github.com/hirochachacha/plua@v0.0.0-20170217012138-c82f520cc725/testdata/lua-5.3.3-tests/math.lua (about)

     1  -- $Id: math.lua,v 1.76 2016/05/30 15:55:38 roberto Exp $
     2  
     3  print("testing numbers and math lib")
     4  
     5  local minint = math.mininteger
     6  local maxint = math.maxinteger
     7  
     8  local intbits = math.floor(math.log(maxint, 2) + 0.5) + 1
     9  assert((1 << intbits) == 0)
    10  
    11  assert(minint == 1 << (intbits - 1))
    12  assert(maxint == minint - 1)
    13  
    14  -- number of bits in the mantissa of a floating-point number
    15  local floatbits = 24
    16  do
    17    local p = 2.0^floatbits
    18    while p < p + 1.0 do
    19      p = p * 2.0
    20      floatbits = floatbits + 1
    21    end
    22  end
    23  
    24  local function isNaN (x)
    25    -- return (x ~= x)
    26    return true
    27  end
    28  
    29  
    30  do
    31    local x = 2.0^floatbits
    32    assert(x > x - 1.0 and x == x + 1.0)
    33  
    34    print(string.format("%d-bit integers, %d-bit (mantissa) floats",
    35                         intbits, floatbits))
    36  end
    37  
    38  assert(math.type(0) == "integer" and math.type(0.0) == "float"
    39         and math.type("10") == nil)
    40  
    41  
    42  local function checkerror (msg, f, ...)
    43    local s, err = pcall(f, ...)
    44    assert(not s and string.find(err, msg))
    45  end
    46  
    47  local msgf2i = "number.* has no integer representation"
    48  
    49  -- float equality
    50  function eq (a,b,limit)
    51    if not limit then
    52      if floatbits >= 50 then limit = 1E-11
    53      else limit = 1E-5
    54      end
    55    end
    56    -- a == b needed for +inf/-inf
    57    return a == b or math.abs(a-b) <= limit
    58  end
    59  
    60  
    61  -- equality with types
    62  function eqT (a,b)
    63    return a == b and math.type(a) == math.type(b)
    64  end
    65  
    66  
    67  -- basic float notation
    68  assert(0e12 == 0 and .0 == 0 and 0. == 0 and .2e2 == 20 and 2.E-1 == 0.2)
    69  
    70  do
    71    local a,b,c = "2", " 3e0 ", " 10  "
    72    assert(a+b == 5 and -b == -3 and b+"2" == 5 and "10"-c == 0)
    73    assert(type(a) == 'string' and type(b) == 'string' and type(c) == 'string')
    74    assert(a == "2" and b == " 3e0 " and c == " 10  " and -c == -"  10 ")
    75    assert(c%a == 0 and a^b == 08)
    76    a = 0
    77    assert(a == -a and 0 == -0)
    78  end
    79  
    80  do
    81    local x = -1
    82    local mz = 0/x   -- minus zero
    83    t = {[0] = 10, 20, 30, 40, 50}
    84    assert(t[mz] == t[0] and t[-0] == t[0])
    85  end
    86  
    87  do   -- tests for 'modf'
    88    local a,b = math.modf(3.5)
    89    assert(a == 3.0 and b == 0.5)
    90    a,b = math.modf(-2.5)
    91    assert(a == -2.0 and b == -0.5)
    92    a,b = math.modf(-3e23)
    93    assert(a == -3e23 and b == 0.0)
    94    a,b = math.modf(3e35)
    95    assert(a == 3e35 and b == 0.0)
    96    a,b = math.modf(-1/0)   -- -inf
    97    assert(a == -1/0 and b == 0.0)
    98    a,b = math.modf(1/0)   -- inf
    99    assert(a == 1/0 and b == 0.0)
   100    a,b = math.modf(0/0)   -- NaN
   101    assert(isNaN(a) and isNaN(b))
   102    a,b = math.modf(3)  -- integer argument
   103    assert(eqT(a, 3) and eqT(b, 0.0))
   104    a,b = math.modf(minint)
   105    assert(eqT(a, minint) and eqT(b, 0.0))
   106  end
   107  
   108  assert(math.huge > 10e30)
   109  assert(-math.huge < -10e30)
   110  
   111  
   112  -- integer arithmetic
   113  assert(minint < minint + 1)
   114  assert(maxint - 1 < maxint)
   115  assert(0 - minint == minint)
   116  assert(minint * minint == 0)
   117  assert(maxint * maxint * maxint == maxint)
   118  
   119  
   120  -- testing floor division and conversions
   121  
   122  for _, i in pairs{-16, -15, -3, -2, -1, 0, 1, 2, 3, 15} do
