github.com/hikaru7719/go@v0.0.0-20181025140707-c8b2ac68906a/src/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"net"
    18  	"sync"
    19  	"sync/atomic"
    20  	"time"
    21  )
    22  
    23  // A Conn represents a secured connection.
    24  // It implements the net.Conn interface.
    25  type Conn struct {
    26  	// constant
    27  	conn     net.Conn
    28  	isClient bool
    29  
    30  	// handshakeStatus is 1 if the connection is currently transferring
    31  	// application data (i.e. is not currently processing a handshake).
    32  	// This field is only to be accessed with sync/atomic.
    33  	handshakeStatus uint32
    34  	// constant after handshake; protected by handshakeMutex
    35  	handshakeMutex sync.Mutex
    36  	handshakeErr   error   // error resulting from handshake
    37  	vers           uint16  // TLS version
    38  	haveVers       bool    // version has been negotiated
    39  	config         *Config // configuration passed to constructor
    40  	// handshakes counts the number of handshakes performed on the
    41  	// connection so far. If renegotiation is disabled then this is either
    42  	// zero or one.
    43  	handshakes       int
    44  	didResume        bool // whether this connection was a session resumption
    45  	cipherSuite      uint16
    46  	ocspResponse     []byte   // stapled OCSP response
    47  	scts             [][]byte // signed certificate timestamps from server
    48  	peerCertificates []*x509.Certificate
    49  	// verifiedChains contains the certificate chains that we built, as
    50  	// opposed to the ones presented by the server.
    51  	verifiedChains [][]*x509.Certificate
    52  	// serverName contains the server name indicated by the client, if any.
    53  	serverName string
    54  	// secureRenegotiation is true if the server echoed the secure
    55  	// renegotiation extension. (This is meaningless as a server because
    56  	// renegotiation is not supported in that case.)
    57  	secureRenegotiation bool
    58  	// ekm is a closure for exporting keying material.
    59  	ekm func(label string, context []byte, length int) ([]byte, error)
    60  
    61  	// clientFinishedIsFirst is true if the client sent the first Finished
    62  	// message during the most recent handshake. This is recorded because
    63  	// the first transmitted Finished message is the tls-unique
    64  	// channel-binding value.
    65  	clientFinishedIsFirst bool
    66  
    67  	// closeNotifyErr is any error from sending the alertCloseNotify record.
    68  	closeNotifyErr error
    69  	// closeNotifySent is true if the Conn attempted to send an
    70  	// alertCloseNotify record.
    71  	closeNotifySent bool
    72  
    73  	// clientFinished and serverFinished contain the Finished message sent
    74  	// by the client or server in the most recent handshake. This is
    75  	// retained to support the renegotiation extension and tls-unique
    76  	// channel-binding.
    77  	clientFinished [12]byte
    78  	serverFinished [12]byte
    79  
    80  	clientProtocol         string
    81  	clientProtocolFallback bool
    82  
    83  	// input/output
    84  	in, out   halfConn
    85  	rawInput  bytes.Buffer // raw input, starting with a record header
    86  	input     bytes.Reader // application data waiting to be read, from rawInput.Next
    87  	hand      bytes.Buffer // handshake data waiting to be read
    88  	outBuf    []byte       // scratch buffer used by out.encrypt
    89  	buffering bool         // whether records are buffered in sendBuf
    90  	sendBuf   []byte       // a buffer of records waiting to be sent
    91  
    92  	// bytesSent counts the bytes of application data sent.
    93  	// packetsSent counts packets.
    94  	bytesSent   int64
    95  	packetsSent int64
    96  
    97  	// warnCount counts the number of consecutive warning alerts received
    98  	// by Conn.readRecord. Protected by in.Mutex.
    99  	warnCount int
   100  
   101  	// activeCall is an atomic int32; the low bit is whether Close has
   102  	// been called. the rest of the bits are the number of goroutines
   103  	// in Conn.Write.
   104  	activeCall int32
   105  
   106  	tmp [16]byte
   107  }
   108  
   109  // Access to net.Conn methods.
   110  // Cannot just embed net.Conn because that would
   111  // export the struct field too.
   112  
   113  // LocalAddr returns the local network address.
   114  func (c *Conn) LocalAddr() net.Addr {
   115  	return c.conn.LocalAddr()
   116  }
   117  
   118  // RemoteAddr returns the remote network address.
   119  func (c *Conn) RemoteAddr() net.Addr {
   120  	return c.conn.RemoteAddr()
   121  }
   122  
   123  // SetDeadline sets the read and write deadlines associated with the connection.
   124  // A zero value for t means Read and Write will not time out.
   125  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   126  func (c *Conn) SetDeadline(t time.Time) error {
   127  	return c.conn.SetDeadline(t)
   128  }
   129  
   130  // SetReadDeadline sets the read deadline on the underlying connection.
   131  // A zero value for t means Read will not time out.
   132  func (c *Conn) SetReadDeadline(t time.Time) error {
   133  	return c.conn.SetReadDeadline(t)
   134  }
   135  
   136  // SetWriteDeadline sets the write deadline on the underlying connection.
   137  // A zero value for t means Write will not time out.
   138  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   139  func (c *Conn) SetWriteDeadline(t time.Time) error {
   140  	return c.conn.SetWriteDeadline(t)
   141  }
   142  
   143  // A halfConn represents one direction of the record layer
   144  // connection, either sending or receiving.
