github.com/hikaru7719/go@v0.0.0-20181025140707-c8b2ac68906a/src/strings/strings.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package strings implements simple functions to manipulate UTF-8 encoded strings.
     6  //
     7  // For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
     8  package strings
     9  
    10  import (
    11  	"internal/bytealg"
    12  	"unicode"
    13  	"unicode/utf8"
    14  )
    15  
    16  // explode splits s into a slice of UTF-8 strings,
    17  // one string per Unicode character up to a maximum of n (n < 0 means no limit).
    18  // Invalid UTF-8 sequences become correct encodings of U+FFFD.
    19  func explode(s string, n int) []string {
    20  	l := utf8.RuneCountInString(s)
    21  	if n < 0 || n > l {
    22  		n = l
    23  	}
    24  	a := make([]string, n)
    25  	for i := 0; i < n-1; i++ {
    26  		ch, size := utf8.DecodeRuneInString(s)
    27  		a[i] = s[:size]
    28  		s = s[size:]
    29  		if ch == utf8.RuneError {
    30  			a[i] = string(utf8.RuneError)
    31  		}
    32  	}
    33  	if n > 0 {
    34  		a[n-1] = s
    35  	}
    36  	return a
    37  }
    38  
    39  // primeRK is the prime base used in Rabin-Karp algorithm.
    40  const primeRK = 16777619
    41  
    42  // hashStr returns the hash and the appropriate multiplicative
    43  // factor for use in Rabin-Karp algorithm.
    44  func hashStr(sep string) (uint32, uint32) {
    45  	hash := uint32(0)
    46  	for i := 0; i < len(sep); i++ {
    47  		hash = hash*primeRK + uint32(sep[i])
    48  	}
    49  	var pow, sq uint32 = 1, primeRK
    50  	for i := len(sep); i > 0; i >>= 1 {
    51  		if i&1 != 0 {
    52  			pow *= sq
    53  		}
    54  		sq *= sq
    55  	}
    56  	return hash, pow
    57  }
    58  
    59  // hashStrRev returns the hash of the reverse of sep and the
    60  // appropriate multiplicative factor for use in Rabin-Karp algorithm.
    61  func hashStrRev(sep string) (uint32, uint32) {
    62  	hash := uint32(0)
    63  	for i := len(sep) - 1; i >= 0; i-- {
    64  		hash = hash*primeRK + uint32(sep[i])
    65  	}
    66  	var pow, sq uint32 = 1, primeRK
    67  	for i := len(sep); i > 0; i >>= 1 {
    68  		if i&1 != 0 {
    69  			pow *= sq
    70  		}
    71  		sq *= sq
    72  	}
    73  	return hash, pow
    74  }
    75  
    76  // Count counts the number of non-overlapping instances of substr in s.
    77  // If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
    78  func Count(s, substr string) int {
    79  	// special case
    80  	if len(substr) == 0 {
    81  		return utf8.RuneCountInString(s) + 1
    82  	}
    83  	if len(substr) == 1 {
    84  		return bytealg.CountString(s, substr[0])
    85  	}
    86  	n := 0
    87  	for {
    88  		i := Index(s, substr)
    89  		if i == -1 {
    90  			return n
    91  		}
    92  		n++
    93  		s = s[i+len(substr):]
    94  	}
    95  }
    96  
    97  // Contains reports whether substr is within s.
    98  func Contains(s, substr string) bool {
    99  	return Index(s, substr) >= 0
   100  }
   101  
   102  // ContainsAny reports whether any Unicode code points in chars are within s.
   103  func ContainsAny(s, chars string) bool {
   104  	return IndexAny(s, chars) >= 0
   105  }
   106  
   107  // ContainsRune reports whether the Unicode code point r is within s.
   108  func ContainsRune(s string, r rune) bool {
   109  	return IndexRune(s, r) >= 0
   110  }
   111  
   112  // LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
   113  func LastIndex(s, substr string) int {
   114  	n := len(substr)
   115  	switch {
   116  	case n == 0:
   117  		return len(s)
   118  	case n == 1:
   119  		return LastIndexByte(s, substr[0])
   120  	case n == len(s):
   121  		if substr == s {
   122  			return 0
   123  		}
   124  		return -1
   125  	case n > len(s):
   126  		return -1
   127  	}
   128  	// Rabin-Karp search from the end of the string
   129  	hashss, pow := hashStrRev(substr)
   130  	last := len(s) - n
   131  	var h uint32
   132  	for i := len(s) - 1; i >= last; i-- {
   133  		h = h*primeRK + uint32(s[i])
   134  	}
   135  	if h == hashss && s[last:] == substr {
   136  		return last
   137  	}
   138  	for i := last - 1; i >= 0; i-- {
   139  		h *= primeRK
   140  		h += uint32(s[i])
   141  		h -= pow * uint32(s[i+n])
   142  		if h == hashss && s[i:i+n] == substr {
   143  			return i
   144  		}
   145  	}
   146  	return -1
   147  }
   148  
   149  // IndexRune returns the index of the first instance of the Unicode code point
   150  // r, or -1 if rune is not present in s.
