github.com/hlts2/go@v0.0.0-20170904000733-812b34efaed8/doc/go_spec.html (about) 1 <!--{ 2 "Title": "The Go Programming Language Specification", 3 "Subtitle": "Version of September 1, 2017", 4 "Path": "/ref/spec" 5 }--> 6 7 <h2 id="Introduction">Introduction</h2> 8 9 <p> 10 This is a reference manual for the Go programming language. For 11 more information and other documents, see <a href="/">golang.org</a>. 12 </p> 13 14 <p> 15 Go is a general-purpose language designed with systems programming 16 in mind. It is strongly typed and garbage-collected and has explicit 17 support for concurrent programming. Programs are constructed from 18 <i>packages</i>, whose properties allow efficient management of 19 dependencies. The existing implementations use a traditional 20 compile/link model to generate executable binaries. 21 </p> 22 23 <p> 24 The grammar is compact and regular, allowing for easy analysis by 25 automatic tools such as integrated development environments. 26 </p> 27 28 <h2 id="Notation">Notation</h2> 29 <p> 30 The syntax is specified using Extended Backus-Naur Form (EBNF): 31 </p> 32 33 <pre class="grammar"> 34 Production = production_name "=" [ Expression ] "." . 35 Expression = Alternative { "|" Alternative } . 36 Alternative = Term { Term } . 37 Term = production_name | token [ "…" token ] | Group | Option | Repetition . 38 Group = "(" Expression ")" . 39 Option = "[" Expression "]" . 40 Repetition = "{" Expression "}" . 41 </pre> 42 43 <p> 44 Productions are expressions constructed from terms and the following 45 operators, in increasing precedence: 46 </p> 47 <pre class="grammar"> 48 | alternation 49 () grouping 50 [] option (0 or 1 times) 51 {} repetition (0 to n times) 52 </pre> 53 54 <p> 55 Lower-case production names are used to identify lexical tokens. 56 Non-terminals are in CamelCase. Lexical tokens are enclosed in 57 double quotes <code>""</code> or back quotes <code>``</code>. 58 </p> 59 60 <p> 61 The form <code>a … b</code> represents the set of characters from 62 <code>a</code> through <code>b</code> as alternatives. The horizontal 63 ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various 64 enumerations or code snippets that are not further specified. The character <code>…</code> 65 (as opposed to the three characters <code>...</code>) is not a token of the Go 66 language. 67 </p> 68 69 <h2 id="Source_code_representation">Source code representation</h2> 70 71 <p> 72 Source code is Unicode text encoded in 73 <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not 74 canonicalized, so a single accented code point is distinct from the 75 same character constructed from combining an accent and a letter; 76 those are treated as two code points. For simplicity, this document 77 will use the unqualified term <i>character</i> to refer to a Unicode code point 78 in the source text. 79 </p> 80 <p> 81 Each code point is distinct; for instance, upper and lower case letters 82 are different characters. 83 </p> 84 <p> 85 Implementation restriction: For compatibility with other tools, a 86 compiler may disallow the NUL character (U+0000) in the source text. 87 </p> 88 <p> 89 Implementation restriction: For compatibility with other tools, a 90 compiler may ignore a UTF-8-encoded byte order mark 91 (U+FEFF) if it is the first Unicode code point in the source text. 92 A byte order mark may be disallowed anywhere else in the source. 93 </p> 94 95 <h3 id="Characters">Characters</h3> 96 97 <p> 98 The following terms are used to denote specific Unicode character classes: 99 </p> 100 <pre class="ebnf"> 101 newline = /* the Unicode code point U+000A */ . 102 unicode_char = /* an arbitrary Unicode code point except newline */ . 103 unicode_letter = /* a Unicode code point classified as "Letter" */ . 104 unicode_digit = /* a Unicode code point classified as "Number, decimal digit" */ . 105 </pre> 106 107 <p> 108 In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>, 109 Section 4.5 "General Category" defines a set of character categories. 110 Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo 111 as Unicode letters, and those in the Number category Nd as Unicode digits. 112 </p> 113 114 <h3 id="Letters_and_digits">Letters and digits</h3> 115 116 <p> 117 The underscore character <code>_</code> (U+005F) is considered a letter. 118 </p> 119 <pre class="ebnf"> 120 letter = unicode_letter | "_" . 121 decimal_digit = "0" … "9" . 122 octal_digit = "0" … "7" . 123 hex_digit = "0" … "9" | "A" … "F" | "a" … "f" . 