   123    for _, j in pairs{-16, -15, -3, -2, -1, 1, 2, 3, 15} do
   124      for _, ti in pairs{0, 0.0} do     -- try 'i' as integer and as float
   125        for _, tj in pairs{0, 0.0} do   -- try 'j' as integer and as float
   126          local x = i + ti
   127          local y = j + tj
   128            assert(i//j == math.floor(i/j))
   129        end
   130      end
   131    end
   132  end
   133  
   134  assert(1//0.0 == 1/0)
   135  assert(-1 // 0.0 == -1/0)
   136  assert(eqT(3.5 // 1.5, 2.0))
   137  assert(eqT(3.5 // -1.5, -3.0))
   138  
   139  assert(maxint // maxint == 1)
   140  assert(maxint // 1 == maxint)
   141  assert((maxint - 1) // maxint == 0)
   142  assert(maxint // (maxint - 1) == 1)
   143  assert(minint // minint == 1)
   144  assert(minint // minint == 1)
   145  assert((minint + 1) // minint == 0)
   146  assert(minint // (minint + 1) == 1)
   147  assert(minint // 1 == minint)
   148  
   149  assert(minint // -1 == -minint)
   150  assert(minint // -2 == 2^(intbits - 2))
   151  assert(maxint // -1 == -maxint)
   152  
   153  
   154  -- negative exponents
   155  do
   156    assert(2^-3 == 1 / 2^3)
   157    assert(eq((-3)^-3, 1 / (-3)^3))
   158    for i = -3, 3 do    -- variables avoid constant folding
   159        for j = -3, 3 do
   160          -- domain errors (0^(-n)) are not portable
   161          if not _port or i ~= 0 or j > 0 then
   162            assert(eq(i^j, 1 / i^(-j)))
   163         end
   164      end
   165    end
   166  end
   167  
   168  -- comparison between floats and integers (border cases)
   169  if floatbits < intbits then
   170    assert(2.0^floatbits == (1 << floatbits))
   171    assert(2.0^floatbits - 1.0 == (1 << floatbits) - 1.0)
   172    assert(2.0^floatbits - 1.0 ~= (1 << floatbits))
   173    -- float is rounded, int is not
   174    assert(2.0^floatbits + 1.0 ~= (1 << floatbits) + 1)
   175  else   -- floats can express all integers with full accuracy
   176    assert(maxint == maxint + 0.0)
   177    assert(maxint - 1 == maxint - 1.0)
   178    assert(minint + 1 == minint + 1.0)
   179    assert(maxint ~= maxint - 1.0)
   180  end
   181  assert(maxint + 0.0 == 2.0^(intbits - 1) - 1.0)
   182  assert(minint + 0.0 == minint)
   183  assert(minint + 0.0 == -2.0^(intbits - 1))
   184  
   185  
   186  -- order between floats and integers
   187  assert(1 < 1.1); assert(not (1 < 0.9))
   188  assert(1 <= 1.1); assert(not (1 <= 0.9))
   189  assert(-1 < -0.9); assert(not (-1 < -1.1))
   190  assert(1 <= 1.1); assert(not (-1 <= -1.1))
   191  assert(-1 < -0.9); assert(not (-1 < -1.1))
   192  assert(-1 <= -0.9); assert(not (-1 <= -1.1))
   193  assert(minint <= minint + 0.0)
   194  assert(minint + 0.0 <= minint)
   195  assert(not (minint < minint + 0.0))
   196  assert(not (minint + 0.0 < minint))
   197  assert(maxint < minint * -1.0)
   198  assert(maxint <= minint * -1.0)
   199  
   200  do
   201    local fmaxi1 = 2^(intbits - 1)
   202    assert(maxint < fmaxi1)
   203    assert(maxint <= fmaxi1)
   204    assert(not (fmaxi1 <= maxint))
   205    assert(minint <= -2^(intbits - 1))
   206    assert(-2^(intbits - 1) <= minint)
   207  end
   208  
   209  if floatbits < intbits then
   210    print("testing order (floats cannot represent all integers)")
   211    local fmax = 2^floatbits
   212    local ifmax = fmax | 0
   213    assert(fmax < ifmax + 1)
   214    assert(fmax - 1 < ifmax)
   215    assert(-(fmax - 1) > -ifmax)
   216    assert(not (fmax <= ifmax - 1))
   217    assert(-fmax > -(ifmax + 1))
   218    assert(not (-fmax >= -(ifmax - 1)))
   219  
   220    assert(fmax/2 - 0.5 < ifmax//2)
   221    assert(-(fmax/2 - 0.5) > -ifmax//2)
   222  
   223    assert(maxint < 2^intbits)
   224    assert(minint > -2^intbits)
   225    assert(maxint <= 2^intbits)
   226    assert(minint >= -2^intbits)
   227  else
   228    print("testing order (floats can represent all integers)")
   229    assert(maxint < maxint + 1.0)