   151  // If r is utf8.RuneError, it returns the first instance of any
   152  // invalid UTF-8 byte sequence.
   153  func IndexRune(s string, r rune) int {
   154  	switch {
   155  	case 0 <= r && r < utf8.RuneSelf:
   156  		return IndexByte(s, byte(r))
   157  	case r == utf8.RuneError:
   158  		for i, r := range s {
   159  			if r == utf8.RuneError {
   160  				return i
   161  			}
   162  		}
   163  		return -1
   164  	case !utf8.ValidRune(r):
   165  		return -1
   166  	default:
   167  		return Index(s, string(r))
   168  	}
   169  }
   170  
   171  // IndexAny returns the index of the first instance of any Unicode code point
   172  // from chars in s, or -1 if no Unicode code point from chars is present in s.
   173  func IndexAny(s, chars string) int {
   174  	if chars == "" {
   175  		// Avoid scanning all of s.
   176  		return -1
   177  	}
   178  	if len(s) > 8 {
   179  		if as, isASCII := makeASCIISet(chars); isASCII {
   180  			for i := 0; i < len(s); i++ {
   181  				if as.contains(s[i]) {
   182  					return i
   183  				}
   184  			}
   185  			return -1
   186  		}
   187  	}
   188  	for i, c := range s {
   189  		for _, m := range chars {
   190  			if c == m {
   191  				return i
   192  			}
   193  		}
   194  	}
   195  	return -1
   196  }
   197  
   198  // LastIndexAny returns the index of the last instance of any Unicode code
   199  // point from chars in s, or -1 if no Unicode code point from chars is
   200  // present in s.
   201  func LastIndexAny(s, chars string) int {
   202  	if chars == "" {
   203  		// Avoid scanning all of s.
   204  		return -1
   205  	}
   206  	if len(s) > 8 {
   207  		if as, isASCII := makeASCIISet(chars); isASCII {
   208  			for i := len(s) - 1; i >= 0; i-- {
   209  				if as.contains(s[i]) {
   210  					return i
   211  				}
   212  			}
   213  			return -1
   214  		}
   215  	}
   216  	for i := len(s); i > 0; {
   217  		r, size := utf8.DecodeLastRuneInString(s[:i])
   218  		i -= size
   219  		for _, c := range chars {
   220  			if r == c {
   221  				return i
   222  			}
   223  		}
   224  	}
   225  	return -1
   226  }
   227  
   228  // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
   229  func LastIndexByte(s string, c byte) int {
   230  	for i := len(s) - 1; i >= 0; i-- {
   231  		if s[i] == c {
   232  			return i
   233  		}
   234  	}
   235  	return -1
   236  }
   237  
   238  // Generic split: splits after each instance of sep,
   239  // including sepSave bytes of sep in the subarrays.
   240  func genSplit(s, sep string, sepSave, n int) []string {
   241  	if n == 0 {
   242  		return nil
   243  	}
   244  	if sep == "" {
   245  		return explode(s, n)
   246  	}
   247  	if n < 0 {
   248  		n = Count(s, sep) + 1
   249  	}
   250  
   251  	a := make([]string, n)
   252  	n--
   253  	i := 0
   254  	for i < n {
   255  		m := Index(s, sep)
   256  		if m < 0 {
   257  			break
   258  		}
   259  		a[i] = s[:m+sepSave]
   260  		s = s[m+len(sep):]
   261  		i++
   262  	}
   263  	a[i] = s
   264  	return a[:i+1]
   265  }
   266  
   267  // SplitN slices s into substrings separated by sep and returns a slice of
   268  // the substrings between those separators.
   269  //
   270  // The count determines the number of substrings to return:
   271  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   272  //   n == 0: the result is nil (zero substrings)
   273  //   n < 0: all substrings
   274  //
   275  // Edge cases for s and sep (for example, empty strings) are handled
   276  // as described in the documentation for Split.