124 </pre> 125 126 <h2 id="Lexical_elements">Lexical elements</h2> 127 128 <h3 id="Comments">Comments</h3> 129 130 <p> 131 Comments serve as program documentation. There are two forms: 132 </p> 133 134 <ol> 135 <li> 136 <i>Line comments</i> start with the character sequence <code>//</code> 137 and stop at the end of the line. 138 </li> 139 <li> 140 <i>General comments</i> start with the character sequence <code>/*</code> 141 and stop with the first subsequent character sequence <code>*/</code>. 142 </li> 143 </ol> 144 145 <p> 146 A comment cannot start inside a <a href="#Rune_literals">rune</a> or 147 <a href="#String_literals">string literal</a>, or inside a comment. 148 A general comment containing no newlines acts like a space. 149 Any other comment acts like a newline. 150 </p> 151 152 <h3 id="Tokens">Tokens</h3> 153 154 <p> 155 Tokens form the vocabulary of the Go language. 156 There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators 157 and punctuation</i>, and <i>literals</i>. <i>White space</i>, formed from 158 spaces (U+0020), horizontal tabs (U+0009), 159 carriage returns (U+000D), and newlines (U+000A), 160 is ignored except as it separates tokens 161 that would otherwise combine into a single token. Also, a newline or end of file 162 may trigger the insertion of a <a href="#Semicolons">semicolon</a>. 163 While breaking the input into tokens, 164 the next token is the longest sequence of characters that form a 165 valid token. 166 </p> 167 168 <h3 id="Semicolons">Semicolons</h3> 169 170 <p> 171 The formal grammar uses semicolons <code>";"</code> as terminators in 172 a number of productions. Go programs may omit most of these semicolons 173 using the following two rules: 174 </p> 175 176 <ol> 177 <li> 178 When the input is broken into tokens, a semicolon is automatically inserted 179 into the token stream immediately after a line's final token if that token is 180 <ul> 181 <li>an 182 <a href="#Identifiers">identifier</a> 183 </li> 184 185 <li>an 186 <a href="#Integer_literals">integer</a>, 187 <a href="#Floating-point_literals">floating-point</a>, 188 <a href="#Imaginary_literals">imaginary</a>, 189 <a href="#Rune_literals">rune</a>, or 190 <a href="#String_literals">string</a> literal 191 </li> 192 193 <li>one of the <a href="#Keywords">keywords</a> 194 <code>break</code>, 195 <code>continue</code>, 196 <code>fallthrough</code>, or 197 <code>return</code> 198 </li> 199 200 <li>one of the <a href="#Operators_and_punctuation">operators and punctuation</a> 201 <code>++</code>, 202 <code>--</code>, 203 <code>)</code>, 204 <code>]</code>, or 205 <code>}</code> 206 </li> 207 </ul> 208 </li> 209 210 <li> 211 To allow complex statements to occupy a single line, a semicolon 212 may be omitted before a closing <code>")"</code> or <code>"}"</code>. 213 </li> 214 </ol> 215 216 <p> 217 To reflect idiomatic use, code examples in this document elide semicolons 218 using these rules. 219 </p> 220 221 222 <h3 id="Identifiers">Identifiers</h3> 223 224 <p> 225 Identifiers name program entities such as variables and types. 226 An identifier is a sequence of one or more letters and digits. 227 The first character in an identifier must be a letter. 228 </p> 229 <pre class="ebnf"> 230 identifier = letter { letter | unicode_digit } . 231 </pre> 232 <pre> 233 a 234 _x9 235 ThisVariableIsExported 236 αβ 237 </pre> 238 239 <p> 240 Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>. 241 </p> 242 243 244 <h3 id="Keywords">Keywords</h3> 245 246 <p> 247 The following keywords are reserved and may not be used as identifiers. 248 </p> 249 <pre class="grammar"> 250 break default func interface select 251 case defer go map struct 252 chan else goto package switch 253 const fallthrough if range type 254 continue for import return var 255 </pre> 256 257 <h3 id="Operators_and_punctuation">Operators and punctuation</h3> 258 259 <p> 260 The following character sequences represent <a href="#Operators">operators</a> 261 (including <a href="#assign_op">assignment operators</a>) and punctuation: 262 </p> 263 <pre class="grammar"> 264 + & += &= && == != ( ) 265 - | -= |= || < <= [ ] 266 * ^ *= ^= <- > >= { } 267 / << /= <<= ++ = := , ; 268 % >> %= >>= -- ! ... . : 269 &^ &^= 270 </pre> 271 272 <h3 id="Integer_literals">Integer literals</h3> 273 274 <p> 275 An integer literal is a sequence of digits representing an 276 <a href="#Constants">integer constant</a>. 