   145  type halfConn struct {
   146  	sync.Mutex
   147  
   148  	err            error       // first permanent error
   149  	version        uint16      // protocol version
   150  	cipher         interface{} // cipher algorithm
   151  	mac            macFunction
   152  	seq            [8]byte  // 64-bit sequence number
   153  	additionalData [13]byte // to avoid allocs; interface method args escape
   154  
   155  	nextCipher interface{} // next encryption state
   156  	nextMac    macFunction // next MAC algorithm
   157  }
   158  
   159  func (hc *halfConn) setErrorLocked(err error) error {
   160  	hc.err = err
   161  	return err
   162  }
   163  
   164  // prepareCipherSpec sets the encryption and MAC states
   165  // that a subsequent changeCipherSpec will use.
   166  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   167  	hc.version = version
   168  	hc.nextCipher = cipher
   169  	hc.nextMac = mac
   170  }
   171  
   172  // changeCipherSpec changes the encryption and MAC states
   173  // to the ones previously passed to prepareCipherSpec.
   174  func (hc *halfConn) changeCipherSpec() error {
   175  	if hc.nextCipher == nil {
   176  		return alertInternalError
   177  	}
   178  	hc.cipher = hc.nextCipher
   179  	hc.mac = hc.nextMac
   180  	hc.nextCipher = nil
   181  	hc.nextMac = nil
   182  	for i := range hc.seq {
   183  		hc.seq[i] = 0
   184  	}
   185  	return nil
   186  }
   187  
   188  // incSeq increments the sequence number.
   189  func (hc *halfConn) incSeq() {
   190  	for i := 7; i >= 0; i-- {
   191  		hc.seq[i]++
   192  		if hc.seq[i] != 0 {
   193  			return
   194  		}
   195  	}
   196  
   197  	// Not allowed to let sequence number wrap.
   198  	// Instead, must renegotiate before it does.
   199  	// Not likely enough to bother.
   200  	panic("TLS: sequence number wraparound")
   201  }
   202  
   203  // explicitNonceLen returns the number of bytes of explicit nonce or IV included
   204  // in each record. Explicit nonces are present only in CBC modes after TLS 1.0
   205  // and in certain AEAD modes in TLS 1.2.
   206  func (hc *halfConn) explicitNonceLen() int {
   207  	if hc.cipher == nil {
   208  		return 0
   209  	}
   210  
   211  	switch c := hc.cipher.(type) {
   212  	case cipher.Stream:
   213  		return 0
   214  	case aead:
   215  		return c.explicitNonceLen()
   216  	case cbcMode:
   217  		// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
   218  		if hc.version >= VersionTLS11 {
   219  			return c.BlockSize()
   220  		}
   221  		return 0
   222  	default:
   223  		panic("unknown cipher type")
   224  	}
   225  }
   226  
   227  // extractPadding returns, in constant time, the length of the padding to remove
   228  // from the end of payload. It also returns a byte which is equal to 255 if the
   229  // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
   230  func extractPadding(payload []byte) (toRemove int, good byte) {
   231  	if len(payload) < 1 {
   232  		return 0, 0
   233  	}
   234  
   235  	paddingLen := payload[len(payload)-1]
   236  	t := uint(len(payload)-1) - uint(paddingLen)
   237  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   238  	good = byte(int32(^t) >> 31)
   239  
   240  	// The maximum possible padding length plus the actual length field
   241  	toCheck := 256
   242  	// The length of the padded data is public, so we can use an if here
   243  	if toCheck > len(payload) {
   244  		toCheck = len(payload)
   245  	}
   246  
   247  	for i := 0; i < toCheck; i++ {
   248  		t := uint(paddingLen) - uint(i)
   249  		// if i <= paddingLen then the MSB of t is zero
   250  		mask := byte(int32(^t) >> 31)
   251  		b := payload[len(payload)-1-i]
   252  		good &^= mask&paddingLen ^ mask&b
   253  	}
   254  
   255  	// We AND together the bits of good and replicate the result across
   256  	// all the bits.
   257  	good &= good << 4
   258  	good &= good << 2
   259  	good &= good << 1
   260  	good = uint8(int8(good) >> 7)
   261  
   262  	toRemove = int(paddingLen) + 1
   263  	return
   264  }
   265  
   266  // extractPaddingSSL30 is a replacement for extractPadding in the case that the
   267  // protocol version is SSLv3. In this version, the contents of the padding
   268  // are random and cannot be checked.
   269  func extractPaddingSSL30(payload []byte) (toRemove int, good byte) {
   270  	if len(payload) < 1 {
   271  		return 0, 0
   272  	}
   273  
   274  	paddingLen := int(payload[len(payload)-1]) + 1
   275  	if paddingLen > len(payload) {
   276  		return 0, 0
   277  	}
   278  
   279  	return paddingLen, 255
   280  }
   281  
   282  func roundUp(a, b int) int {
   283  	return a + (b-a%b)%b
   284  }
   285  
   286  // cbcMode is an interface for block ciphers using cipher block chaining.
   287  type cbcMode interface {
   288  	cipher.BlockMode
   289  	SetIV([]byte)
   290  }
   291  
   292  // decrypt authenticates and decrypts the record if protection is active at
   293  // this stage. The returned plaintext might overlap with the input.
   294  func (hc *halfConn) decrypt(record []byte) (plaintext []byte, err error) {
   295  	payload := record[recordHeaderLen:]
   296  
   297  	paddingGood := byte(255)
   298  	paddingLen := 0
   299  
   300  	explicitNonceLen := hc.explicitNonceLen()
   301  
   302  	if hc.cipher != nil {
   303  		switch c := hc.cipher.(type) {
   304  		case cipher.Stream:
   305  			c.XORKeyStream(payload, payload)
   306  		case aead:
   307  			if len(payload) < explicitNonceLen {
   308  				return nil, alertBadRecordMAC
   309  			}
   310  			nonce := payload[:explicitNonceLen]
   311  			if len(nonce) == 0 {
   312  				nonce = hc.seq[:]
   313  			}
   314  			payload = payload[explicitNonceLen:]
   315  
   316  			copy(hc.additionalData[:], hc.seq[:])
   317  			copy(hc.additionalData[8:], record[:3])
   318  			n := len(payload) - c.Overhead()
   319  			hc.additionalData[11] = byte(n >> 8)
   320  			hc.additionalData[12] = byte(n)
   321  
   322  			var err error
   323  			plaintext, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:])
   324  			if err != nil {
   325  				return nil, alertBadRecordMAC
   326  			}
   327  		case cbcMode:
   328  			blockSize := c.BlockSize()
   329  			minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize) // TODO: vuln?