   230    assert(maxint < maxint + 0.5)
   231    assert(maxint - 1.0 < maxint)
   232    assert(maxint - 0.5 < maxint)
   233    assert(not (maxint + 0.0 < maxint))
   234    assert(maxint + 0.0 <= maxint)
   235    assert(not (maxint < maxint + 0.0))
   236    assert(maxint + 0.0 <= maxint)
   237    assert(maxint <= maxint + 0.0)
   238    assert(not (maxint + 1.0 <= maxint))
   239    assert(not (maxint + 0.5 <= maxint))
   240    assert(not (maxint <= maxint - 1.0))
   241    assert(not (maxint <= maxint - 0.5))
   242  
   243    assert(minint < minint + 1.0)
   244    assert(minint < minint + 0.5)
   245    assert(minint <= minint + 0.5)
   246    assert(minint - 1.0 < minint)
   247    assert(minint - 1.0 <= minint)
   248    assert(not (minint + 0.0 < minint))
   249    assert(not (minint + 0.5 < minint))
   250    assert(not (minint < minint + 0.0))
   251    assert(minint + 0.0 <= minint)
   252    assert(minint <= minint + 0.0)
   253    assert(not (minint + 1.0 <= minint))
   254    assert(not (minint + 0.5 <= minint))
   255    assert(not (minint <= minint - 1.0))
   256  end
   257  
   258  do
   259    local NaN = 0/0
   260    assert(not (NaN < 0))
   261    assert(not (NaN > minint))
   262    assert(not (NaN <= -9))
   263    assert(not (NaN <= maxint))
   264    assert(not (NaN < maxint))
   265    assert(not (minint <= NaN))
   266    assert(not (minint < NaN))
   267  end
   268  
   269  
   270  -- avoiding errors at compile time
   271  local function checkcompt (msg, code)
   272    checkerror(msg, assert(load(code)))
   273  end
   274  checkcompt("divide by zero", "return 2 // 0")
   275  checkcompt(msgf2i, "return 2.3 >> 0")
   276  checkcompt(msgf2i, ("return 2.0^%d & 1"):format(intbits - 1))
   277  -- checkcompt("field 'huge'", "return math.huge << 1")
   278  checkcompt(msgf2i, ("return 1 | 2.0^%d"):format(intbits - 1))
   279  checkcompt(msgf2i, "return 2.3 ~ '0.0'")
   280  
   281  
   282  -- testing overflow errors when converting from float to integer (runtime)
   283  local function f2i (x) return x | x end
   284  checkerror(msgf2i, f2i, math.huge)     -- +inf
   285  checkerror(msgf2i, f2i, -math.huge)    -- -inf
   286  checkerror(msgf2i, f2i, 0/0)           -- NaN
   287  
   288  if floatbits < intbits then
   289    -- conversion tests when float cannot represent all integers
   290    assert(maxint + 1.0 == maxint + 0.0)
   291    assert(minint - 1.0 == minint + 0.0)
   292    checkerror(msgf2i, f2i, maxint + 0.0)
   293    assert(f2i(2.0^(intbits - 2)) == 1 << (intbits - 2))
   294    assert(f2i(-2.0^(intbits - 2)) == -(1 << (intbits - 2)))
   295    assert((2.0^(floatbits - 1) + 1.0) // 1 == (1 << (floatbits - 1)) + 1)
   296    -- maximum integer representable as a float
   297    local mf = maxint - (1 << (floatbits - intbits)) + 1
   298    assert(f2i(mf + 0.0) == mf)  -- OK up to here
   299    mf = mf + 1
   300    assert(f2i(mf + 0.0) ~= mf)   -- no more representable
   301  else
   302    -- conversion tests when float can represent all integers
   303    assert(maxint + 1.0 > maxint)
   304    assert(minint - 1.0 < minint)
   305    assert(f2i(maxint + 0.0) == maxint)
   306    checkerror("no integer rep", f2i, maxint + 1.0)
   307    checkerror("no integer rep", f2i, minint - 1.0)
   308  end
   309  
   310  -- 'minint' should be representable as a float no matter the precision
   311  assert(f2i(minint + 0.0) == minint)
   312  
   313  
   314  -- testing numeric strings
   315  
   316  assert("2" + 1 == 3)
   317  assert("2 " + 1 == 3)
   318  assert(" -2 " + 1 == -1)
   319  assert(" -0xa " + 1 == -9)
   320  
   321  
   322  -- Literal integer Overflows (new behavior in 5.3.3)
   323  do
   324    -- no overflows
   325    assert(eqT(tonumber(tostring(maxint)), maxint))
   326    assert(eqT(tonumber(tostring(minint)), minint))
   327  
   328    -- add 1 to last digit as a string (it cannot be 9...)