277 An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or 278 <code>0X</code> for hexadecimal. In hexadecimal literals, letters 279 <code>a-f</code> and <code>A-F</code> represent values 10 through 15. 280 </p> 281 <pre class="ebnf"> 282 int_lit = decimal_lit | octal_lit | hex_lit . 283 decimal_lit = ( "1" … "9" ) { decimal_digit } . 284 octal_lit = "0" { octal_digit } . 285 hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } . 286 </pre> 287 288 <pre> 289 42 290 0600 291 0xBadFace 292 170141183460469231731687303715884105727 293 </pre> 294 295 <h3 id="Floating-point_literals">Floating-point literals</h3> 296 <p> 297 A floating-point literal is a decimal representation of a 298 <a href="#Constants">floating-point constant</a>. 299 It has an integer part, a decimal point, a fractional part, 300 and an exponent part. The integer and fractional part comprise 301 decimal digits; the exponent part is an <code>e</code> or <code>E</code> 302 followed by an optionally signed decimal exponent. One of the 303 integer part or the fractional part may be elided; one of the decimal 304 point or the exponent may be elided. 305 </p> 306 <pre class="ebnf"> 307 float_lit = decimals "." [ decimals ] [ exponent ] | 308 decimals exponent | 309 "." decimals [ exponent ] . 310 decimals = decimal_digit { decimal_digit } . 311 exponent = ( "e" | "E" ) [ "+" | "-" ] decimals . 312 </pre> 313 314 <pre> 315 0. 316 72.40 317 072.40 // == 72.40 318 2.71828 319 1.e+0 320 6.67428e-11 321 1E6 322 .25 323 .12345E+5 324 </pre> 325 326 <h3 id="Imaginary_literals">Imaginary literals</h3> 327 <p> 328 An imaginary literal is a decimal representation of the imaginary part of a 329 <a href="#Constants">complex constant</a>. 330 It consists of a 331 <a href="#Floating-point_literals">floating-point literal</a> 332 or decimal integer followed 333 by the lower-case letter <code>i</code>. 334 </p> 335 <pre class="ebnf"> 336 imaginary_lit = (decimals | float_lit) "i" . 337 </pre> 338 339 <pre> 340 0i 341 011i // == 11i 342 0.i 343 2.71828i 344 1.e+0i 345 6.67428e-11i 346 1E6i 347 .25i 348 .12345E+5i 349 </pre> 350 351 352 <h3 id="Rune_literals">Rune literals</h3> 353 354 <p> 355 A rune literal represents a <a href="#Constants">rune constant</a>, 356 an integer value identifying a Unicode code point. 357 A rune literal is expressed as one or more characters enclosed in single quotes, 358 as in <code>'x'</code> or <code>'\n'</code>. 359 Within the quotes, any character may appear except newline and unescaped single 360 quote. A single quoted character represents the Unicode value 361 of the character itself, 362 while multi-character sequences beginning with a backslash encode 363 values in various formats. 364 </p> 365 <p> 366 The simplest form represents the single character within the quotes; 367 since Go source text is Unicode characters encoded in UTF-8, multiple 368 UTF-8-encoded bytes may represent a single integer value. For 369 instance, the literal <code>'a'</code> holds a single byte representing 370 a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while 371 <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing 372 a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>. 373 </p> 374 <p> 375 Several backslash escapes allow arbitrary values to be encoded as 376 ASCII text. There are four ways to represent the integer value 377 as a numeric constant: <code>\x</code> followed by exactly two hexadecimal 378 digits; <code>\u</code> followed by exactly four hexadecimal digits; 379 <code>\U</code> followed by exactly eight hexadecimal digits, and a 380 plain backslash <code>\</code> followed by exactly three octal digits. 381 In each case the value of the literal is the value represented by 382 the digits in the corresponding base. 383 </p> 384 <p> 385 Although these representations all result in an integer, they have 386 different valid ranges. Octal escapes must represent a value between 387 0 and 255 inclusive. Hexadecimal escapes satisfy this condition 388 by construction. The escapes <code>\u</code> and <code>\U</code> 389 represent Unicode code points so within them some values are illegal, 390 in particular those above <code>0x10FFFF</code> and surrogate halves. 391 </p> 392 <p> 393 After a backslash, certain single-character escapes represent special values: 394 </p> 395 <pre class="grammar"> 396 \a U+0007 alert or bell 397 \b U+0008 backspace 398 \f U+000C form feed 399 \n U+000A line feed or newline 400 \r U+000D carriage return 401 \t U+0009 horizontal tab 402 \v U+000b vertical tab 403 \\ U+005c backslash 404 \' U+0027 single quote (valid escape only within rune literals) 405 \" U+0022 double quote (valid escape only within string literals) 406 </pre> 407 <p> 408 All other sequences starting with a backslash are illegal inside rune literals. 