   330  			if len(payload)%blockSize != 0 || len(payload) < minPayload {
   331  				return nil, alertBadRecordMAC
   332  			}
   333  
   334  			if explicitNonceLen > 0 {
   335  				c.SetIV(payload[:explicitNonceLen])
   336  				payload = payload[explicitNonceLen:]
   337  			}
   338  			c.CryptBlocks(payload, payload)
   339  
   340  			// In a limited attempt to protect against CBC padding oracles like
   341  			// Lucky13, the data past paddingLen (which is secret) is passed to
   342  			// the MAC function as extra data, to be fed into the HMAC after
   343  			// computing the digest. This makes the MAC roughly constant time as
   344  			// long as the digest computation is constant time and does not
   345  			// affect the subsequent write, modulo cache effects.
   346  			if hc.version == VersionSSL30 {
   347  				paddingLen, paddingGood = extractPaddingSSL30(payload)
   348  			} else {
   349  				paddingLen, paddingGood = extractPadding(payload)
   350  			}
   351  		default:
   352  			panic("unknown cipher type")
   353  		}
   354  	} else {
   355  		plaintext = payload
   356  	}
   357  
   358  	if hc.mac != nil {
   359  		macSize := hc.mac.Size()
   360  		if len(payload) < macSize {
   361  			return nil, alertBadRecordMAC
   362  		}
   363  
   364  		n := len(payload) - macSize - paddingLen
   365  		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
   366  		record[3] = byte(n >> 8)
   367  		record[4] = byte(n)
   368  		remoteMAC := payload[n : n+macSize]
   369  		localMAC := hc.mac.MAC(hc.seq[0:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
   370  
   371  		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
   372  			return nil, alertBadRecordMAC
   373  		}
   374  
   375  		plaintext = payload[:n]
   376  	}
   377  
   378  	hc.incSeq()
   379  	return plaintext, nil
   380  }
   381  
   382  // sliceForAppend extends the input slice by n bytes. head is the full extended
   383  // slice, while tail is the appended part. If the original slice has sufficient
   384  // capacity no allocation is performed.
   385  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   386  	if total := len(in) + n; cap(in) >= total {
   387  		head = in[:total]
   388  	} else {
   389  		head = make([]byte, total)
   390  		copy(head, in)
   391  	}
   392  	tail = head[len(in):]
   393  	return
   394  }
   395  
   396  // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
   397  // appends it to record, which contains the record header.
   398  func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
   399  	if hc.cipher == nil {
   400  		return append(record, payload...), nil
   401  	}
   402  
   403  	var explicitNonce []byte
   404  	if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
   405  		record, explicitNonce = sliceForAppend(record, explicitNonceLen)
   406  		if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
   407  			// The AES-GCM construction in TLS has an explicit nonce so that the
   408  			// nonce can be random. However, the nonce is only 8 bytes which is
   409  			// too small for a secure, random nonce. Therefore we use the
   410  			// sequence number as the nonce. The 3DES-CBC construction also has
   411  			// an 8 bytes nonce but its nonces must be unpredictable (see RFC
   412  			// 5246, Appendix F.3), forcing us to use randomness. That's not
   413  			// 3DES' biggest problem anyway because the birthday bound on block
   414  			// collision is reached first due to its simlarly small block size
   415  			// (see the Sweet32 attack).
   416  			copy(explicitNonce, hc.seq[:])
   417  		} else {
   418  			if _, err := io.ReadFull(rand, explicitNonce); err != nil {
   419  				return nil, err
   420  			}
   421  		}
   422  	}
   423  
   424  	var mac []byte
   425  	if hc.mac != nil {
   426  		mac = hc.mac.MAC(hc.seq[:], record[:recordHeaderLen], payload, nil)
   427  	}
   428  
   429  	var dst []byte
   430  	switch c := hc.cipher.(type) {
   431  	case cipher.Stream:
   432  		record, dst = sliceForAppend(record, len(payload)+len(mac))
   433  		c.XORKeyStream(dst[:len(payload)], payload)
   434  		c.XORKeyStream(dst[len(payload):], mac)
   435  	case aead:
   436  		nonce := explicitNonce
   437  		if len(nonce) == 0 {
   438  			nonce = hc.seq[:]
   439  		}
   440  
   441  		copy(hc.additionalData[:], hc.seq[:])
   442  		copy(hc.additionalData[8:], record[:3])
   443  		hc.additionalData[11] = byte(len(payload) >> 8)
   444  		hc.additionalData[12] = byte(len(payload))
   445  
   446  		record = c.Seal(record, nonce, payload, hc.additionalData[:])
   447  	case cbcMode:
   448  		blockSize := c.BlockSize()
   449  		plaintextLen := len(payload) + len(mac)
   450  		paddingLen := blockSize - plaintextLen%blockSize
   451  		record, dst = sliceForAppend(record, plaintextLen+paddingLen)
   452  		copy(dst, payload)
   453  		copy(dst[len(payload):], mac)
   454  		for i := plaintextLen; i < len(dst); i++ {
   455  			dst[i] = byte(paddingLen - 1)
   456  		}
   457  		if len(explicitNonce) > 0 {
   458  			c.SetIV(explicitNonce)
   459  		}
   460  		c.CryptBlocks(dst, dst)
   461  	default:
   462  		panic("unknown cipher type")
   463  	}
   464  
   465  	// Update length to include nonce, MAC and any block padding needed.