   277  func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
   278  
   279  // SplitAfterN slices s into substrings after each instance of sep and
   280  // returns a slice of those substrings.
   281  //
   282  // The count determines the number of substrings to return:
   283  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   284  //   n == 0: the result is nil (zero substrings)
   285  //   n < 0: all substrings
   286  //
   287  // Edge cases for s and sep (for example, empty strings) are handled
   288  // as described in the documentation for SplitAfter.
   289  func SplitAfterN(s, sep string, n int) []string {
   290  	return genSplit(s, sep, len(sep), n)
   291  }
   292  
   293  // Split slices s into all substrings separated by sep and returns a slice of
   294  // the substrings between those separators.
   295  //
   296  // If s does not contain sep and sep is not empty, Split returns a
   297  // slice of length 1 whose only element is s.
   298  //
   299  // If sep is empty, Split splits after each UTF-8 sequence. If both s
   300  // and sep are empty, Split returns an empty slice.
   301  //
   302  // It is equivalent to SplitN with a count of -1.
   303  func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
   304  
   305  // SplitAfter slices s into all substrings after each instance of sep and
   306  // returns a slice of those substrings.
   307  //
   308  // If s does not contain sep and sep is not empty, SplitAfter returns
   309  // a slice of length 1 whose only element is s.
   310  //
   311  // If sep is empty, SplitAfter splits after each UTF-8 sequence. If
   312  // both s and sep are empty, SplitAfter returns an empty slice.
   313  //
   314  // It is equivalent to SplitAfterN with a count of -1.
   315  func SplitAfter(s, sep string) []string {
   316  	return genSplit(s, sep, len(sep), -1)
   317  }
   318  
   319  var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
   320  
   321  // Fields splits the string s around each instance of one or more consecutive white space
   322  // characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
   323  // empty slice if s contains only white space.
   324  func Fields(s string) []string {
   325  	// First count the fields.
   326  	// This is an exact count if s is ASCII, otherwise it is an approximation.
   327  	n := 0
   328  	wasSpace := 1
   329  	// setBits is used to track which bits are set in the bytes of s.
   330  	setBits := uint8(0)
   331  	for i := 0; i < len(s); i++ {
   332  		r := s[i]
   333  		setBits |= r
   334  		isSpace := int(asciiSpace[r])
   335  		n += wasSpace & ^isSpace
   336  		wasSpace = isSpace
   337  	}
   338  
   339  	if setBits < utf8.RuneSelf { // ASCII fast path
   340  		a := make([]string, n)
   341  		na := 0
   342  		fieldStart := 0
   343  		i := 0
   344  		// Skip spaces in the front of the input.
   345  		for i < len(s) && asciiSpace[s[i]] != 0 {
   346  			i++
   347  		}
   348  		fieldStart = i
   349  		for i < len(s) {
   350  			if asciiSpace[s[i]] == 0 {
   351  				i++
   352  				continue
   353  			}
   354  			a[na] = s[fieldStart:i]
   355  			na++
   356  			i++
   357  			// Skip spaces in between fields.
   358  			for i < len(s) && asciiSpace[s[i]] != 0 {
   359  				i++
   360  			}
   361  			fieldStart = i
   362  		}
   363  		if fieldStart < len(s) { // Last field might end at EOF.
   364  			a[na] = s[fieldStart:]
   365  		}
   366  		return a
   367  	}
   368  
   369  	// Some runes in the input string are not ASCII.
   370  	return FieldsFunc(s, unicode.IsSpace)
   371  }
   372  
   373  // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
   374  // and returns an array of slices of s. If all code points in s satisfy f(c) or the
   375  // string is empty, an empty slice is returned.
   376  // FieldsFunc makes no guarantees about the order in which it calls f(c).
   377  // If f does not return consistent results for a given c, FieldsFunc may crash.
   378  func FieldsFunc(s string, f func(rune) bool) []string {
   379  	// A span is used to record a slice of s of the form s[start:end].
   380  	// The start index is inclusive and the end index is exclusive.
   381  	type span struct {
   382  		start int
   383  		end   int
   384  	}
   385  	spans := make([]span, 0, 32)
   386  
   387  	// Find the field start and end indices.
