841  // SetIndex sets the i'th element of Nodes to node.
   842  // It panics if n does not have at least i+1 elements.
   843  func (n Nodes) SetIndex(i int, node *Node) {
   844  	(*n.slice)[i] = node
   845  }
   846  
   847  // SetFirst sets the first element of Nodes to node.
   848  // It panics if n does not have at least one elements.
   849  func (n Nodes) SetFirst(node *Node) {
   850  	(*n.slice)[0] = node
   851  }
   852  
   853  // SetSecond sets the second element of Nodes to node.
   854  // It panics if n does not have at least two elements.
   855  func (n Nodes) SetSecond(node *Node) {
   856  	(*n.slice)[1] = node
   857  }
   858  
   859  // Addr returns the address of the i'th element of Nodes.
   860  // It panics if n does not have at least i+1 elements.
   861  func (n Nodes) Addr(i int) **Node {
   862  	return &(*n.slice)[i]
   863  }
   864  
   865  // Append appends entries to Nodes.
   866  func (n *Nodes) Append(a ...*Node) {
   867  	if len(a) == 0 {
   868  		return
   869  	}
   870  	if n.slice == nil {
   871  		s := make([]*Node, len(a))
   872  		copy(s, a)
   873  		n.slice = &s
   874  		return
   875  	}
   876  	*n.slice = append(*n.slice, a...)
   877  }
   878  
   879  // Prepend prepends entries to Nodes.
   880  // If a slice is passed in, this will take ownership of it.
   881  func (n *Nodes) Prepend(a ...*Node) {
   882  	if len(a) == 0 {
   883  		return
   884  	}
   885  	if n.slice == nil {
   886  		n.slice = &a
   887  	} else {
   888  		*n.slice = append(a, *n.slice...)
   889  	}
   890  }
   891  
   892  // AppendNodes appends the contents of *n2 to n, then clears n2.
   893  func (n *Nodes) AppendNodes(n2 *Nodes) {
   894  	switch {
   895  	case n2.slice == nil:
   896  	case n.slice == nil:
   897  		n.slice = n2.slice
   898  	default:
   899  		*n.slice = append(*n.slice, *n2.slice...)
   900  	}
   901  	n2.slice = nil
   902  }
   903  
   904  // inspect invokes f on each node in an AST in depth-first order.
   905  // If f(n) returns false, inspect skips visiting n's children.
   906  func inspect(n *Node, f func(*Node) bool) {
   907  	if n == nil || !f(n) {
   908  		return
   909  	}
   910  	inspectList(n.Ninit, f)
   911  	inspect(n.Left, f)
   912  	inspect(n.Right, f)
   913  	inspectList(n.List, f)
   914  	inspectList(n.Nbody, f)
   915  	inspectList(n.Rlist, f)
   916  }
   917  
   918  func inspectList(l Nodes, f func(*Node) bool) {
   919  	for _, n := range l.Slice() {
   920  		inspect(n, f)
   921  	}
   922  }
   923  
   924  // nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is
   925  // a ready-to-use empty queue.
   926  type nodeQueue struct {
   927  	ring       []*Node
   928  	head, tail int
   929  }
   930  
   931  // empty returns true if q contains no Nodes.
   932  func (q *nodeQueue) empty() bool {
   933  	return q.head == q.tail
   934  }
   935  
   936  // pushRight appends n to the right of the queue.
   937  func (q *nodeQueue) pushRight(n *Node) {
   938  	if len(q.ring) == 0 {
   939  		q.ring = make([]*Node, 16)
   940  	} else if q.head+len(q.ring) == q.tail {
   941  		// Grow the ring.
   942  		nring := make([]*Node, len(q.ring)*2)
   943  		// Copy the old elements.
   944  		part := q.ring[q.head%len(q.ring):]
   945  		if q.tail-q.head <= len(part) {
   946  			part = part[:q.tail-q.head]
   947  			copy(nring, part)
   948  		} else {
   949  			pos := copy(nring, part)
   950  			copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
   951  		}
   952  		q.ring, q.head, q.tail = nring, 0, q.tail-q.head
   953  	}
   954  
   955  	q.ring[q.tail%len(q.ring)] = n
   956  	q.tail++
   957  }
   958  
   959  // popLeft pops a node from the left of the queue. It panics if q is
   960  // empty.
   961  func (q *nodeQueue) popLeft() *Node {
   962  	if q.empty() {
   963  		panic("dequeue empty")
   964  	}
   965  	n := q.ring[q.head%len(q.ring)]
   966  	q.head++
   967  	return n
   968  }