   466  	n := len(record) - recordHeaderLen
   467  	record[3] = byte(n >> 8)
   468  	record[4] = byte(n)
   469  	hc.incSeq()
   470  
   471  	return record, nil
   472  }
   473  
   474  // RecordHeaderError is returned when a TLS record header is invalid.
   475  type RecordHeaderError struct {
   476  	// Msg contains a human readable string that describes the error.
   477  	Msg string
   478  	// RecordHeader contains the five bytes of TLS record header that
   479  	// triggered the error.
   480  	RecordHeader [5]byte
   481  	// Conn provides the underlying net.Conn in the case that a client
   482  	// sent an initial handshake that didn't look like TLS.
   483  	// It is nil if there's already been a handshake or a TLS alert has
   484  	// been written to the connection.
   485  	Conn net.Conn
   486  }
   487  
   488  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   489  
   490  func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
   491  	err.Msg = msg
   492  	err.Conn = conn
   493  	copy(err.RecordHeader[:], c.rawInput.Bytes())
   494  	return err
   495  }
   496  
   497  // readRecord reads the next TLS record from the connection
   498  // and updates the record layer state.
   499  func (c *Conn) readRecord(want recordType) error {
   500  	// Caller must be in sync with connection:
   501  	// handshake data if handshake not yet completed,
   502  	// else application data.
   503  	switch want {
   504  	default:
   505  		panic("tls: unknown record type requested")
   506  	case recordTypeHandshake, recordTypeChangeCipherSpec:
   507  		if c.handshakeComplete() {
   508  			panic("tls: handshake or ChangeCipherSpec requested while not in handshake")
   509  		}
   510  	case recordTypeApplicationData:
   511  		if !c.handshakeComplete() {
   512  			panic("tls: application data record requested while in handshake")
   513  		}
   514  	}
   515  
   516  	// This function modifies c.rawInput, which owns the c.input memory.
   517  	if c.input.Len() != 0 {
   518  		panic("tls: attempted to read record with pending application data")
   519  	}
   520  	c.input.Reset(nil)
   521  
   522  	// Read header, payload.
   523  	if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
   524  		// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
   525  		// is an error, but popular web sites seem to do this, so we accept it
   526  		// if and only if at the record boundary.
   527  		if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
   528  			err = io.EOF
   529  		}
   530  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   531  			c.in.setErrorLocked(err)
   532  		}
   533  		return err
   534  	}
   535  	hdr := c.rawInput.Bytes()[:recordHeaderLen]
   536  	typ := recordType(hdr[0])
   537  
   538  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   539  	// start with a uint16 length where the MSB is set and the first record
   540  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   541  	// an SSLv2 client.
   542  	if want == recordTypeHandshake && typ == 0x80 {
   543  		c.sendAlert(alertProtocolVersion)
   544  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
   545  	}
   546  
   547  	vers := uint16(hdr[1])<<8 | uint16(hdr[2])
   548  	n := int(hdr[3])<<8 | int(hdr[4])
   549  	if c.haveVers && vers != c.vers {
   550  		c.sendAlert(alertProtocolVersion)
   551  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   552  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   553  	}
   554  	if !c.haveVers {
   555  		// First message, be extra suspicious: this might not be a TLS
   556  		// client. Bail out before reading a full 'body', if possible.
   557  		// The current max version is 3.3 so if the version is >= 16.0,
   558  		// it's probably not real.
   559  		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
   560  			return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
   561  		}
   562  	}
   563  	if n > maxCiphertext {
   564  		c.sendAlert(alertRecordOverflow)
   565  		msg := fmt.Sprintf("oversized record received with length %d", n)
   566  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   567  	}
   568  	if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   569  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   570  			c.in.setErrorLocked(err)
   571  		}
   572  		return err
   573  	}
   574  
   575  	// Process message.
   576  	record := c.rawInput.Next(recordHeaderLen + n)
   577  	data, err := c.in.decrypt(record)
   578  	if err != nil {
   579  		return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   580  	}
   581  	if len(data) > maxPlaintext {
   582  		return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
   583  	}
   584  
   585  	if typ != recordTypeAlert && len(data) > 0 {
   586  		// this is a valid non-alert message: reset the count of alerts
   587  		c.warnCount = 0
   588  	}
   589  
   590  	switch typ {
   591  	default:
   592  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   593  
   594  	case recordTypeAlert:
   595  		if len(data) != 2 {
   596  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   597  		}
   598  		if alert(data[1]) == alertCloseNotify {
   599  			return c.in.setErrorLocked(io.EOF)
   600  		}
   601  		switch data[0] {
   602  		case alertLevelWarning:
   603  			c.warnCount++
   604  			if c.warnCount > maxWarnAlertCount {
   605  				c.sendAlert(alertUnexpectedMessage)
   606  				return c.in.setErrorLocked(errors.New("tls: too many warn alerts"))
   607  			}
   608  			return c.readRecord(want) // Drop the record on the floor and retry.
   609  		case alertLevelError:
   610  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   611  		default:
   612  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   613  		}
   614  
   615  	case recordTypeChangeCipherSpec:
   616  		if typ != want || len(data) != 1 || data[0] != 1 {
   617  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   618  		}
   619  		// Handshake messages are not allowed to fragment across the CCS.