   388  	wasField := false
   389  	fromIndex := 0
   390  	for i, rune := range s {
   391  		if f(rune) {
   392  			if wasField {
   393  				spans = append(spans, span{start: fromIndex, end: i})
   394  				wasField = false
   395  			}
   396  		} else {
   397  			if !wasField {
   398  				fromIndex = i
   399  				wasField = true
   400  			}
   401  		}
   402  	}
   403  
   404  	// Last field might end at EOF.
   405  	if wasField {
   406  		spans = append(spans, span{fromIndex, len(s)})
   407  	}
   408  
   409  	// Create strings from recorded field indices.
   410  	a := make([]string, len(spans))
   411  	for i, span := range spans {
   412  		a[i] = s[span.start:span.end]
   413  	}
   414  
   415  	return a
   416  }
   417  
   418  // Join concatenates the elements of a to create a single string. The separator string
   419  // sep is placed between elements in the resulting string.
   420  func Join(a []string, sep string) string {
   421  	switch len(a) {
   422  	case 0:
   423  		return ""
   424  	case 1:
   425  		return a[0]
   426  	}
   427  	n := len(sep) * (len(a) - 1)
   428  	for i := 0; i < len(a); i++ {
   429  		n += len(a[i])
   430  	}
   431  
   432  	var b Builder
   433  	b.Grow(n)
   434  	b.WriteString(a[0])
   435  	for _, s := range a[1:] {
   436  		b.WriteString(sep)
   437  		b.WriteString(s)
   438  	}
   439  	return b.String()
   440  }
   441  
   442  // HasPrefix tests whether the string s begins with prefix.
   443  func HasPrefix(s, prefix string) bool {
   444  	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
   445  }
   446  
   447  // HasSuffix tests whether the string s ends with suffix.
   448  func HasSuffix(s, suffix string) bool {
   449  	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
   450  }
   451  
   452  // Map returns a copy of the string s with all its characters modified
   453  // according to the mapping function. If mapping returns a negative value, the character is
   454  // dropped from the string with no replacement.
   455  func Map(mapping func(rune) rune, s string) string {
   456  	// In the worst case, the string can grow when mapped, making
   457  	// things unpleasant. But it's so rare we barge in assuming it's
   458  	// fine. It could also shrink but that falls out naturally.
   459  
   460  	// The output buffer b is initialized on demand, the first
   461  	// time a character differs.
   462  	var b Builder
   463  
   464  	for i, c := range s {
   465  		r := mapping(c)
   466  		if r == c && c != utf8.RuneError {
   467  			continue
   468  		}
   469  
   470  		var width int
   471  		if c == utf8.RuneError {
   472  			c, width = utf8.DecodeRuneInString(s[i:])
   473  			if width != 1 && r == c {
   474  				continue
   475  			}
   476  		} else {
   477  			width = utf8.RuneLen(c)
   478  		}
   479  
   480  		b.Grow(len(s) + utf8.UTFMax)
   481  		b.WriteString(s[:i])
   482  		if r >= 0 {
   483  			b.WriteRune(r)
   484  		}
   485  
   486  		s = s[i+width:]
   487  		break
   488  	}
   489  
   490  	// Fast path for unchanged input
   491  	if b.Cap() == 0 { // didn't call b.Grow above
   492  		return s
   493  	}
   494  
   495  	for _, c := range s {
   496  		r := mapping(c)
   497  
   498  		if r >= 0 {
   499  			// common case
   500  			// Due to inlining, it is more performant to determine if WriteByte should be
   501  			// invoked rather than always call WriteRune
   502  			if r < utf8.RuneSelf {
   503  				b.WriteByte(byte(r))
   504  			} else {
   505  				// r is not a ASCII rune.
   506  				b.WriteRune(r)
   507  			}
   508  		}
   509  	}
   510  
   511  	return b.String()
   512  }
   513  
   514  // Repeat returns a new string consisting of count copies of the string s.
   515  //
   516  // It panics if count is negative or if
   517  // the result of (len(s) * count) overflows.
   518  func Repeat(s string, count int) string {
   519  	if count == 0 {
   520  		return ""
   521  	}
   522  
   523  	// Since we cannot return an error on overflow,
   524  	// we should panic if the repeat will generate
   525  	// an overflow.