   329    local function incd (n)
   330      local s = string.format("%d", n)
   331      s = string.gsub(s, "%d$", function (d)
   332            assert(d ~= '9')
   333            return string.char(string.byte(d) + 1)
   334          end)
   335      return s
   336    end
   337  
   338    -- 'tonumber' with overflow by 1
   339    assert(eqT(tonumber(incd(maxint)), maxint + 1.0))
   340    assert(eqT(tonumber(incd(minint)), minint - 1.0))
   341  
   342    -- large numbers
   343    assert(eqT(tonumber("1"..string.rep("0", 30)), 1e30))
   344    assert(eqT(tonumber("-1"..string.rep("0", 30)), -1e30))
   345  
   346    -- hexa format still wraps around
   347    assert(eqT(tonumber("0x1"..string.rep("0", 30)), 0))
   348  
   349    -- lexer in the limits
   350    assert(minint == load("return " .. minint)())
   351    assert(eqT(maxint, load("return " .. maxint)()))
   352  
   353    assert(eqT(10000000000000000000000.0, 10000000000000000000000))
   354    assert(eqT(-10000000000000000000000.0, -10000000000000000000000))
   355  end
   356  
   357  
   358  -- testing 'tonumber'
   359  
   360  -- 'tonumber' with numbers
   361  assert(tonumber(3.4) == 3.4)
   362  assert(eqT(tonumber(3), 3))
   363  assert(eqT(tonumber(maxint), maxint) and eqT(tonumber(minint), minint))
   364  assert(tonumber(1/0) == 1/0)
   365  
   366  -- 'tonumber' with strings
   367  assert(tonumber("0") == 0)
   368  assert(tonumber("") == nil)
   369  assert(tonumber("  ") == nil)
   370  assert(tonumber("-") == nil)
   371  assert(tonumber("  -0x ") == nil)
   372  assert(tonumber{} == nil)
   373  assert(tonumber'+0.01' == 1/100 and tonumber'+.01' == 0.01 and
   374         tonumber'.01' == 0.01    and tonumber'-1.' == -1 and
   375         tonumber'+1.' == 1)
   376  assert(tonumber'+ 0.01' == nil and tonumber'+.e1' == nil and
   377         tonumber'1e' == nil     and tonumber'1.0e+' == nil and
   378         tonumber'.' == nil)
   379  assert(tonumber('-012') == -010-2)
   380  assert(tonumber('-1.2e2') == - - -120)
   381  
   382  assert(tonumber("0xffffffffffff") == (1 << (4*12)) - 1)
   383  assert(tonumber("0x"..string.rep("f", (intbits//4))) == -1)
   384  assert(tonumber("-0x"..string.rep("f", (intbits//4))) == 1)
   385  
   386  -- testing 'tonumber' with base
   387  assert(tonumber('  001010  ', 2) == 10)
   388  assert(tonumber('  001010  ', 10) == 001010)
   389  assert(tonumber('  -1010  ', 2) == -10)
   390  assert(tonumber('10', 36) == 36)
   391  assert(tonumber('  -10  ', 36) == -36)
   392  assert(tonumber('  +1Z  ', 36) == 36 + 35)
   393  assert(tonumber('  -1z  ', 36) == -36 + -35)
   394  assert(tonumber('-fFfa', 16) == -(10+(16*(15+(16*(15+(16*15)))))))
   395  assert(tonumber(string.rep('1', (intbits - 2)), 2) + 1 == 2^(intbits - 2))
   396  assert(tonumber('ffffFFFF', 16)+1 == (1 << 32))
   397  assert(tonumber('0ffffFFFF', 16)+1 == (1 << 32))
   398  assert(tonumber('-0ffffffFFFF', 16) - 1 == -(1 << 40))
   399  for i = 2,36 do
   400    local i2 = i * i
   401    local i10 = i2 * i2 * i2 * i2 * i2      -- i^10
   402    assert(tonumber('\t10000000000\t', i) == i10)
   403  end
   404  
   405  if not _soft then
   406    -- tests with very long numerals
   407    assert(tonumber("0x"..string.rep("f", 13)..".0") == 2.0^(4*13) - 1)
   408    assert(tonumber("0x"..string.rep("f", 150)..".0") == 2.0^(4*150) - 1)
   409    assert(tonumber("0x"..string.rep("f", 300)..".0") == 2.0^(4*300) - 1)
   410    assert(tonumber("0x"..string.rep("f", 500)..".0") == 2.0^(4*500) - 1)
   411    assert(tonumber('0x3.' .. string.rep('0', 1000)) == 3)
   412    assert(tonumber('0x' .. string.rep('0', 1000) .. 'a') == 10)
   413    assert(tonumber('0x0.' .. string.rep('0', 13).."1") == 2.0^(-4*14))
   414    assert(tonumber('0x0.' .. string.rep('0', 150).."1") == 2.0^(-4*151))
   415    assert(tonumber('0x0.' .. string.rep('0', 300).."1") == 2.0^(-4*301))
   416    assert(tonumber('0x0.' .. string.rep('0', 500).."1") == 2.0^(-4*501))
   417  
   418    assert(tonumber('0xe03' .. string.rep('0', 1000) .. 'p-4000') == 3587.0)
   419    assert(tonumber('0x.' .. string.rep('0', 1000) .. '74p4004') == 0x7.4)
   420  end
   421  
   422  -- testing 'tonumber' for invalid formats
   423  
   424  local function f (...)