   620  		if c.hand.Len() > 0 {
   621  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   622  		}
   623  		if err := c.in.changeCipherSpec(); err != nil {
   624  			return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   625  		}
   626  		return nil
   627  
   628  	case recordTypeApplicationData:
   629  		if typ != want {
   630  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   631  		}
   632  		// Note that data is owned by c.rawInput, following the Next call above,
   633  		// to avoid copying the plaintext. This is safe because c.rawInput is
   634  		// not read from or written to until c.input is drained.
   635  		c.input.Reset(data)
   636  		return nil
   637  
   638  	case recordTypeHandshake:
   639  		if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) {
   640  			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
   641  		}
   642  		c.hand.Write(data)
   643  		return nil
   644  	}
   645  }
   646  
   647  // atLeastReader reads from R, stopping with EOF once at least N bytes have been
   648  // read. It is different from an io.LimitedReader in that it doesn't cut short
   649  // the last Read call, and in that it considers an early EOF an error.
   650  type atLeastReader struct {
   651  	R io.Reader
   652  	N int64
   653  }
   654  
   655  func (r *atLeastReader) Read(p []byte) (int, error) {
   656  	if r.N <= 0 {
   657  		return 0, io.EOF
   658  	}
   659  	n, err := r.R.Read(p)
   660  	r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
   661  	if r.N > 0 && err == io.EOF {
   662  		return n, io.ErrUnexpectedEOF
   663  	}
   664  	if r.N <= 0 && err == nil {
   665  		return n, io.EOF
   666  	}
   667  	return n, err
   668  }
   669  
   670  // readFromUntil reads from r into c.rawInput until c.rawInput contains
   671  // at least n bytes or else returns an error.
   672  func (c *Conn) readFromUntil(r io.Reader, n int) error {
   673  	if c.rawInput.Len() >= n {
   674  		return nil
   675  	}
   676  	needs := n - c.rawInput.Len()
   677  	// There might be extra input waiting on the wire. Make a best effort
   678  	// attempt to fetch it so that it can be used in (*Conn).Read to
   679  	// "predict" closeNotify alerts.
   680  	c.rawInput.Grow(needs + bytes.MinRead)
   681  	_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
   682  	return err
   683  }
   684  
   685  // sendAlert sends a TLS alert message.
   686  func (c *Conn) sendAlertLocked(err alert) error {
   687  	switch err {
   688  	case alertNoRenegotiation, alertCloseNotify:
   689  		c.tmp[0] = alertLevelWarning
   690  	default:
   691  		c.tmp[0] = alertLevelError
   692  	}
   693  	c.tmp[1] = byte(err)
   694  
   695  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   696  	if err == alertCloseNotify {
   697  		// closeNotify is a special case in that it isn't an error.
   698  		return writeErr
   699  	}
   700  
   701  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   702  }
   703  
   704  // sendAlert sends a TLS alert message.
   705  func (c *Conn) sendAlert(err alert) error {
   706  	c.out.Lock()
   707  	defer c.out.Unlock()
   708  	return c.sendAlertLocked(err)
   709  }
   710  
   711  const (
   712  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   713  	// size (MSS). A constant is used, rather than querying the kernel for
   714  	// the actual MSS, to avoid complexity. The value here is the IPv6
   715  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   716  	// bytes) and a TCP header with timestamps (32 bytes).
   717  	tcpMSSEstimate = 1208
   718  
   719  	// recordSizeBoostThreshold is the number of bytes of application data
   720  	// sent after which the TLS record size will be increased to the
   721  	// maximum.
   722  	recordSizeBoostThreshold = 128 * 1024
   723  )
   724  
   725  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   726  // next application data record. There is the following trade-off:
   727  //
   728  //   - For latency-sensitive applications, such as web browsing, each TLS
   729  //     record should fit in one TCP segment.
   730  //   - For throughput-sensitive applications, such as large file transfers,
   731  //     larger TLS records better amortize framing and encryption overheads.
   732  //
   733  // A simple heuristic that works well in practice is to use small records for
   734  // the first 1MB of data, then use larger records for subsequent data, and
   735  // reset back to smaller records after the connection becomes idle. See "High
   736  // Performance Web Networking", Chapter 4, or:
   737  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   738  //
   739  // In the interests of simplicity and determinism, this code does not attempt
   740  // to reset the record size once the connection is idle, however.
   741  func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
   742  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   743  		return maxPlaintext
   744  	}
   745  
   746  	if c.bytesSent >= recordSizeBoostThreshold {
   747  		return maxPlaintext
   748  	}
   749  
   750  	// Subtract TLS overheads to get the maximum payload size.
   751  	payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
   752  	if c.out.cipher != nil {
   753  		switch ciph := c.out.cipher.(type) {
   754  		case cipher.Stream:
   755  			payloadBytes -= c.out.mac.Size()
   756  		case cipher.AEAD:
   757  			payloadBytes -= ciph.Overhead()
   758  		case cbcMode:
   759  			blockSize := ciph.BlockSize()
   760  			// The payload must fit in a multiple of blockSize, with
   761  			// room for at least one padding byte.
   762  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   763  			// The MAC is appended before padding so affects the
   764  			// payload size directly.
   765  			payloadBytes -= c.out.mac.Size()
   766  		default:
   767  			panic("unknown cipher type")
   768  		}
   769  	}
   770  
   771  	// Allow packet growth in arithmetic progression up to max.
   772  	pkt := c.packetsSent
   773  	c.packetsSent++
   774  	if pkt > 1000 {
   775  		return maxPlaintext // avoid overflow in multiply below
   776  	}
   777  
   778  	n := payloadBytes * int(pkt+1)
   779  	if n > maxPlaintext {
   780  		n = maxPlaintext
   781  	}
   782  	return n
   783  }
   784  
   785  func (c *Conn) write(data []byte) (int, error) {
   786  	if c.buffering {
   787  		c.sendBuf = append(c.sendBuf, data...)