   526  	// See Issue golang.org/issue/16237
   527  	if count < 0 {
   528  		panic("strings: negative Repeat count")
   529  	} else if len(s)*count/count != len(s) {
   530  		panic("strings: Repeat count causes overflow")
   531  	}
   532  
   533  	n := len(s) * count
   534  	var b Builder
   535  	b.Grow(n)
   536  	b.WriteString(s)
   537  	for b.Len() < n {
   538  		if b.Len() <= n/2 {
   539  			b.WriteString(b.String())
   540  		} else {
   541  			b.WriteString(b.String()[:n-b.Len()])
   542  			break
   543  		}
   544  	}
   545  	return b.String()
   546  }
   547  
   548  // ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case.
   549  func ToUpper(s string) string {
   550  	isASCII, hasLower := true, false
   551  	for i := 0; i < len(s); i++ {
   552  		c := s[i]
   553  		if c >= utf8.RuneSelf {
   554  			isASCII = false
   555  			break
   556  		}
   557  		hasLower = hasLower || (c >= 'a' && c <= 'z')
   558  	}
   559  
   560  	if isASCII { // optimize for ASCII-only strings.
   561  		if !hasLower {
   562  			return s
   563  		}
   564  		var b Builder
   565  		b.Grow(len(s))
   566  		for i := 0; i < len(s); i++ {
   567  			c := s[i]
   568  			if c >= 'a' && c <= 'z' {
   569  				c -= 'a' - 'A'
   570  			}
   571  			b.WriteByte(c)
   572  		}
   573  		return b.String()
   574  	}
   575  	return Map(unicode.ToUpper, s)
   576  }
   577  
   578  // ToLower returns a copy of the string s with all Unicode letters mapped to their lower case.
   579  func ToLower(s string) string {
   580  	isASCII, hasUpper := true, false
   581  	for i := 0; i < len(s); i++ {
   582  		c := s[i]
   583  		if c >= utf8.RuneSelf {
   584  			isASCII = false
   585  			break
   586  		}
   587  		hasUpper = hasUpper || (c >= 'A' && c <= 'Z')
   588  	}
   589  
   590  	if isASCII { // optimize for ASCII-only strings.
   591  		if !hasUpper {
   592  			return s
   593  		}
   594  		var b Builder
   595  		b.Grow(len(s))
   596  		for i := 0; i < len(s); i++ {
   597  			c := s[i]
   598  			if c >= 'A' && c <= 'Z' {
   599  				c += 'a' - 'A'
   600  			}
   601  			b.WriteByte(c)
   602  		}
   603  		return b.String()
   604  	}
   605  	return Map(unicode.ToLower, s)
   606  }
   607  
   608  // ToTitle returns a copy of the string s with all Unicode letters mapped to their title case.
   609  func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
   610  
   611  // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
   612  // upper case using the case mapping specified by c.
   613  func ToUpperSpecial(c unicode.SpecialCase, s string) string {
   614  	return Map(c.ToUpper, s)
   615  }
   616  
   617  // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
   618  // lower case using the case mapping specified by c.
   619  func ToLowerSpecial(c unicode.SpecialCase, s string) string {
   620  	return Map(c.ToLower, s)
   621  }
   622  
   623  // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
   624  // title case, giving priority to the special casing rules.
   625  func ToTitleSpecial(c unicode.SpecialCase, s string) string {
   626  	return Map(c.ToTitle, s)
   627  }
   628  
   629  // isSeparator reports whether the rune could mark a word boundary.
   630  // TODO: update when package unicode captures more of the properties.
   631  func isSeparator(r rune) bool {
   632  	// ASCII alphanumerics and underscore are not separators
   633  	if r <= 0x7F {
   634  		switch {
   635  		case '0' <= r && r <= '9':
   636  			return false
   637  		case 'a' <= r && r <= 'z':
   638  			return false
   639  		case 'A' <= r && r <= 'Z':
   640  			return false
   641  		case r == '_':
   642  			return false
   643  		}
   644  		return true
   645  	}
   646  	// Letters and digits are not separators
   647  	if unicode.IsLetter(r) || unicode.IsDigit(r) {
   648  		return false
   649  	}
   650  	// Otherwise, all we can do for now is treat spaces as separators.
   651  	return unicode.IsSpace(r)
   652  }
   653  
   654  // Title returns a copy of the string s with all Unicode letters that begin words
   655  // mapped to their title case.
   656  //
   657  // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
   658  func Title(s string) string {
   659  	// Use a closure here to remember state.
   660  	// Hackish but effective. Depends on Map scanning in order and calling
   661  	// the closure once per rune.
