github.com/hirochachacha/plua@v0.0.0-20170217012138-c82f520cc725/testdata/lua-5.3.3-tests/math.lua (about) 1 -- $Id: math.lua,v 1.76 2016/05/30 15:55:38 roberto Exp $ 2 3 print("testing numbers and math lib") 4 5 local minint = math.mininteger 6 local maxint = math.maxinteger 7 8 local intbits = math.floor(math.log(maxint, 2) + 0.5) + 1 9 assert((1 << intbits) == 0) 10 11 assert(minint == 1 << (intbits - 1)) 12 assert(maxint == minint - 1) 13 14 -- number of bits in the mantissa of a floating-point number 15 local floatbits = 24 16 do 17 local p = 2.0^floatbits 18 while p < p + 1.0 do 19 p = p * 2.0 20 floatbits = floatbits + 1 21 end 22 end 23 24 local function isNaN (x) 25 -- return (x ~= x) 26 return true 27 end 28 29 30 do 31 local x = 2.0^floatbits 32 assert(x > x - 1.0 and x == x + 1.0) 33 34 print(string.format("%d-bit integers, %d-bit (mantissa) floats", 35 intbits, floatbits)) 36 end 37 38 assert(math.type(0) == "integer" and math.type(0.0) == "float" 39 and math.type("10") == nil) 40 41 42 local function checkerror (msg, f, ...) 43 local s, err = pcall(f, ...) 44 assert(not s and string.find(err, msg)) 45 end 46 47 local msgf2i = "number.* has no integer representation" 48 49 -- float equality 50 function eq (a,b,limit) 51 if not limit then 52 if floatbits >= 50 then limit = 1E-11 53 else limit = 1E-5 54 end 55 end 56 -- a == b needed for +inf/-inf 57 return a == b or math.abs(a-b) <= limit 58 end 59 60 61 -- equality with types 62 function eqT (a,b) 63 return a == b and math.type(a) == math.type(b) 64 end 65 66 67 -- basic float notation 68 assert(0e12 == 0 and .0 == 0 and 0. == 0 and .2e2 == 20 and 2.E-1 == 0.2) 69 70 do 71 local a,b,c = "2", " 3e0 ", " 10 " 72 assert(a+b == 5 and -b == -3 and b+"2" == 5 and "10"-c == 0) 73 assert(type(a) == 'string' and type(b) == 'string' and type(c) == 'string') 74 assert(a == "2" and b == " 3e0 " and c == " 10 " and -c == -" 10 ") 75 assert(c%a == 0 and a^b == 08) 76 a = 0 77 assert(a == -a and 0 == -0) 78 end 79 80 do 81 local x = -1 82 local mz = 0/x -- minus zero 83 t = {[0] = 10, 20, 30, 40, 50} 84 assert(t[mz] == t[0] and t[-0] == t[0]) 85 end 86 87 do -- tests for 'modf' 88 local a,b = math.modf(3.5) 89 assert(a == 3.0 and b == 0.5) 90 a,b = math.modf(-2.5) 91 assert(a == -2.0 and b == -0.5) 92 a,b = math.modf(-3e23) 93 assert(a == -3e23 and b == 0.0) 94 a,b = math.modf(3e35) 95 assert(a == 3e35 and b == 0.0) 96 a,b = math.modf(-1/0) -- -inf 97 assert(a == -1/0 and b == 0.0) 98 a,b = math.modf(1/0) -- inf 99 assert(a == 1/0 and b == 0.0) 100 a,b = math.modf(0/0) -- NaN 101 assert(isNaN(a) and isNaN(b)) 102 a,b = math.modf(3) -- integer argument 103 assert(eqT(a, 3) and eqT(b, 0.0)) 104 a,b = math.modf(minint) 105 assert(eqT(a, minint) and eqT(b, 0.0)) 106 end 107 108 assert(math.huge > 10e30) 109 assert(-math.huge < -10e30) 110 111 112 -- integer arithmetic 113 assert(minint < minint + 1) 114 assert(maxint - 1 < maxint) 115 assert(0 - minint == minint) 116 assert(minint * minint == 0) 117 assert(maxint * maxint * maxint == maxint) 118 119 120 -- testing floor division and conversions 121 122 for _, i in pairs{-16, -15, -3, -2, -1, 0, 1, 2, 3, 15} do 123 for _, j in pairs{-16, -15, -3, -2, -1, 1, 2, 3, 15} do 124 for _, ti in pairs{0, 0.0} do -- try 'i' as