   788  		return len(data), nil
   789  	}
   790  
   791  	n, err := c.conn.Write(data)
   792  	c.bytesSent += int64(n)
   793  	return n, err
   794  }
   795  
   796  func (c *Conn) flush() (int, error) {
   797  	if len(c.sendBuf) == 0 {
   798  		return 0, nil
   799  	}
   800  
   801  	n, err := c.conn.Write(c.sendBuf)
   802  	c.bytesSent += int64(n)
   803  	c.sendBuf = nil
   804  	c.buffering = false
   805  	return n, err
   806  }
   807  
   808  // writeRecordLocked writes a TLS record with the given type and payload to the
   809  // connection and updates the record layer state.
   810  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   811  	var n int
   812  	for len(data) > 0 {
   813  		m := len(data)
   814  		if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
   815  			m = maxPayload
   816  		}
   817  
   818  		_, c.outBuf = sliceForAppend(c.outBuf[:0], recordHeaderLen)
   819  		c.outBuf[0] = byte(typ)
   820  		vers := c.vers
   821  		if vers == 0 {
   822  			// Some TLS servers fail if the record version is
   823  			// greater than TLS 1.0 for the initial ClientHello.
   824  			vers = VersionTLS10
   825  		}
   826  		c.outBuf[1] = byte(vers >> 8)
   827  		c.outBuf[2] = byte(vers)
   828  		c.outBuf[3] = byte(m >> 8)
   829  		c.outBuf[4] = byte(m)
   830  
   831  		var err error
   832  		c.outBuf, err = c.out.encrypt(c.outBuf, data[:m], c.config.rand())
   833  		if err != nil {
   834  			return n, err
   835  		}
   836  		if _, err := c.write(c.outBuf); err != nil {
   837  			return n, err
   838  		}
   839  		n += m
   840  		data = data[m:]
   841  	}
   842  
   843  	if typ == recordTypeChangeCipherSpec {
   844  		if err := c.out.changeCipherSpec(); err != nil {
   845  			return n, c.sendAlertLocked(err.(alert))
   846  		}
   847  	}
   848  
   849  	return n, nil
   850  }
   851  
   852  // writeRecord writes a TLS record with the given type and payload to the
   853  // connection and updates the record layer state.
   854  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
   855  	c.out.Lock()
   856  	defer c.out.Unlock()
   857  
   858  	return c.writeRecordLocked(typ, data)
   859  }
   860  
   861  // readHandshake reads the next handshake message from
   862  // the record layer.
   863  func (c *Conn) readHandshake() (interface{}, error) {
   864  	for c.hand.Len() < 4 {
   865  		if err := c.in.err; err != nil {
   866  			return nil, err
   867  		}
   868  		if err := c.readRecord(recordTypeHandshake); err != nil {
   869  			return nil, err
   870  		}
   871  	}
   872  
   873  	data := c.hand.Bytes()
   874  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
   875  	if n > maxHandshake {
   876  		c.sendAlertLocked(alertInternalError)
   877  		return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
   878  	}
   879  	for c.hand.Len() < 4+n {
   880  		if err := c.in.err; err != nil {
   881  			return nil, err
   882  		}
   883  		if err := c.readRecord(recordTypeHandshake); err != nil {
   884  			return nil, err
   885  		}
   886  	}
   887  	data = c.hand.Next(4 + n)
   888  	var m handshakeMessage
   889  	switch data[0] {
   890  	case typeHelloRequest:
   891  		m = new(helloRequestMsg)
   892  	case typeClientHello:
   893  		m = new(clientHelloMsg)
   894  	case typeServerHello:
   895  		m = new(serverHelloMsg)
   896  	case typeNewSessionTicket:
   897  		m = new(newSessionTicketMsg)
   898  	case typeCertificate:
   899  		m = new(certificateMsg)
   900  	case typeCertificateRequest:
   901  		m = &certificateRequestMsg{
   902  			hasSignatureAndHash: c.vers >= VersionTLS12,
   903  		}
   904  	case typeCertificateStatus:
   905  		m = new(certificateStatusMsg)
   906  	case typeServerKeyExchange:
   907  		m = new(serverKeyExchangeMsg)
   908  	case typeServerHelloDone:
   909  		m = new(serverHelloDoneMsg)
   910  	case typeClientKeyExchange:
   911  		m = new(clientKeyExchangeMsg)
   912  	case typeCertificateVerify:
   913  		m = &certificateVerifyMsg{
   914  			hasSignatureAndHash: c.vers >= VersionTLS12,
   915  		}
   916  	case typeNextProtocol:
   917  		m = new(nextProtoMsg)
   918  	case typeFinished:
   919  		m = new(finishedMsg)
   920  	default:
   921  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   922  	}
   923  
   924  	// The handshake message unmarshalers
   925  	// expect to be able to keep references to data,
   926  	// so pass in a fresh copy that won't be overwritten.
   927  	data = append([]byte(nil), data...)
   928  
   929  	if !m.unmarshal(data) {
   930  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   931  	}
   932  	return m, nil
   933  }
   934  
   935  var (
   936  	errClosed   = errors.New("tls: use of closed connection")
   937  	errShutdown = errors.New("tls: protocol is shutdown")
   938  )
   939  
   940  // Write writes data to the connection.