   662  	prev := ' '
   663  	return Map(
   664  		func(r rune) rune {
   665  			if isSeparator(prev) {
   666  				prev = r
   667  				return unicode.ToTitle(r)
   668  			}
   669  			prev = r
   670  			return r
   671  		},
   672  		s)
   673  }
   674  
   675  // TrimLeftFunc returns a slice of the string s with all leading
   676  // Unicode code points c satisfying f(c) removed.
   677  func TrimLeftFunc(s string, f func(rune) bool) string {
   678  	i := indexFunc(s, f, false)
   679  	if i == -1 {
   680  		return ""
   681  	}
   682  	return s[i:]
   683  }
   684  
   685  // TrimRightFunc returns a slice of the string s with all trailing
   686  // Unicode code points c satisfying f(c) removed.
   687  func TrimRightFunc(s string, f func(rune) bool) string {
   688  	i := lastIndexFunc(s, f, false)
   689  	if i >= 0 && s[i] >= utf8.RuneSelf {
   690  		_, wid := utf8.DecodeRuneInString(s[i:])
   691  		i += wid
   692  	} else {
   693  		i++
   694  	}
   695  	return s[0:i]
   696  }
   697  
   698  // TrimFunc returns a slice of the string s with all leading
   699  // and trailing Unicode code points c satisfying f(c) removed.
   700  func TrimFunc(s string, f func(rune) bool) string {
   701  	return TrimRightFunc(TrimLeftFunc(s, f), f)
   702  }
   703  
   704  // IndexFunc returns the index into s of the first Unicode
   705  // code point satisfying f(c), or -1 if none do.
   706  func IndexFunc(s string, f func(rune) bool) int {
   707  	return indexFunc(s, f, true)
   708  }
   709  
   710  // LastIndexFunc returns the index into s of the last
   711  // Unicode code point satisfying f(c), or -1 if none do.
   712  func LastIndexFunc(s string, f func(rune) bool) int {
   713  	return lastIndexFunc(s, f, true)
   714  }
   715  
   716  // indexFunc is the same as IndexFunc except that if
   717  // truth==false, the sense of the predicate function is
   718  // inverted.
   719  func indexFunc(s string, f func(rune) bool, truth bool) int {
   720  	for i, r := range s {
   721  		if f(r) == truth {
   722  			return i
   723  		}
   724  	}
   725  	return -1
   726  }
   727  
   728  // lastIndexFunc is the same as LastIndexFunc except that if
   729  // truth==false, the sense of the predicate function is
   730  // inverted.
   731  func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
   732  	for i := len(s); i > 0; {
   733  		r, size := utf8.DecodeLastRuneInString(s[0:i])
   734  		i -= size
   735  		if f(r) == truth {
   736  			return i
   737  		}
   738  	}
   739  	return -1
   740  }
   741  
   742  // asciiSet is a 32-byte value, where each bit represents the presence of a
   743  // given ASCII character in the set. The 128-bits of the lower 16 bytes,
   744  // starting with the least-significant bit of the lowest word to the
   745  // most-significant bit of the highest word, map to the full range of all
   746  // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
   747  // ensuring that any non-ASCII character will be reported as not in the set.
   748  type asciiSet [8]uint32
   749  
   750  // makeASCIISet creates a set of ASCII characters and reports whether all
   751  // characters in chars are ASCII.
   752  func makeASCIISet(chars string) (as asciiSet, ok bool) {
   753  	for i := 0; i < len(chars); i++ {
   754  		c := chars[i]
   755  		if c >= utf8.RuneSelf {
   756  			return as, false
   757  		}
   758  		as[c>>5] |= 1 << uint(c&31)
   759  	}
   760  	return as, true
   761  }
   762  
   763  // contains reports whether c is inside the set.
   764  func (as *asciiSet) contains(c byte) bool {
   765  	return (as[c>>5] & (1 << uint(c&31))) != 0
   766  }
   767  
   768  func makeCutsetFunc(cutset string) func(rune) bool {
   769  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
   770  		return func(r rune) bool {
   771  			return r == rune(cutset[0])
   772  		}
   773  	}
   774  	if as, isASCII := makeASCIISet(cutset); isASCII {
   775  		return func(r rune) bool {
   776  			return r < utf8.RuneSelf && as.contains(byte(r))
   777  		}
   778  	}
   779  	return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
   780  }
   781  
   782  // Trim returns a slice of the string s with all leading and
   783  // trailing Unicode code points contained in cutset removed.