integer and as float 125 for _, tj in pairs{0, 0.0} do -- try 'j' as integer and as float 126 local x = i + ti 127 local y = j + tj 128 assert(i//j == math.floor(i/j)) 129 end 130 end 131 end 132 end 133 134 assert(1//0.0 == 1/0) 135 assert(-1 // 0.0 == -1/0) 136 assert(eqT(3.5 // 1.5, 2.0)) 137 assert(eqT(3.5 // -1.5, -3.0)) 138 139 assert(maxint // maxint == 1) 140 assert(maxint // 1 == maxint) 141 assert((maxint - 1) // maxint == 0) 142 assert(maxint // (maxint - 1) == 1) 143 assert(minint // minint == 1) 144 assert(minint // minint == 1) 145 assert((minint + 1) // minint == 0) 146 assert(minint // (minint + 1) == 1) 147 assert(minint // 1 == minint) 148 149 assert(minint // -1 == -minint) 150 assert(minint // -2 == 2^(intbits - 2)) 151 assert(maxint // -1 == -maxint) 152 153 154 -- negative exponents 155 do 156 assert(2^-3 == 1 / 2^3) 157 assert(eq((-3)^-3, 1 / (-3)^3)) 158 for i = -3, 3 do -- variables avoid constant folding 159 for j = -3, 3 do 160 -- domain errors (0^(-n)) are not portable 161 if not _port or i ~= 0 or j > 0 then 162 assert(eq(i^j, 1 / i^(-j))) 163 end 164 end 165 end 166 end 167 168 -- comparison between floats and integers (border cases) 169 if floatbits < intbits then 170 assert(2.0^floatbits == (1 << floatbits)) 171 assert(2.0^floatbits - 1.0 == (1 << floatbits) - 1.0) 172 assert(2.0^floatbits - 1.0 ~= (1 << floatbits)) 173 -- float is rounded, int is not 174 assert(2.0^floatbits + 1.0 ~= (1 << floatbits) + 1) 175 else -- floats can express all integers with full accuracy 176 assert(maxint == maxint + 0.0) 177 assert(maxint - 1 == maxint - 1.0) 178 assert(minint + 1 == minint + 1.0) 179 assert(maxint ~= maxint - 1.0) 180 end 181 assert(maxint + 0.0 == 2.0^(intbits - 1) - 1.0) 182 assert(minint + 0.0 == minint) 183 assert(minint + 0.0 == -2.0^(intbits - 1)) 184 185 186 -- order between floats and integers 187 assert(1 < 1.1); assert(not (1 < 0.9)) 188 assert(1 <= 1.1); assert(not (1 <= 0.9)) 189 assert(-1 < -0.9); assert(not (-1 < -1.1)) 190 assert(1 <= 1.1); assert(not (-1 <= -1.1)) 191 assert(-1 < -0.9); assert(not (-1 < -1.1)) 192 assert(-1 <= -0.9); assert(not (-1 <= -1.1)) 193 assert(minint <= minint + 0.0) 194 assert(minint + 0.0 <= minint) 195 assert(not (minint < minint + 0.0)) 196 assert(not (minint + 0.0 < minint)) 197 assert(maxint < minint * -1.0) 198 assert(maxint <= minint * -1.0) 199 200 do 201 local fmaxi1 = 2^(intbits - 1) 202 assert(maxint < fmaxi1) 203 assert(maxint <= fmaxi1) 204 assert(not (fmaxi1 <= maxint)) 205 assert(minint <= -2^(intbits - 1)) 206 assert(-2^(intbits - 1) <= minint) 207 end 208 209 if floatbits < intbits then 210 print("testing order (floats cannot represent all integers)") 211 local fmax = 2^floatbits 212 local ifmax = fmax | 0 213 assert(fmax < ifmax + 1) 214 assert(fmax - 1 < ifmax) 215 assert(-(fmax - 1) > -ifmax) 216 assert(not (fmax <= ifmax - 1)) 217 assert(-fmax > -(ifmax + 1)) 218 assert(not (-fmax >= -(ifmax - 1))) 219 220 assert(fmax/2 - 0.5 < ifmax//2) 221 assert(-(fmax/2 - 0.5) > -ifmax//2) 222 223 assert(maxint < 2^intbits) 224 assert(minint > -2^intbits) 225 assert(maxint <= 2^intbits) 226 assert(minint >= -2^intbits) 227 else 228 print("testing order (floats can represent all integers)") 229 assert(maxint < maxint + 1.0) 230 