409 </p> 410 <pre class="ebnf"> 411 rune_lit = "'" ( unicode_value | byte_value ) "'" . 412 unicode_value = unicode_char | little_u_value | big_u_value | escaped_char . 413 byte_value = octal_byte_value | hex_byte_value . 414 octal_byte_value = `\` octal_digit octal_digit octal_digit . 415 hex_byte_value = `\` "x" hex_digit hex_digit . 416 little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit . 417 big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit 418 hex_digit hex_digit hex_digit hex_digit . 419 escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) . 420 </pre> 421 422 <pre> 423 'a' 424 'ä' 425 '本' 426 '\t' 427 '\000' 428 '\007' 429 '\377' 430 '\x07' 431 '\xff' 432 '\u12e4' 433 '\U00101234' 434 '\'' // rune literal containing single quote character 435 'aa' // illegal: too many characters 436 '\xa' // illegal: too few hexadecimal digits 437 '\0' // illegal: too few octal digits 438 '\uDFFF' // illegal: surrogate half 439 '\U00110000' // illegal: invalid Unicode code point 440 </pre> 441 442 443 <h3 id="String_literals">String literals</h3> 444 445 <p> 446 A string literal represents a <a href="#Constants">string constant</a> 447 obtained from concatenating a sequence of characters. There are two forms: 448 raw string literals and interpreted string literals. 449 </p> 450 <p> 451 Raw string literals are character sequences between back quotes, as in 452 <code>`foo`</code>. Within the quotes, any character may appear except 453 back quote. The value of a raw string literal is the 454 string composed of the uninterpreted (implicitly UTF-8-encoded) characters 455 between the quotes; 456 in particular, backslashes have no special meaning and the string may 457 contain newlines. 458 Carriage return characters ('\r') inside raw string literals 459 are discarded from the raw string value. 460 </p> 461 <p> 462 Interpreted string literals are character sequences between double 463 quotes, as in <code>"bar"</code>. 464 Within the quotes, any character may appear except newline and unescaped double quote. 465 The text between the quotes forms the 466 value of the literal, with backslash escapes interpreted as they 467 are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and 468 <code>\"</code> is legal), with the same restrictions. 469 The three-digit octal (<code>\</code><i>nnn</i>) 470 and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual 471 <i>bytes</i> of the resulting string; all other escapes represent 472 the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>. 473 Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent 474 a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>, 475 <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent 476 the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character 477 U+00FF. 478 </p> 479 480 <pre class="ebnf"> 481 string_lit = raw_string_lit | interpreted_string_lit . 482 raw_string_lit = "`" { unicode_char | newline } "`" . 483 interpreted_string_lit = `"` { unicode_value | byte_value } `"` . 484 </pre> 485 486 <pre> 487 `abc` // same as "abc" 488 `\n 489 \n` // same as "\\n\n\\n" 490 "\n" 491 "\"" // same as `"` 492 "Hello, world!\n" 493 "日本語" 494 "\u65e5本\U00008a9e" 495 "\xff\u00FF" 496 "\uD800" // illegal: surrogate half 497 "\U00110000" // illegal: invalid Unicode code point 498 </pre> 499 500 <p> 501 These examples all represent the same string: 502 </p> 503 504 <pre> 505 "日本語" // UTF-8 input text 506 `日本語` // UTF-8 input text as a raw literal 507 "\u65e5\u672c\u8a9e" // the explicit Unicode code points 508 "\U000065e5\U0000672c\U00008a9e" // the explicit Unicode code points 509 "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // the explicit UTF-8 bytes 510 </pre> 511 512 <p> 513 If the source code represents a character as two code points, such as 514 a combining form involving an accent and a letter, the result will be 515 an error if placed in a rune literal (it is not a single code 516 point), and will appear as two code points if placed in a string 517 literal. 