   784  func Trim(s string, cutset string) string {
   785  	if s == "" || cutset == "" {
   786  		return s
   787  	}
   788  	return TrimFunc(s, makeCutsetFunc(cutset))
   789  }
   790  
   791  // TrimLeft returns a slice of the string s with all leading
   792  // Unicode code points contained in cutset removed.
   793  //
   794  // To remove a prefix, use TrimPrefix instead.
   795  func TrimLeft(s string, cutset string) string {
   796  	if s == "" || cutset == "" {
   797  		return s
   798  	}
   799  	return TrimLeftFunc(s, makeCutsetFunc(cutset))
   800  }
   801  
   802  // TrimRight returns a slice of the string s, with all trailing
   803  // Unicode code points contained in cutset removed.
   804  //
   805  // To remove a suffix, use TrimSuffix instead.
   806  func TrimRight(s string, cutset string) string {
   807  	if s == "" || cutset == "" {
   808  		return s
   809  	}
   810  	return TrimRightFunc(s, makeCutsetFunc(cutset))
   811  }
   812  
   813  // TrimSpace returns a slice of the string s, with all leading
   814  // and trailing white space removed, as defined by Unicode.
   815  func TrimSpace(s string) string {
   816  	return TrimFunc(s, unicode.IsSpace)
   817  }
   818  
   819  // TrimPrefix returns s without the provided leading prefix string.
   820  // If s doesn't start with prefix, s is returned unchanged.
   821  func TrimPrefix(s, prefix string) string {
   822  	if HasPrefix(s, prefix) {
   823  		return s[len(prefix):]
   824  	}
   825  	return s
   826  }
   827  
   828  // TrimSuffix returns s without the provided trailing suffix string.
   829  // If s doesn't end with suffix, s is returned unchanged.
   830  func TrimSuffix(s, suffix string) string {
   831  	if HasSuffix(s, suffix) {
   832  		return s[:len(s)-len(suffix)]
   833  	}
   834  	return s
   835  }
   836  
   837  // Replace returns a copy of the string s with the first n
   838  // non-overlapping instances of old replaced by new.
   839  // If old is empty, it matches at the beginning of the string
   840  // and after each UTF-8 sequence, yielding up to k+1 replacements
   841  // for a k-rune string.
   842  // If n < 0, there is no limit on the number of replacements.
   843  func Replace(s, old, new string, n int) string {
   844  	if old == new || n == 0 {
   845  		return s // avoid allocation
   846  	}
   847  
   848  	// Compute number of replacements.
   849  	if m := Count(s, old); m == 0 {
   850  		return s // avoid allocation
   851  	} else if n < 0 || m < n {
   852  		n = m
   853  	}
   854  
   855  	// Apply replacements to buffer.
   856  	t := make([]byte, len(s)+n*(len(new)-len(old)))
   857  	w := 0
   858  	start := 0
   859  	for i := 0; i < n; i++ {
   860  		j := start
   861  		if len(old) == 0 {
   862  			if i > 0 {
   863  				_, wid := utf8.DecodeRuneInString(s[start:])
   864  				j += wid
   865  			}
   866  		} else {
   867  			j += Index(s[start:], old)
   868  		}
   869  		w += copy(t[w:], s[start:j])
   870  		w += copy(t[w:], new)
   871  		start = j + len(old)
   872  	}
   873  	w += copy(t[w:], s[start:])
   874  	return string(t[0:w])
   875  }
   876  
   877  // ReplaceAll returns a copy of the string s with all
   878  // non-overlapping instances of old replaced by new.
   879  // If old is empty, it matches at the beginning of the string
   880  // and after each UTF-8 sequence, yielding up to k+1 replacements
   881  // for a k-rune string.
   882  func ReplaceAll(s, old, new string) string {
   883  	return Replace(s, old, new, -1)
   884  }
   885  
   886  // EqualFold reports whether s and t, interpreted as UTF-8 strings,
   887  // are equal under Unicode case-folding.
   888  func EqualFold(s, t string) bool {
   889  	for s != "" && t != "" {
   890  		// Extract first rune from each string.
   891  		var sr, tr rune
   892  		if s[0] < utf8.RuneSelf {
   893  			sr, s = rune(s[0]), s[1:]
   894  		} else {
   895  			r, size := utf8.DecodeRuneInString(s)
   896  			sr, s = r, s[size:]
   897  		}
   898  		if t[0] < utf8.RuneSelf {
   899  			tr, t = rune(t[0]), t[1:]
   900  		} else {
   901  			r, size := utf8.DecodeRuneInString(t)
   902  			tr, t = r, t[size:]
   903  		}
   904  
   905  		// If they match, keep going; if not, return false.