   425    if select('#', ...) == 1 then
   426      return (...)
   427    else
   428      return "***"
   429    end
   430  end
   431  
   432  assert(f(tonumber('fFfa', 15)) == nil)
   433  assert(f(tonumber('099', 8)) == nil)
   434  assert(f(tonumber('1\0', 2)) == nil)
   435  assert(f(tonumber('', 8)) == nil)
   436  assert(f(tonumber('  ', 9)) == nil)
   437  assert(f(tonumber('  ', 9)) == nil)
   438  assert(f(tonumber('0xf', 10)) == nil)
   439  
   440  assert(f(tonumber('inf')) == nil)
   441  assert(f(tonumber(' INF ')) == nil)
   442  assert(f(tonumber('Nan')) == nil)
   443  assert(f(tonumber('nan')) == nil)
   444  
   445  assert(f(tonumber('  ')) == nil)
   446  assert(f(tonumber('')) == nil)
   447  assert(f(tonumber('1  a')) == nil)
   448  assert(f(tonumber('1  a', 2)) == nil)
   449  assert(f(tonumber('1\0')) == nil)
   450  assert(f(tonumber('1 \0')) == nil)
   451  assert(f(tonumber('1\0 ')) == nil)
   452  assert(f(tonumber('e1')) == nil)
   453  assert(f(tonumber('e  1')) == nil)
   454  assert(f(tonumber(' 3.4.5 ')) == nil)
   455  
   456  
   457  -- testing 'tonumber' for invalid hexadecimal formats
   458  
   459  assert(tonumber('0x') == nil)
   460  assert(tonumber('x') == nil)
   461  assert(tonumber('x3') == nil)
   462  assert(tonumber('0x3.3.3') == nil)   -- two decimal points
   463  assert(tonumber('00x2') == nil)
   464  assert(tonumber('0x 2') == nil)
   465  assert(tonumber('0 x2') == nil)
   466  assert(tonumber('23x') == nil)
   467  assert(tonumber('- 0xaa') == nil)
   468  assert(tonumber('-0xaaP ') == nil)   -- no exponent
   469  assert(tonumber('0x0.51p') == nil)
   470  assert(tonumber('0x5p+-2') == nil)
   471  
   472  
   473  -- testing hexadecimal numerals
   474  
   475  assert(0x10 == 16 and 0xfff == 2^12 - 1 and 0XFB == 251)
   476  assert(0x0p12 == 0 and 0x.0p-3 == 0)
   477  assert(0xFFFFFFFF == (1 << 32) - 1)
   478  assert(tonumber('+0x2') == 2)
   479  assert(tonumber('-0xaA') == -170)
   480  assert(tonumber('-0xffFFFfff') == -(1 << 32) + 1)
   481  
   482  -- possible confusion with decimal exponent
   483  assert(0E+1 == 0 and 0xE+1 == 15 and 0xe-1 == 13)
   484  
   485  
   486  -- floating hexas
   487  
   488  assert(tonumber('  0x2.5  ') == 0x25/16)
   489  assert(tonumber('  -0x2.5  ') == -0x25/16)
   490  assert(tonumber('  +0x0.51p+8  ') == 0x51)
   491  assert(0x.FfffFFFF == 1 - '0x.00000001')
   492  assert('0xA.a' + 0 == 10 + 10/16)
   493  assert(0xa.aP4 == 0XAA)
   494  assert(0x4P-2 == 1)
   495  assert(0x1.1 == '0x1.' + '+0x.1')
   496  assert(0Xabcdef.0 == 0x.ABCDEFp+24)
   497  
   498  
   499  assert(1.1 == 1.+.1)
   500  assert(100.0 == 1E2 and .01 == 1e-2)
   501  assert(1111111111 - 1111111110 == 1000.00e-03)
   502  assert(1.1 == '1.'+'.1')
   503  assert(tonumber'1111111111' - tonumber'1111111110' ==
   504         tonumber"  +0.001e+3 \n\t")
   505  
   506  assert(0.1e-30 > 0.9E-31 and 0.9E30 < 0.1e31)
   507  
   508  assert(0.123456 > 0.123455)
   509  
   510  assert(tonumber('+1.23E18') == 1.23*10.0^18)
   511  
   512  -- testing order operators
   513  assert(not(1<1) and (1<2) and not(2<1))
   514  assert(not('a'<'a') and ('a'<'b') and not('b'<'a'))
   515  assert((1<=1) and (1<=2) and not(2<=1))
   516  assert(('a'<='a') and ('a'<='b') and not('b'<='a'))
   517  assert(not(1>1) and not(1>2) and (2>1))
   518  assert(not('a'>'a') and not('a'>'b') and ('b'>'a'))
   519  assert((1>=1) and not(1>=2) and (2>=1))
   520  assert(('a'>='a') and not('a'>='b') and ('b'>='a'))
   521  assert(1.3 < 1.4 and 1.3 <= 1.4 and not (1.3 < 1.3) and 1.3 <= 1.3)
   522  
   523  -- testing mod operator
   524  assert(eqT(-4 % 3, 2))