518 </p> 519 520 521 <h2 id="Constants">Constants</h2> 522 523 <p>There are <i>boolean constants</i>, 524 <i>rune constants</i>, 525 <i>integer constants</i>, 526 <i>floating-point constants</i>, <i>complex constants</i>, 527 and <i>string constants</i>. Rune, integer, floating-point, 528 and complex constants are 529 collectively called <i>numeric constants</i>. 530 </p> 531 532 <p> 533 A constant value is represented by a 534 <a href="#Rune_literals">rune</a>, 535 <a href="#Integer_literals">integer</a>, 536 <a href="#Floating-point_literals">floating-point</a>, 537 <a href="#Imaginary_literals">imaginary</a>, 538 or 539 <a href="#String_literals">string</a> literal, 540 an identifier denoting a constant, 541 a <a href="#Constant_expressions">constant expression</a>, 542 a <a href="#Conversions">conversion</a> with a result that is a constant, or 543 the result value of some built-in functions such as 544 <code>unsafe.Sizeof</code> applied to any value, 545 <code>cap</code> or <code>len</code> applied to 546 <a href="#Length_and_capacity">some expressions</a>, 547 <code>real</code> and <code>imag</code> applied to a complex constant 548 and <code>complex</code> applied to numeric constants. 549 The boolean truth values are represented by the predeclared constants 550 <code>true</code> and <code>false</code>. The predeclared identifier 551 <a href="#Iota">iota</a> denotes an integer constant. 552 </p> 553 554 <p> 555 In general, complex constants are a form of 556 <a href="#Constant_expressions">constant expression</a> 557 and are discussed in that section. 558 </p> 559 560 <p> 561 Numeric constants represent exact values of arbitrary precision and do not overflow. 562 Consequently, there are no constants denoting the IEEE-754 negative zero, infinity, 563 and not-a-number values. 564 </p> 565 566 <p> 567 Constants may be <a href="#Types">typed</a> or <i>untyped</i>. 568 Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>, 569 and certain <a href="#Constant_expressions">constant expressions</a> 570 containing only untyped constant operands are untyped. 571 </p> 572 573 <p> 574 A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a> 575 or <a href="#Conversions">conversion</a>, or implicitly when used in a 576 <a href="#Variable_declarations">variable declaration</a> or an 577 <a href="#Assignments">assignment</a> or as an 578 operand in an <a href="#Expressions">expression</a>. 579 It is an error if the constant value 580 cannot be <a href="#Representability">represented</a> as a value of the respective type. 581 </p> 582 583 <p> 584 An untyped constant has a <i>default type</i> which is the type to which the 585 constant is implicitly converted in contexts where a typed value is required, 586 for instance, in a <a href="#Short_variable_declarations">short variable declaration</a> 587 such as <code>i := 0</code> where there is no explicit type. 588 The default type of an untyped constant is <code>bool</code>, <code>rune</code>, 589 <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code> 590 respectively, depending on whether it is a boolean, rune, integer, floating-point, 591 complex, or string constant. 592 </p> 593 594 <p> 595 Implementation restriction: Although numeric constants have arbitrary 596 precision in the language, a compiler may implement them using an 597 internal representation with limited precision. That said, every 598 implementation must: 599 </p> 600 <ul> 601 <li>Represent integer constants with at least 256 bits.</li> 602 603 <li>Represent floating-point constants, including the parts of 604 a complex constant, with a mantissa of at least 256 bits 605 and a signed binary exponent of at least 16 bits.</li> 606 607 <li>Give an error if unable to represent an integer constant 608 precisely.</li> 609 610 <li>Give an error if unable to represent a floating-point or 611 complex constant due to overflow.</li> 612 613 <li>Round to the nearest representable constant if unable to 614 represent a floating-point or complex constant due to limits 615 on precision.</li> 616 </ul> 617 <p> 618 These requirements apply both to literal constants and to the result 619 of evaluating <a href="#Constant_expressions">constant 620 expressions</a>. 621 </p> 622 623 <h2 id="Variables">Variables</h2> 624 625 <p> 626 A variable is a storage location for holding a <i>value</i>. 627 The set of permissible values is determined by the 628 variable's <i><a href="#Types">type</a></i>. 629 </p> 630 631 <p> 632 A <a href="#Variable_declarations">variable declaration</a> 633 or, for function parameters and results, the signature 634 of a <a href="#Function_declarations">function declaration</a> 635 or <a href="#Function_literals">function literal</a> reserves 636 storage for a named variable. 