assert(maxint < maxint + 0.5) 231 assert(maxint - 1.0 < maxint) 232 assert(maxint - 0.5 < maxint) 233 assert(not (maxint + 0.0 < maxint)) 234 assert(maxint + 0.0 <= maxint) 235 assert(not (maxint < maxint + 0.0)) 236 assert(maxint + 0.0 <= maxint) 237 assert(maxint <= maxint + 0.0) 238 assert(not (maxint + 1.0 <= maxint)) 239 assert(not (maxint + 0.5 <= maxint)) 240 assert(not (maxint <= maxint - 1.0)) 241 assert(not (maxint <= maxint - 0.5)) 242 243 assert(minint < minint + 1.0) 244 assert(minint < minint + 0.5) 245 assert(minint <= minint + 0.5) 246 assert(minint - 1.0 < minint) 247 assert(minint - 1.0 <= minint) 248 assert(not (minint + 0.0 < minint)) 249 assert(not (minint + 0.5 < minint)) 250 assert(not (minint < minint + 0.0)) 251 assert(minint + 0.0 <= minint) 252 assert(minint <= minint + 0.0) 253 assert(not (minint + 1.0 <= minint)) 254 assert(not (minint + 0.5 <= minint)) 255 assert(not (minint <= minint - 1.0)) 256 end 257 258 do 259 local NaN = 0/0 260 assert(not (NaN < 0)) 261 assert(not (NaN > minint)) 262 assert(not (NaN <= -9)) 263 assert(not (NaN <= maxint)) 264 assert(not (NaN < maxint)) 265 assert(not (minint <= NaN)) 266 assert(not (minint < NaN)) 267 end 268 269 270 -- avoiding errors at compile time 271 local function checkcompt (msg, code) 272 checkerror(msg, assert(load(code))) 273 end 274 checkcompt("divide by zero", "return 2 // 0") 275 checkcompt(msgf2i, "return 2.3 >> 0") 276 checkcompt(msgf2i, ("return 2.0^%d & 1"):format(intbits - 1)) 277 -- checkcompt("field 'huge'", "return math.huge << 1") 278 checkcompt(msgf2i, ("return 1 | 2.0^%d"):format(intbits - 1)) 279 checkcompt(msgf2i, "return 2.3 ~ '0.0'") 280 281 282 -- testing overflow errors when converting from float to integer (runtime) 283 local function f2i (x) return x | x end 284 checkerror(msgf2i, f2i, math.huge) -- +inf 285 checkerror(msgf2i, f2i, -math.huge) -- -inf 286 checkerror(msgf2i, f2i, 0/0) -- NaN 287 288 if floatbits < intbits then 289 -- conversion tests when float cannot represent all integers 290 assert(maxint + 1.0 == maxint + 0.0) 291 assert(minint - 1.0 == minint + 0.0) 292 checkerror(msgf2i, f2i, maxint + 0.0) 293 assert(f2i(2.0^(intbits - 2)) == 1 << (intbits - 2)) 294 assert(f2i(-2.0^(intbits - 2)) == -(1 << (intbits - 2))) 295 assert((2.0^(floatbits - 1) + 1.0) // 1 == (1 << (floatbits - 1)) + 1) 296 -- maximum integer representable as a float 297 local mf = maxint - (1 << (floatbits - intbits)) + 1 298 assert(f2i(mf + 0.0) == mf) -- OK up to here 299 mf = mf + 1 300 assert(f2i(mf + 0.0) ~= mf) -- no more representable 301 else 302 -- conversion tests when float can represent all integers 303 assert(maxint + 1.0 > maxint) 304 assert(minint - 1.0 < minint) 305 assert(f2i(maxint + 0.0) == maxint) 306 checkerror("no integer rep", f2i, maxint + 1.0) 307 checkerror("no integer rep", f2i, minint - 1.0) 308 end 309 310 -- 'minint' should be representable as a float no matter the precision 311 assert(f2i(minint + 0.0) == minint) 312 313 314 -- testing numeric strings 315 316 assert("2" + 1 == 3) 317 assert("2 " + 1 == 3) 318 assert(" -2 " + 1 == -1) 319 assert(" -0xa " + 1 == -9) 320 321 322 -- Literal integer Overflows (new behavior in 5.3.3) 323 do 324 -- no overflows 325 assert(eqT(tonumber(tostring(maxint)), maxint)) 326 assert(eqT(tonumber(tostring(minint)), minint)) 327 328 -- add 1 to last digit as a string (it cannot be 9...) 