   525  assert(eqT(4 % -3, -2))
   526  assert(eqT(-4.0 % 3, 2.0))
   527  assert(eqT(4 % -3.0, -2.0))
   528  assert(math.pi - math.pi % 1 == 3)
   529  assert(math.pi - math.pi % 0.001 == 3.141)
   530  
   531  assert(eqT(minint % minint, 0))
   532  assert(eqT(maxint % maxint, 0))
   533  assert((minint + 1) % minint == minint + 1)
   534  assert((maxint - 1) % maxint == maxint - 1)
   535  assert(minint % maxint == maxint - 1)
   536  
   537  assert(minint % -1 == 0)
   538  assert(minint % -2 == 0)
   539  assert(maxint % -2 == -1)
   540  
   541  -- non-portable tests because Windows C library cannot compute
   542  -- fmod(1, huge) correctly
   543  if not _port then
   544    local function anan (x) assert(isNaN(x)) end   -- assert Not a Number
   545    anan(0.0 % 0)
   546    anan(1.3 % 0)
   547    anan(math.huge % 1)
   548    anan(math.huge % 1e30)
   549    anan(-math.huge % 1e30)
   550    anan(-math.huge % -1e30)
   551    assert(1 % math.huge == 1)
   552    assert(1e30 % math.huge == 1e30)
   553    assert(1e30 % -math.huge == -math.huge)
   554    assert(-1 % math.huge == math.huge)
   555    assert(-1 % -math.huge == -1)
   556  end
   557  
   558  
   559  -- testing unsigned comparisons
   560  assert(math.ult(3, 4))
   561  assert(not math.ult(4, 4))
   562  assert(math.ult(-2, -1))
   563  assert(math.ult(2, -1))
   564  assert(not math.ult(-2, -2))
   565  assert(math.ult(maxint, minint))
   566  assert(not math.ult(minint, maxint))
   567  
   568  
   569  assert(eq(math.sin(-9.8)^2 + math.cos(-9.8)^2, 1))
   570  assert(eq(math.tan(math.pi/4), 1))
   571  assert(eq(math.sin(math.pi/2), 1) and eq(math.cos(math.pi/2), 0))
   572  assert(eq(math.atan(1), math.pi/4) and eq(math.acos(0), math.pi/2) and
   573         eq(math.asin(1), math.pi/2))
   574  assert(eq(math.deg(math.pi/2), 90) and eq(math.rad(90), math.pi/2))
   575  assert(math.abs(-10.43) == 10.43)
   576  assert(eqT(math.abs(minint), minint))
   577  assert(eqT(math.abs(maxint), maxint))
   578  assert(eqT(math.abs(-maxint), maxint))
   579  assert(eq(math.atan(1,0), math.pi/2))
   580  assert(math.fmod(10,3) == 1)
   581  assert(eq(math.sqrt(10)^2, 10))
   582  assert(eq(math.log(2, 10), math.log(2)/math.log(10)))
   583  assert(eq(math.log(2, 2), 1))
   584  assert(eq(math.log(9, 3), 2))
   585  assert(eq(math.exp(0), 1))
   586  assert(eq(math.sin(10), math.sin(10%(2*math.pi))))
   587  
   588  
   589  assert(tonumber(' 1.3e-2 ') == 1.3e-2)
   590  assert(tonumber(' -1.00000000000001 ') == -1.00000000000001)
   591  
   592  -- testing constant limits
   593  -- 2^23 = 8388608
   594  assert(8388609 + -8388609 == 0)
   595  assert(8388608 + -8388608 == 0)
   596  assert(8388607 + -8388607 == 0)
   597  
   598  
   599  
   600  do   -- testing floor & ceil
   601    assert(eqT(math.floor(3.4), 3))
   602    assert(eqT(math.ceil(3.4), 4))
   603    assert(eqT(math.floor(-3.4), -4))
   604    assert(eqT(math.ceil(-3.4), -3))
   605    assert(eqT(math.floor(maxint), maxint))
   606    assert(eqT(math.ceil(maxint), maxint))
   607    assert(eqT(math.floor(minint), minint))
   608    assert(eqT(math.floor(minint + 0.0), minint))
   609    assert(eqT(math.ceil(minint), minint))
   610    assert(eqT(math.ceil(minint + 0.0), minint))
   611    assert(math.floor(1e50) == 1e50)
   612    assert(math.ceil(1e50) == 1e50)
   613    assert(math.floor(-1e50) == -1e50)
   614    assert(math.ceil(-1e50) == -1e50)
   615    for _, p in pairs{31,32,63,64} do
   616      assert(math.floor(2^p) == 2^p)
   617      assert(math.floor(2^p + 0.5) == 2^p)
   618      assert(math.ceil(2^p) == 2^p)
   619      assert(math.ceil(2^p - 0.5) == 2^p)