637 638 Calling the built-in function <a href="#Allocation"><code>new</code></a> 639 or taking the address of a <a href="#Composite_literals">composite literal</a> 640 allocates storage for a variable at run time. 641 Such an anonymous variable is referred to via a (possibly implicit) 642 <a href="#Address_operators">pointer indirection</a>. 643 </p> 644 645 <p> 646 <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>, 647 and <a href="#Struct_types">struct</a> types have elements and fields that may 648 be <a href="#Address_operators">addressed</a> individually. Each such element 649 acts like a variable. 650 </p> 651 652 <p> 653 The <i>static type</i> (or just <i>type</i>) of a variable is the 654 type given in its declaration, the type provided in the 655 <code>new</code> call or composite literal, or the type of 656 an element of a structured variable. 657 Variables of interface type also have a distinct <i>dynamic type</i>, 658 which is the concrete type of the value assigned to the variable at run time 659 (unless the value is the predeclared identifier <code>nil</code>, 660 which has no type). 661 The dynamic type may vary during execution but values stored in interface 662 variables are always <a href="#Assignability">assignable</a> 663 to the static type of the variable. 664 </p> 665 666 <pre> 667 var x interface{} // x is nil and has static type interface{} 668 var v *T // v has value nil, static type *T 669 x = 42 // x has value 42 and dynamic type int 670 x = v // x has value (*T)(nil) and dynamic type *T 671 </pre> 672 673 <p> 674 A variable's value is retrieved by referring to the variable in an 675 <a href="#Expressions">expression</a>; it is the most recent value 676 <a href="#Assignments">assigned</a> to the variable. 677 If a variable has not yet been assigned a value, its value is the 678 <a href="#The_zero_value">zero value</a> for its type. 679 </p> 680 681 682 <h2 id="Types">Types</h2> 683 684 <p> 685 A type determines a set of values together with operations and methods specific 686 to those values. A type may be denoted by a <i>type name</i>, if it has one, 687 or specified using a <i>type literal</i>, which composes a type from existing types. 688 </p> 689 690 <pre class="ebnf"> 691 Type = TypeName | TypeLit | "(" Type ")" . 692 TypeName = identifier | QualifiedIdent . 693 TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType | 694 SliceType | MapType | ChannelType . 695 </pre> 696 697 <p> 698 Named instances of the boolean, numeric, and string types are 699 <a href="#Predeclared_identifiers">predeclared</a>. 700 Other named types are introduced with <a href="#Type_declarations">type declarations</a>. 701 <i>Composite types</i>—array, struct, pointer, function, 702 interface, slice, map, and channel types—may be constructed using 703 type literals. 704 </p> 705 706 <p> 707 Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code> 708 is one of the predeclared boolean, numeric, or string types, or a type literal, 709 the corresponding underlying 710 type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type 711 is the underlying type of the type to which <code>T</code> refers in its 712 <a href="#Type_declarations">type declaration</a>. 713 </p> 714 715 <pre> 716 type ( 717 A1 = string 718 A2 = A1 719 ) 720 721 type ( 722 B1 string 723 B2 B1 724 B3 []B1 725 B4 B3 726 ) 727 </pre> 728 729 <p> 730 The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>, 731 and <code>B2</code> is <code>string</code>. 732 The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>. 733 </p> 734 735 <h3 id="Method_sets">Method sets</h3> 736 <p> 737 A type may have a <i>method set</i> associated with it. 738 The method set of an <a href="#Interface_types">interface type</a> is its interface. 739 The method set of any other type <code>T</code> consists of all 740 <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>. 741 The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code> 742 is the set of all methods declared with receiver <code>*T</code> or <code>T</code> 743 (that is, it also contains the method set of <code>T</code>). 744 Further rules apply to structs containing embedded fields, as described 745 in the section on <a href="#Struct_types">struct types</a>. 746 Any other type has an empty method set. 747 In a method set, each method must have a 748 <a href="#Uniqueness_of_identifiers">unique</a> 749 non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>. 