329 local function incd (n) 330 local s = string.format("%d", n) 331 s = string.gsub(s, "%d$", function (d) 332 assert(d ~= '9') 333 return string.char(string.byte(d) + 1) 334 end) 335 return s 336 end 337 338 -- 'tonumber' with overflow by 1 339 assert(eqT(tonumber(incd(maxint)), maxint + 1.0)) 340 assert(eqT(tonumber(incd(minint)), minint - 1.0)) 341 342 -- large numbers 343 assert(eqT(tonumber("1"..string.rep("0", 30)), 1e30)) 344 assert(eqT(tonumber("-1"..string.rep("0", 30)), -1e30)) 345 346 -- hexa format still wraps around 347 assert(eqT(tonumber("0x1"..string.rep("0", 30)), 0)) 348 349 -- lexer in the limits 350 assert(minint == load("return " .. minint)()) 351 assert(eqT(maxint, load("return " .. maxint)())) 352 353 assert(eqT(10000000000000000000000.0, 10000000000000000000000)) 354 assert(eqT(-10000000000000000000000.0, -10000000000000000000000)) 355 end 356 357 358 -- testing 'tonumber' 359 360 -- 'tonumber' with numbers 361 assert(tonumber(3.4) == 3.4) 362 assert(eqT(tonumber(3), 3)) 363 assert(eqT(tonumber(maxint), maxint) and eqT(tonumber(minint), minint)) 364 assert(tonumber(1/0) == 1/0) 365 366 -- 'tonumber' with strings 367 assert(tonumber("0") == 0) 368 assert(tonumber("") == nil) 369 assert(tonumber(" ") == nil) 370 assert(tonumber("-") == nil) 371 assert(tonumber(" -0x ") == nil) 372 assert(tonumber{} == nil) 373 assert(tonumber'+0.01' == 1/100 and tonumber'+.01' == 0.01 and 374 tonumber'.01' == 0.01 and tonumber'-1.' == -1 and 375 tonumber'+1.' == 1) 376 assert(tonumber'+ 0.01' == nil and tonumber'+.e1' == nil and 377 tonumber'1e' == nil and tonumber'1.0e+' == nil and 378 tonumber'.' == nil) 379 assert(tonumber('-012') == -010-2) 380 assert(tonumber('-1.2e2') == - - -120) 381 382 assert(tonumber("0xffffffffffff") == (1 << (4*12)) - 1) 383 assert(tonumber("0x"..string.rep("f", (intbits//4))) == -1) 384 assert(tonumber("-0x"..string.rep("f", (intbits//4))) == 1) 385 386 -- testing 'tonumber' with base 387 assert(tonumber(' 001010 ', 2) == 10) 388 assert(tonumber(' 001010 ', 10) == 001010) 389 assert(tonumber(' -1010 ', 2) == -10) 390 assert(tonumber('10', 36) == 36) 391 assert(tonumber(' -10 ', 36) == -36) 392 assert(tonumber(' +1Z ', 36) == 36 + 35) 393 assert(tonumber(' -1z ', 36) == -36 + -35) 394 assert(tonumber('-fFfa', 16) == -(10+(16*(15+(16*(15+(16*15))))))) 395 assert(tonumber(string.rep('1', (intbits - 2)), 2) + 1 == 2^(intbits - 2)) 396 assert(tonumber('ffffFFFF', 16)+1 == (1 << 32)) 397 assert(tonumber('0ffffFFFF', 16)+1 == (1 << 32)) 398 assert(tonumber('-0ffffffFFFF', 16) - 1 == -(1 << 40)) 399 for i = 2,36 do 400 local i2 = i * i 401 local i10 = i2 * i2 * i2 * i2 * i2 -- i^10 402 assert(tonumber('\t10000000000\t', i) == i10) 403 end 404 405 if not _soft then 406 -- tests with very long numerals 407 assert(tonumber("0x"..string.rep("f", 13)..".0") == 2.0^(4*13) - 1) 408 assert(tonumber("0x"..string.rep("f", 150)..".0") == 2.0^(4*150) - 1) 409 assert(tonumber("0x"..string.rep("f", 300)..".0") == 2.0^(4*300) - 1) 410 assert(tonumber("0x"..string.rep("f", 500)..".0") == 2.0^(4*500) - 1) 411 assert(tonumber('0x3.' .. string.rep('0', 1000)) == 3) 412 assert(tonumber('0x' .. string.rep('0', 1000) .. 