   906  
   907  		// Easy case.
   908  		if tr == sr {
   909  			continue
   910  		}
   911  
   912  		// Make sr < tr to simplify what follows.
   913  		if tr < sr {
   914  			tr, sr = sr, tr
   915  		}
   916  		// Fast check for ASCII.
   917  		if tr < utf8.RuneSelf {
   918  			// ASCII only, sr/tr must be upper/lower case
   919  			if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
   920  				continue
   921  			}
   922  			return false
   923  		}
   924  
   925  		// General case. SimpleFold(x) returns the next equivalent rune > x
   926  		// or wraps around to smaller values.
   927  		r := unicode.SimpleFold(sr)
   928  		for r != sr && r < tr {
   929  			r = unicode.SimpleFold(r)
   930  		}
   931  		if r == tr {
   932  			continue
   933  		}
   934  		return false
   935  	}
   936  
   937  	// One string is empty. Are both?
   938  	return s == t
   939  }
   940  
   941  // Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
   942  func Index(s, substr string) int {
   943  	n := len(substr)
   944  	switch {
   945  	case n == 0:
   946  		return 0
   947  	case n == 1:
   948  		return IndexByte(s, substr[0])
   949  	case n == len(s):
   950  		if substr == s {
   951  			return 0
   952  		}
   953  		return -1
   954  	case n > len(s):
   955  		return -1
   956  	case n <= bytealg.MaxLen:
   957  		// Use brute force when s and substr both are small
   958  		if len(s) <= bytealg.MaxBruteForce {
   959  			return bytealg.IndexString(s, substr)
   960  		}
   961  		c0 := substr[0]
   962  		c1 := substr[1]
   963  		i := 0
   964  		t := len(s) - n + 1
   965  		fails := 0
   966  		for i < t {
   967  			if s[i] != c0 {
   968  				// IndexByte is faster than bytealg.IndexString, so use it as long as
   969  				// we're not getting lots of false positives.
   970  				o := IndexByte(s[i:t], c0)
   971  				if o < 0 {
   972  					return -1
   973  				}
   974  				i += o
   975  			}
   976  			if s[i+1] == c1 && s[i:i+n] == substr {
   977  				return i
   978  			}
   979  			fails++
   980  			i++
   981  			// Switch to bytealg.IndexString when IndexByte produces too many false positives.
   982  			if fails > bytealg.Cutover(i) {
   983  				r := bytealg.IndexString(s[i:], substr)
   984  				if r >= 0 {
   985  					return r + i
   986  				}
   987  				return -1
   988  			}
   989  		}
   990  		return -1
   991  	}
   992  	c0 := substr[0]
   993  	c1 := substr[1]
   994  	i := 0
   995  	t := len(s) - n + 1
   996  	fails := 0
   997  	for i < t {
   998  		if s[i] != c0 {
   999  			o := IndexByte(s[i:t], c0)
  1000  			if o < 0 {
  1001  				return -1
  1002  			}
  1003  			i += o
  1004  		}
  1005  		if s[i+1] == c1 && s[i:i+n] == substr {
  1006  			return i
  1007  		}
  1008  		i++
  1009  		fails++
  1010  		if fails >= 4+i>>4 && i < t {
  1011  			// See comment in ../bytes/bytes_generic.go.
  1012  			j := indexRabinKarp(s[i:], substr)
  1013  			if j < 0 {
  1014  				return -1
  1015  			}
  1016  			return i + j
  1017  		}
  1018  	}
  1019  	return -1
  1020  }
  1021  
  1022  func indexRabinKarp(s, substr string) int {
  1023  	// Rabin-Karp search
  1024  	hashss, pow := hashStr(substr)
  1025  	n := len(substr)
  1026  	var h uint32
  1027  	for i := 0; i < n; i++ {
  1028  		h = h*primeRK + uint32(s[i])
  1029  	}
  1030  	if h == hashss && s[:n] == substr {
  1031  		return 0
  1032  	}
  1033  	for i := n; i < len(s); {
  1034  		h *= primeRK
  1035  		h += uint32(s[i])
  1036  		h -= pow * uint32(s[i-n])
  1037  		i++
  1038  		if h == hashss && s[i-n:i] == substr {
  1039  			return i - n
  1040  		}
  1041  	}
  1042  	return -1
  1043  
  1044  }