   941  func (c *Conn) Write(b []byte) (int, error) {
   942  	// interlock with Close below
   943  	for {
   944  		x := atomic.LoadInt32(&c.activeCall)
   945  		if x&1 != 0 {
   946  			return 0, errClosed
   947  		}
   948  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
   949  			defer atomic.AddInt32(&c.activeCall, -2)
   950  			break
   951  		}
   952  	}
   953  
   954  	if err := c.Handshake(); err != nil {
   955  		return 0, err
   956  	}
   957  
   958  	c.out.Lock()
   959  	defer c.out.Unlock()
   960  
   961  	if err := c.out.err; err != nil {
   962  		return 0, err
   963  	}
   964  
   965  	if !c.handshakeComplete() {
   966  		return 0, alertInternalError
   967  	}
   968  
   969  	if c.closeNotifySent {
   970  		return 0, errShutdown
   971  	}
   972  
   973  	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
   974  	// attack when using block mode ciphers due to predictable IVs.
   975  	// This can be prevented by splitting each Application Data
   976  	// record into two records, effectively randomizing the IV.
   977  	//
   978  	// https://www.openssl.org/~bodo/tls-cbc.txt
   979  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
   980  	// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
   981  
   982  	var m int
   983  	if len(b) > 1 && c.vers <= VersionTLS10 {
   984  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
   985  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
   986  			if err != nil {
   987  				return n, c.out.setErrorLocked(err)
   988  			}
   989  			m, b = 1, b[1:]
   990  		}
   991  	}
   992  
   993  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
   994  	return n + m, c.out.setErrorLocked(err)
   995  }
   996  
   997  // handleRenegotiation processes a HelloRequest handshake message.
   998  func (c *Conn) handleRenegotiation() error {
   999  	msg, err := c.readHandshake()
  1000  	if err != nil {
  1001  		return err
  1002  	}
  1003  
  1004  	_, ok := msg.(*helloRequestMsg)
  1005  	if !ok {
  1006  		c.sendAlert(alertUnexpectedMessage)
  1007  		return alertUnexpectedMessage
  1008  	}
  1009  
  1010  	if !c.isClient {
  1011  		return c.sendAlert(alertNoRenegotiation)
  1012  	}
  1013  
  1014  	switch c.config.Renegotiation {
  1015  	case RenegotiateNever:
  1016  		return c.sendAlert(alertNoRenegotiation)
  1017  	case RenegotiateOnceAsClient:
  1018  		if c.handshakes > 1 {
  1019  			return c.sendAlert(alertNoRenegotiation)
  1020  		}
  1021  	case RenegotiateFreelyAsClient:
  1022  		// Ok.
  1023  	default:
  1024  		c.sendAlert(alertInternalError)
  1025  		return errors.New("tls: unknown Renegotiation value")
  1026  	}
  1027  
  1028  	c.handshakeMutex.Lock()
  1029  	defer c.handshakeMutex.Unlock()
  1030  
  1031  	atomic.StoreUint32(&c.handshakeStatus, 0)
  1032  	if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  1033  		c.handshakes++
  1034  	}
  1035  	return c.handshakeErr
  1036  }
  1037  
  1038  // Read can be made to time out and return a net.Error with Timeout() == true
  1039  // after a fixed time limit; see SetDeadline and SetReadDeadline.
  1040  func (c *Conn) Read(b []byte) (int, error) {
  1041  	if err := c.Handshake(); err != nil {
  1042  		return 0, err
  1043  	}
  1044  	if len(b) == 0 {
  1045  		// Put this after Handshake, in case people were calling
  1046  		// Read(nil) for the side effect of the Handshake.
  1047  		return 0, nil
  1048  	}
  1049  
  1050  	c.in.Lock()
  1051  	defer c.in.Unlock()
  1052  
  1053  	// Some OpenSSL servers send empty records in order to randomize the
  1054  	// CBC IV. So this loop ignores a limited number of empty records.
  1055  	const maxConsecutiveEmptyRecords = 100
  1056  	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
  1057  		for c.input.Len() == 0 && c.in.err == nil {
  1058  			if err := c.readRecord(recordTypeApplicationData); err != nil {
  1059  				return 0, err
  1060  			}
  1061  			if c.hand.Len() > 0 {
  1062  				// We received handshake bytes, indicating the
  1063  				// start of a renegotiation.
  1064  				if err := c.handleRenegotiation(); err != nil {
  1065  					return 0, err
  1066  				}
  1067  			}
  1068  		}
  1069  		if err := c.in.err; err != nil {
  1070  			return 0, err
  1071  		}
  1072  
  1073  		n, _ := c.input.Read(b)
  1074  
  1075  		// If a close-notify alert is waiting, read it so that we can return (n,
  1076  		// EOF) instead of (n, nil), to signal to the HTTP response reading
  1077  		// goroutine that the connection is now closed. This eliminates a race
  1078  		// where the HTTP response reading goroutine would otherwise not observe
  1079  		// the EOF until its next read, by which time a client goroutine might
  1080  		// have already tried to reuse the HTTP connection for a new request.
  1081  		// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
  1082  		if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
  1083  			recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
  1084  			if err := c.readRecord(recordTypeApplicationData); err != nil {
  1085  				return n, err // will be io.EOF on closeNotify
  1086  			}
  1087  		}
  1088  
  1089  		if n != 0 {
  1090  			return n, nil
  1091  		}
  1092  	}
  1093  
  1094  	return 0, io.ErrNoProgress
  1095  }
  1096  
  1097  // Close closes the connection.
  1098  func (c *Conn) Close() error {
  1099  	// Interlock with Conn.Write above.
  1100  	var x int32
  1101  	for {
  1102  		x = atomic.LoadInt32(&c.activeCall)
  1103  		if x&1 != 0 {
  1104  			return errClosed
  1105  		}
  1106  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1107  			break
  1108  		}
  1109  	}
  1110  	if x != 0 {
  1111  		// io.Writer and io.Closer should not be used concurrently.