   620    end
   621    checkerror("number expected", math.floor, {})
   622    checkerror("number expected", math.ceil, print)
   623    assert(eqT(math.tointeger(minint), minint))
   624    assert(eqT(math.tointeger(minint .. ""), minint))
   625    assert(eqT(math.tointeger(maxint), maxint))
   626    assert(eqT(math.tointeger(maxint .. ""), maxint))
   627    assert(eqT(math.tointeger(minint + 0.0), minint))
   628    assert(math.tointeger(0.0 - minint) == nil)
   629    assert(math.tointeger(math.pi) == nil)
   630    assert(math.tointeger(-math.pi) == nil)
   631    assert(math.floor(math.huge) == math.huge)
   632    assert(math.ceil(math.huge) == math.huge)
   633    assert(math.tointeger(math.huge) == nil)
   634    assert(math.floor(-math.huge) == -math.huge)
   635    assert(math.ceil(-math.huge) == -math.huge)
   636    assert(math.tointeger(-math.huge) == nil)
   637    assert(math.tointeger("34.0") == 34)
   638    assert(math.tointeger("34.3") == nil)
   639    assert(math.tointeger({}) == nil)
   640    assert(math.tointeger(0/0) == nil)    -- NaN
   641  end
   642  
   643  
   644  -- testing fmod for integers
   645  for i = -6, 6 do
   646    for j = -6, 6 do
   647      if j ~= 0 then
   648        local mi = math.fmod(i, j)
   649        local mf = math.fmod(i + 0.0, j)
   650        assert(mi == mf)
   651        assert(math.type(mi) == 'integer' and math.type(mf) == 'float')
   652        if (i >= 0 and j >= 0) or (i <= 0 and j <= 0) or mi == 0 then
   653          assert(eqT(mi, i % j))
   654        end
   655      end
   656    end
   657  end
   658  assert(eqT(math.fmod(minint, minint), 0))
   659  assert(eqT(math.fmod(maxint, maxint), 0))
   660  assert(eqT(math.fmod(minint + 1, minint), minint + 1))
   661  assert(eqT(math.fmod(maxint - 1, maxint), maxint - 1))
   662  
   663  checkerror("zero", math.fmod, 3, 0)
   664  
   665  
   666  do    -- testing max/min
   667    checkerror("value expected", math.max)
   668    checkerror("value expected", math.min)
   669    assert(eqT(math.max(3), 3))
   670    assert(eqT(math.max(3, 5, 9, 1), 9))
   671    assert(math.max(maxint, 10e60) == 10e60)
   672    assert(eqT(math.max(minint, minint + 1), minint + 1))
   673    assert(eqT(math.min(3), 3))
   674    assert(eqT(math.min(3, 5, 9, 1), 1))
   675    assert(math.min(3.2, 5.9, -9.2, 1.1) == -9.2)
   676    assert(math.min(1.9, 1.7, 1.72) == 1.7)
   677    assert(math.min(-10e60, minint) == -10e60)
   678    assert(eqT(math.min(maxint, maxint - 1), maxint - 1))
   679    assert(eqT(math.min(maxint - 2, maxint, maxint - 1), maxint - 2))
   680  end
   681  -- testing implicit convertions
   682  
   683  local a,b = '10', '20'
   684  assert(a*b == 200 and a+b == 30 and a-b == -10 and a/b == 0.5 and -b == -20)
   685  assert(a == '10' and b == '20')
   686  
   687  
   688  do
   689    print("testing -0 and NaN")
   690    local mz, z = -0.0, 0.0
   691    assert(mz == z)
   692    assert(1/mz < 0 and 0 < 1/z)
   693    local a = {[mz] = 1}
   694    assert(a[z] == 1 and a[mz] == 1)
   695    a[z] = 2
   696    assert(a[z] == 2 and a[mz] == 2)
   697    local inf = math.huge * 2 + 1
   698    mz, z = -1/inf, 1/inf
   699    assert(mz == z)
   700    assert(1/mz < 0 and 0 < 1/z)
   701    local NaN = inf - inf
   702    assert(NaN ~= NaN)
   703    assert(not (NaN < NaN))
   704    assert(not (NaN <= NaN))
   705    assert(not (NaN > NaN))
   706    assert(not (NaN >= NaN))
   707    assert(not (0 < NaN) and not (NaN < 0))
   708    local NaN1 = 0/0
   709    assert(NaN ~= NaN1 and not (NaN <= NaN1) and not (NaN1 <= NaN))
   710    local a = {}
   711    assert(not pcall(rawset, a, NaN, 1))