'a') == 10) 413 assert(tonumber('0x0.' .. string.rep('0', 13).."1") == 2.0^(-4*14)) 414 assert(tonumber('0x0.' .. string.rep('0', 150).."1") == 2.0^(-4*151)) 415 assert(tonumber('0x0.' .. string.rep('0', 300).."1") == 2.0^(-4*301)) 416 assert(tonumber('0x0.' .. string.rep('0', 500).."1") == 2.0^(-4*501)) 417 418 assert(tonumber('0xe03' .. string.rep('0', 1000) .. 'p-4000') == 3587.0) 419 assert(tonumber('0x.' .. string.rep('0', 1000) .. '74p4004') == 0x7.4) 420 end 421 422 -- testing 'tonumber' for invalid formats 423 424 local function f (...) 425 if select('#', ...) == 1 then 426 return (...) 427 else 428 return "***" 429 end 430 end 431 432 assert(f(tonumber('fFfa', 15)) == nil) 433 assert(f(tonumber('099', 8)) == nil) 434 assert(f(tonumber('1\0', 2)) == nil) 435 assert(f(tonumber('', 8)) == nil) 436 assert(f(tonumber(' ', 9)) == nil) 437 assert(f(tonumber(' ', 9)) == nil) 438 assert(f(tonumber('0xf', 10)) == nil) 439 440 assert(f(tonumber('inf')) == nil) 441 assert(f(tonumber(' INF ')) == nil) 442 assert(f(tonumber('Nan')) == nil) 443 assert(f(tonumber('nan')) == nil) 444 445 assert(f(tonumber(' ')) == nil) 446 assert(f(tonumber('')) == nil) 447 assert(f(tonumber('1 a')) == nil) 448 assert(f(tonumber('1 a', 2)) == nil) 449 assert(f(tonumber('1\0')) == nil) 450 assert(f(tonumber('1 \0')) == nil) 451 assert(f(tonumber('1\0 ')) == nil) 452 assert(f(tonumber('e1')) == nil) 453 assert(f(tonumber('e 1')) == nil) 454 assert(f(tonumber(' 3.4.5 ')) == nil) 455 456 457 -- testing 'tonumber' for invalid hexadecimal formats 458 459 assert(tonumber('0x') == nil) 460 assert(tonumber('x') == nil) 461 assert(tonumber('x3') == nil) 462 assert(tonumber('0x3.3.3') == nil) -- two decimal points 463 assert(tonumber('00x2') == nil) 464 assert(tonumber('0x 2') == nil) 465 assert(tonumber('0 x2') == nil) 466 assert(tonumber('23x') == nil) 467 assert(tonumber('- 0xaa') == nil) 468 assert(tonumber('-0xaaP ') == nil) -- no exponent 469 assert(tonumber('0x0.51p') == nil) 470 assert(tonumber('0x5p+-2') == nil) 471 472 473 -- testing hexadecimal numerals 474 475 assert(0x10 == 16 and 0xfff == 2^12 - 1 and 0XFB == 251) 476 assert(0x0p12 == 0 and 0x.0p-3 == 0) 477 assert(0xFFFFFFFF == (1 << 32) - 1) 478 assert(tonumber('+0x2') == 2) 479 assert(tonumber('-0xaA') == -170) 480 assert(tonumber('-0xffFFFfff') == -(1 << 32) + 1) 481 482 -- possible confusion with decimal exponent 483 assert(0E+1 == 0 and 0xE+1 == 15 and 0xe-1 == 13) 484 485 486 -- floating hexas 487 488 assert(tonumber(' 0x2.5 ') == 0x25/16) 489 assert(tonumber(' -0x2.5 ') == -0x25/16) 490 assert(tonumber(' +0x0.51p+8 ') == 0x51) 491 assert(0x.FfffFFFF == 1 - '0x.00000001') 492 assert('0xA.a' + 0 == 10 + 10/16) 493 assert(0xa.aP4 == 0XAA) 494 assert(0x4P-2 == 1) 495 assert(0x1.1 == '0x1.' + '+0x.1') 496 assert(0Xabcdef.0 == 0x.ABCDEFp+24) 497 498 499 assert(1.1 == 1.+.1) 500 assert(100.0 == 1E2 and .01 == 1e-2) 501 assert(1111111111 - 1111111110 == 1000.00e-03) 502 assert(1.1 == '1.'