  1112  		// If Close is called while a Write is currently in-flight,
  1113  		// interpret that as a sign that this Close is really just
  1114  		// being used to break the Write and/or clean up resources and
  1115  		// avoid sending the alertCloseNotify, which may block
  1116  		// waiting on handshakeMutex or the c.out mutex.
  1117  		return c.conn.Close()
  1118  	}
  1119  
  1120  	var alertErr error
  1121  
  1122  	if c.handshakeComplete() {
  1123  		alertErr = c.closeNotify()
  1124  	}
  1125  
  1126  	if err := c.conn.Close(); err != nil {
  1127  		return err
  1128  	}
  1129  	return alertErr
  1130  }
  1131  
  1132  var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1133  
  1134  // CloseWrite shuts down the writing side of the connection. It should only be
  1135  // called once the handshake has completed and does not call CloseWrite on the
  1136  // underlying connection. Most callers should just use Close.
  1137  func (c *Conn) CloseWrite() error {
  1138  	if !c.handshakeComplete() {
  1139  		return errEarlyCloseWrite
  1140  	}
  1141  
  1142  	return c.closeNotify()
  1143  }
  1144  
  1145  func (c *Conn) closeNotify() error {
  1146  	c.out.Lock()
  1147  	defer c.out.Unlock()
  1148  
  1149  	if !c.closeNotifySent {
  1150  		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1151  		c.closeNotifySent = true
  1152  	}
  1153  	return c.closeNotifyErr
  1154  }
  1155  
  1156  // Handshake runs the client or server handshake
  1157  // protocol if it has not yet been run.
  1158  // Most uses of this package need not call Handshake
  1159  // explicitly: the first Read or Write will call it automatically.
  1160  func (c *Conn) Handshake() error {
  1161  	c.handshakeMutex.Lock()
  1162  	defer c.handshakeMutex.Unlock()
  1163  
  1164  	if err := c.handshakeErr; err != nil {
  1165  		return err
  1166  	}
  1167  	if c.handshakeComplete() {
  1168  		return nil
  1169  	}
  1170  
  1171  	c.in.Lock()
  1172  	defer c.in.Unlock()
  1173  
  1174  	if c.isClient {
  1175  		c.handshakeErr = c.clientHandshake()
  1176  	} else {
  1177  		c.handshakeErr = c.serverHandshake()
  1178  	}
  1179  	if c.handshakeErr == nil {
  1180  		c.handshakes++
  1181  	} else {
  1182  		// If an error occurred during the hadshake try to flush the
  1183  		// alert that might be left in the buffer.
  1184  		c.flush()
  1185  	}
  1186  
  1187  	if c.handshakeErr == nil && !c.handshakeComplete() {
  1188  		panic("handshake should have had a result.")
  1189  	}
  1190  
  1191  	return c.handshakeErr
  1192  }
  1193  
  1194  // ConnectionState returns basic TLS details about the connection.
  1195  func (c *Conn) ConnectionState() ConnectionState {
  1196  	c.handshakeMutex.Lock()
  1197  	defer c.handshakeMutex.Unlock()
  1198  
  1199  	var state ConnectionState
  1200  	state.HandshakeComplete = c.handshakeComplete()
  1201  	state.ServerName = c.serverName
  1202  
  1203  	if state.HandshakeComplete {
  1204  		state.Version = c.vers
  1205  		state.NegotiatedProtocol = c.clientProtocol
  1206  		state.DidResume = c.didResume
  1207  		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1208  		state.CipherSuite = c.cipherSuite
  1209  		state.PeerCertificates = c.peerCertificates
  1210  		state.VerifiedChains = c.verifiedChains
  1211  		state.SignedCertificateTimestamps = c.scts
  1212  		state.OCSPResponse = c.ocspResponse
  1213  		if !c.didResume {
  1214  			if c.clientFinishedIsFirst {
  1215  				state.TLSUnique = c.clientFinished[:]
  1216  			} else {
  1217  				state.TLSUnique = c.serverFinished[:]
  1218  			}
  1219  		}
  1220  		if c.config.Renegotiation != RenegotiateNever {
  1221  			state.ekm = noExportedKeyingMaterial
  1222  		} else {
  1223  			state.ekm = c.ekm
  1224  		}
  1225  	}
  1226  
  1227  	return state
  1228  }
  1229  
  1230  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1231  // any. (Only valid for client connections.)
  1232  func (c *Conn) OCSPResponse() []byte {
  1233  	c.handshakeMutex.Lock()
  1234  	defer c.handshakeMutex.Unlock()
  1235  
  1236  	return c.ocspResponse
  1237  }
  1238  
  1239  // VerifyHostname checks that the peer certificate chain is valid for
  1240  // connecting to host. If so, it returns nil; if not, it returns an error
  1241  // describing the problem.
  1242  func (c *Conn) VerifyHostname(host string) error {
  1243  	c.handshakeMutex.Lock()
  1244  	defer c.handshakeMutex.Unlock()
  1245  	if !c.isClient {
  1246  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1247  	}
  1248  	if !c.handshakeComplete() {
  1249  		return errors.New("tls: handshake has not yet been performed")
  1250  	}
  1251  	if len(c.verifiedChains) == 0 {
  1252  		return errors.New("tls: handshake did not verify certificate chain")
  1253  	}
  1254  	return c.peerCertificates[0].VerifyHostname(host)
  1255  }
  1256  
  1257  func (c *Conn) handshakeComplete() bool {
  1258  	return atomic.LoadUint32(&c.handshakeStatus) == 1
  1259  }