   712    assert(a[NaN] == nil)
   713    a[1] = 1
   714    assert(not pcall(rawset, a, NaN, 1))
   715    assert(a[NaN] == nil)
   716    -- strings with same binary representation as 0.0 (might create problems
   717    -- for constant manipulation in the pre-compiler)
   718    local a1, a2, a3, a4, a5 = 0, 0, "\0\0\0\0\0\0\0\0", 0, "\0\0\0\0\0\0\0\0"
   719    assert(a1 == a2 and a2 == a4 and a1 ~= a3)
   720    assert(a3 == a5)
   721  end
   722  
   723  
   724  print("testing 'math.random'")
   725  math.randomseed(0)
   726  
   727  do   -- test random for floats
   728    local max = -math.huge
   729    local min = math.huge
   730    for i = 0, 20000 do
   731      local t = math.random()
   732      assert(0 <= t and t < 1)
   733      max = math.max(max, t)
   734      min = math.min(min, t)
   735      if eq(max, 1, 0.001) and eq(min, 0, 0.001) then
   736        goto ok
   737      end
   738    end
   739    -- loop ended without satisfing condition
   740    assert(false)
   741   ::ok::
   742  end
   743  
   744  do
   745    local function aux (p, lim)   -- test random for small intervals
   746      local x1, x2
   747      if #p == 1 then x1 = 1; x2 = p[1]
   748      else x1 = p[1]; x2 = p[2]
   749      end
   750      local mark = {}; local count = 0   -- to check that all values appeared
   751      for i = 0, lim or 2000 do
   752        local t = math.random(table.unpack(p))
   753        assert(x1 <= t and t <= x2)
   754        if not mark[t] then  -- new value
   755          mark[t] = true
   756          count = count + 1
   757        end
   758        if count == x2 - x1 + 1 then   -- all values appeared; OK
   759          goto ok
   760        end
   761      end
   762      -- loop ended without satisfing condition
   763      assert(false)
   764     ::ok::
   765    end
   766  
   767    aux({-10,0})
   768    aux({6})
   769    aux({-10, 10})
   770    aux({minint, minint})
   771    aux({maxint, maxint})
   772    aux({minint, minint + 9})
   773    aux({maxint - 3, maxint})
   774  end
   775  
   776  do
   777    local function aux(p1, p2)       -- test random for large intervals
   778      local max = minint
   779      local min = maxint
   780      local n = 200
   781      local mark = {}; local count = 0   -- to count how many different values
   782      for _ = 1, n do
   783        local t = math.random(p1, p2)
   784        max = math.max(max, t)
   785        min = math.min(min, t)
   786        if not mark[t] then  -- new value
   787          mark[t] = true
   788          count = count + 1
   789        end
   790      end
   791      -- at least 80% of values are different
   792      assert(count >= n * 0.8)
   793      -- min and max not too far from formal min and max
   794      local diff = (p2 - p1) // 8
   795      assert(min < p1 + diff and max > p2 - diff)
   796    end
   797    aux(0, maxint)
   798    aux(1, maxint)
   799    aux(minint, -1)
   800    aux(minint // 2, maxint // 2)
   801  end
   802  
   803  for i=1,100 do
   804    assert(math.random(maxint) > 0)
   805    assert(math.random(minint, -1) < 0)
   806  end
   807  
   808  assert(not pcall(math.random, 1, 2, 3))    -- too many arguments
   809  
   810  -- empty interval
   811  assert(not pcall(math.random, minint + 1, minint))
   812  assert(not pcall(math.random, maxint, maxint - 1))
   813  assert(not pcall(math.random, maxint, minint))
   814  
   815  -- interval too large
   816  assert(not pcall(math.random, minint, 0))
   817  assert(not pcall(math.random, -1, maxint))
   818  assert(not pcall(math.random, minint // 2, maxint // 2 + 1))
   819  
   820  
   821  print('OK')