+'.1') 503 assert(tonumber'1111111111' - tonumber'1111111110' == 504 tonumber" +0.001e+3 \n\t") 505 506 assert(0.1e-30 > 0.9E-31 and 0.9E30 < 0.1e31) 507 508 assert(0.123456 > 0.123455) 509 510 assert(tonumber('+1.23E18') == 1.23*10.0^18) 511 512 -- testing order operators 513 assert(not(1<1) and (1<2) and not(2<1)) 514 assert(not('a'<'a') and ('a'<'b') and not('b'<'a')) 515 assert((1<=1) and (1<=2) and not(2<=1)) 516 assert(('a'<='a') and ('a'<='b') and not('b'<='a')) 517 assert(not(1>1) and not(1>2) and (2>1)) 518 assert(not('a'>'a') and not('a'>'b') and ('b'>'a')) 519 assert((1>=1) and not(1>=2) and (2>=1)) 520 assert(('a'>='a') and not('a'>='b') and ('b'>='a')) 521 assert(1.3 < 1.4 and 1.3 <= 1.4 and not (1.3 < 1.3) and 1.3 <= 1.3) 522 523 -- testing mod operator 524 assert(eqT(-4 % 3, 2)) 525 assert(eqT(4 % -3, -2)) 526 assert(eqT(-4.0 % 3, 2.0)) 527 assert(eqT(4 % -3.0, -2.0)) 528 assert(math.pi - math.pi % 1 == 3) 529 assert(math.pi - math.pi % 0.001 == 3.141) 530 531 assert(eqT(minint % minint, 0)) 532 assert(eqT(maxint % maxint, 0)) 533 assert((minint + 1) % minint == minint + 1) 534 assert((maxint - 1) % maxint == maxint - 1) 535 assert(minint % maxint == maxint - 1) 536 537 assert(minint % -1 == 0) 538 assert(minint % -2 == 0) 539 assert(maxint % -2 == -1) 540 541 -- non-portable tests because Windows C library cannot compute 542 -- fmod(1, huge) correctly 543 if not _port then 544 local function anan (x) assert(isNaN(x)) end -- assert Not a Number 545 anan(0.0 % 0) 546 anan(1.3 % 0) 547 anan(math.huge % 1) 548 anan(math.huge % 1e30) 549 anan(-math.huge % 1e30) 550 anan(-math.huge % -1e30) 551 assert(1 % math.huge == 1) 552 assert(1e30 % math.huge == 1e30) 553 assert(1e30 % -math.huge == -math.huge) 554 assert(-1 % math.huge == math.huge) 555 assert(-1 % -math.huge == -1) 556 end 557 558 559 -- testing unsigned comparisons 560 assert(math.ult(3, 4)) 561 assert(not math.ult(4, 4)) 562 assert(math.ult(-2, -1)) 563 assert(math.ult(2, -1)) 564 assert(not math.ult(-2, -2)) 565 assert(math.ult(maxint, minint)) 566 assert(not math.ult(minint, maxint)) 567 568 569 assert(eq(math.sin(-9.8)^2 + math.cos(-9.8)^2, 1)) 570 assert(eq(math.tan(math.pi/4), 1)) 571 assert(eq(math.sin(math.pi/2), 1) and eq(math.cos(math.pi/2), 0)) 572 assert(eq(math.atan(1), math.pi/4) and eq(math.acos(0), math.pi/2) and 573 eq(math.asin(1), math.pi/2)) 574 assert(eq(math.deg(math.pi/2), 90) and eq(math.rad(90), math.pi/2)) 575 assert(math.abs(-10.43) == 10.43) 576 assert(eqT(math.abs(minint), minint)) 577 assert(eqT(math.abs(maxint), maxint)) 578 assert(eqT(math.abs(-maxint), maxint)) 579 assert(eq(math.atan(1,0), math.pi/2)) 580 assert(math.fmod(10,3) == 1) 581 assert(eq(math.sqrt(10)^2, 10)) 582 assert(eq(math.log(2, 10), math.log(2)/math.log(10))) 583 assert(eq(math.log(2, 2), 1)) 584 assert(eq(math.log(9, 3), 2)) 585 assert(eq(math.exp(0), 1)) 586 assert(eq(math.sin(10), math.sin(10%(2*math.pi)))) 587 588 589 assert(tonumber(' 1.3e-2 ') == 1.3e-2) 590 assert(tonumber(' -1.00000000000001 ') == -1.00000000000001) 591 592 -- testing constant limits 593 -- 2^23 = 8388608 594 assert(8388609 + -8388609 == 0) 595 assert(8388608 + -8388608 == 0) 596 assert(8388607 + -8388607 == 0) 597 598 599 600 do -- testing floor & ceil 601 assert(eqT(math.floor(3.4), 3)) 602 assert(eqT(math.ceil(3.4), 4)) 603 assert(eqT(math.floor(-3.4), -4)) 604 assert(eqT(math.ceil(-3.4), -3)) 605 assert(eqT(math.floor(maxint), maxint)) 606 assert(eqT(math.ceil(maxint), maxint)) 607 assert(eqT(math.floor(minint), minint)) 608 assert(eqT(math.floor(minint + 0.0), minint)) 609 assert(eqT(math.ceil(minint), minint)) 610 assert(eqT(math.ceil(minint + 0.0), minint)) 611 assert(math.floor(1e50) == 1e50) 612 assert(math.ceil(1e50) == 1e50) 613 assert(math.floor(-1e50) == -1e50) 614 assert(math.ceil(-1e50) == -1e50) 615 for _, p in pairs{31,32,63,64} do 616 assert(math.floor(2^p) == 2^p) 617 assert(math.floor(2^p + 0.5) == 2^p) 618 assert(math.ceil(2^p) == 2^p) 619 assert(math.ceil(2^p - 0.5) == 2^p) 620 end 621 checkerror("number expected", math.floor, {}) 622 checkerror("number expected", math.ceil, print) 623 assert(eqT(math.tointeger(minint), minint)) 624 assert(eqT(math.tointeger(minint .. ""), minint)) 625 assert(eqT(math.tointeger(maxint), maxint)) 626 assert(eqT(math.tointeger(maxint .. ""), maxint)) 627 assert(eqT(math.tointeger(minint + 0.0), minint)) 628 assert(math.tointeger(0.0 - minint) == nil) 629 assert(math.tointeger(math.pi) == nil) 630 assert(math.tointeger(-math.pi) == nil) 631 assert(math.floor(math.huge) == math.huge) 632 assert(math.ceil(math.huge) == math.huge) 633 assert(math.tointeger(math.huge) == nil) 634 assert(math.floor(-math.huge) == -math.huge) 635 assert(math.ceil(-math.huge) == -math.huge) 636 assert(math.tointeger(-math.huge) == nil) 637 assert(math.tointeger("34.0") == 34) 638 assert(math.tointeger("34.3") == nil) 639 assert(math.tointeger({}) == nil) 640 assert(math.tointeger(0/0) == nil) -- NaN 641 end 642 643 644 -- testing fmod for integers 645 for i = -6, 6 do 646 for j = -6, 6 do 647 if j ~= 0 then 648 local mi = math.fmod(i, j) 649 local mf = math.fmod(i + 0.0, j) 650 assert(mi == mf) 651 assert(math.type(mi) == 'integer' and math.type(mf) == 'float') 652 if (i >= 0 and j >= 0) or (i <= 0 and j <= 0) or mi == 0 then 653 assert(eqT(mi, i % j)) 654 end 655 end 656 end 657 end 658 assert(eqT(math.fmod(minint, minint), 0)) 659 assert(eqT(math.fmod(maxint, maxint), 0)) 660 assert(eqT(math.fmod(minint + 1, minint), minint + 1)) 661 assert(eqT(math.fmod(maxint - 1, maxint), maxint - 1)) 662 663 checkerror("zero", math.fmod, 3, 0) 664 665 666 do -- testing max/min 667 checkerror("value expected", math.max) 668 checkerror("value expected", math.min) 669 assert(eqT(math.max(3), 3)) 670 assert(eqT(math.max(3, 5, 9, 1), 9)) 671 assert(math.max(maxint, 10e60) == 10e60) 672 assert(eqT(math.max(minint, minint + 1), minint + 1)) 673 assert(eqT(math.min(3), 3)) 674 assert(eqT(math.min(3, 5, 9, 1), 1)) 675 assert(math.min(3.2, 5.9, -9.2, 1.1) == -9.2) 676 assert(math.min(1.9, 1.7, 1.72) == 1.7) 677 assert(math.min(-10e60, minint) == -10e60) 678 assert(eqT(math.min(maxint, maxint - 1), maxint - 1)) 679 assert(eqT(math.min(maxint - 2, maxint, maxint - 1), maxint - 2)) 680 end 681 -- testing implicit convertions 682 683 local a,b = '10', '20' 684 assert(a*b == 200 and a+b == 30 and a-b == -10 and a/b == 0.5 and -b == -20) 685 assert(a == '10' and b == '20') 686 687 688 do 689 print("testing -0 and NaN") 690 local mz, z = -0.0, 0.0 691 assert(mz == z) 692 assert(1/mz < 0 and 0 < 1/z) 693 local a = {[mz] = 1} 694 assert(a[z] == 1 and a[mz] == 1) 695 a[z] = 2 696 assert(a[z] == 2 and a[mz] == 2) 697 local inf = math.huge * 2 + 1 698 mz, z = -1/inf, 1/inf 699 assert(mz == z) 700 assert(1/mz < 0 and 0 < 1/z) 701 local NaN = inf - inf 702 assert(NaN ~= NaN) 703 assert(not (NaN < NaN)) 704 assert(not (NaN <= NaN)) 705 assert(not (NaN > NaN)) 706 assert(not (NaN >= NaN)) 707 assert(not (0 < NaN) and not (NaN < 0)) 708 local NaN1 = 0/0 709 assert(NaN ~= NaN1 and not (NaN <= NaN1) and not (NaN1 <= NaN)) 710 local a = {} 711 assert(not pcall(rawset, a, NaN, 1)) 712 assert(a[NaN] == nil) 713 a[1] = 1 714 assert(not pcall(rawset, a, NaN, 1)) 715 assert(a[NaN] == nil) 716 -- strings with same binary representation as 0.0 (might create problems 717 -- for constant manipulation in the pre-compiler) 718 local a1, a2, a3, a4, a5 = 0, 0, "\0\0\0\0\0\0\0\0", 0, "\0\0\0\0\0\0\0\0" 719 assert(a1 == a2 and a2 == a4 and a1 ~= a3) 720 assert(a3 == a5) 721 end 722 723 724 print("testing 'math.random'") 725 math.randomseed(0) 726 727 do -- test random for floats 728 local max = -math.huge 729 local min = math.huge 730 for i = 0, 20000 do 731 local t = math.random() 732 assert(0 <= t and t < 1) 733 max = math.max(max, t) 734 min = math.min(min, t) 735 if eq(max, 1, 0.001) and eq(min, 0, 0.001) then 736 goto ok 737 end 738 end 739 -- loop ended without satisfing condition 740 assert(false) 741 ::ok:: 742 end 743 744 do 745 local function aux (p, lim) -- test random for small intervals 746 local x1, x2 747 if #p == 1 then x1 = 1; x2 = p[1] 748 else x1 = p[1]; x2 = p[2] 749 end 750 local mark = {}; local count = 0 -- to check that all values appeared 751 for i = 0, lim or 2000 do 752 local t = math.random(table.unpack(p)) 753 assert(x1 <= t and t <= x2) 754 if not mark[t] then -- new value 755 mark[t] = true 756 count = count + 1 757 end 758 if count == x2 - x1 + 1 then -- all values appeared; OK 759 goto ok 760 end 761 end 762 -- loop ended without satisfing condition 763 assert(false) 764 ::ok:: 765 end 766 767 aux({-10,0}) 768 aux({6}) 769 aux({-10, 10}) 770 aux({minint, minint}) 771 aux({maxint, maxint}) 772 aux({minint, minint + 9}) 773 aux({maxint - 3, maxint}) 774 end 775 776 do 777 local function aux(p1, p2) -- test random for large intervals 778 local max = minint 779 local min = maxint 780 local n = 200 781 local mark = {}; local count = 0 -- to count how many different values 782 for _ = 1, n do 783 local t = math.random(p1, p2) 784 max = math.max(max, t) 785 min = math.min(min, t) 786 if not mark[t] then -- new value 787 mark[t] = true 788 count = count + 1 789 end 790 end 791 -- at least 80% of values are different 792 assert(count >= n * 0.8) 793 -- min and max not too far from formal min and max 794 local diff = (p2 - p1) // 8 795 assert(min < p1 + diff and max > p2 - diff) 796 end 797 aux(0, maxint) 798 aux(1, maxint) 799 aux(minint, -1) 800 aux(minint // 2, maxint // 2) 801 end 802 803 for i=1,100 do 804 assert(math.random(maxint) > 0) 805 assert(math.random(minint, -1) < 0) 806 end 807 808 assert(not pcall(math.random, 1, 2, 3)) -- too many arguments 809 810 -- empty interval 811 assert(not pcall(math.random, minint + 1, minint)) 812 assert(not pcall(math.random, maxint, maxint - 1)) 813 assert(not pcall(math.random, maxint, minint)) 814 815 -- interval too large 816 assert(not pcall(math.random, minint, 0)) 817 assert(not pcall(math.random, -1, maxint)) 818 assert(not pcall(math.random, minint // 2, maxint // 2 + 1)) 819 820 821 print('OK')