750 </p> 751 752 <p> 753 The method set of a type determines the interfaces that the 754 type <a href="#Interface_types">implements</a> 755 and the methods that can be <a href="#Calls">called</a> 756 using a receiver of that type. 757 </p> 758 759 <h3 id="Boolean_types">Boolean types</h3> 760 761 <p> 762 A <i>boolean type</i> represents the set of Boolean truth values 763 denoted by the predeclared constants <code>true</code> 764 and <code>false</code>. The predeclared boolean type is <code>bool</code>. 765 </p> 766 767 <h3 id="Numeric_types">Numeric types</h3> 768 769 <p> 770 A <i>numeric type</i> represents sets of integer or floating-point values. 771 The predeclared architecture-independent numeric types are: 772 </p> 773 774 <pre class="grammar"> 775 uint8 the set of all unsigned 8-bit integers (0 to 255) 776 uint16 the set of all unsigned 16-bit integers (0 to 65535) 777 uint32 the set of all unsigned 32-bit integers (0 to 4294967295) 778 uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615) 779 780 int8 the set of all signed 8-bit integers (-128 to 127) 781 int16 the set of all signed 16-bit integers (-32768 to 32767) 782 int32 the set of all signed 32-bit integers (-2147483648 to 2147483647) 783 int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807) 784 785 float32 the set of all IEEE-754 32-bit floating-point numbers 786 float64 the set of all IEEE-754 64-bit floating-point numbers 787 788 complex64 the set of all complex numbers with float32 real and imaginary parts 789 complex128 the set of all complex numbers with float64 real and imaginary parts 790 791 byte alias for uint8 792 rune alias for int32 793 </pre> 794 795 <p> 796 The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using 797 <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>. 798 </p> 799 800 <p> 801 There is also a set of predeclared numeric types with implementation-specific sizes: 802 </p> 803 804 <pre class="grammar"> 805 uint either 32 or 64 bits 806 int same size as uint 807 uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value 808 </pre> 809 810 <p> 811 To avoid portability issues all numeric types are distinct except 812 <code>byte</code>, which is an alias for <code>uint8</code>, and 813 <code>rune</code>, which is an alias for <code>int32</code>. 814 Conversions 815 are required when different numeric types are mixed in an expression 816 or assignment. For instance, <code>int32</code> and <code>int</code> 817 are not the same type even though they may have the same size on a 818 particular architecture. 819 820 821 <h3 id="String_types">String types</h3> 822 823 <p> 824 A <i>string type</i> represents the set of string values. 825 A string value is a (possibly empty) sequence of bytes. 826 Strings are immutable: once created, 827 it is impossible to change the contents of a string. 828 The predeclared string type is <code>string</code>. 829 </p> 830 831 <p> 832 The length of a string <code>s</code> (its size in bytes) can be discovered using 833 the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 834 The length is a compile-time constant if the string is a constant. 835 A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a> 836 0 through <code>len(s)-1</code>. 837 It is illegal to take the address of such an element; if 838 <code>s[i]</code> is the <code>i</code>'th byte of a 839 string, <code>&s[i]</code> is invalid. 840 </p> 841 842 843 <h3 id="Array_types">Array types</h3> 844 845 <p> 846 An array is a numbered sequence of elements of a single 847 type, called the element type. 848 The number of elements is called the length and is never 849 negative. 850 </p> 851 852 <pre class="ebnf"> 853 ArrayType = "[" ArrayLength "]" ElementType . 854 ArrayLength = Expression . 855 ElementType = Type . 856 </pre> 857 858 <p> 859 The length is part of the array's type; it must evaluate to a 860 non-negative <a href="#Constants">constant</a> 861 <a href="#Representability">representable</a> by a value 862 of type <code>int</code>. 863 The length of array <code>a</code> can be discovered 864 using the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 865 The elements can be addressed by integer <a href="#Index_expressions">indices</a> 866 0 through <code>len(a)-1</code>. 867 Array types are always one-dimensional but may be composed to form 868 multi-dimensional types. 869 </p> 870 871 <pre> 872 [32]byte 873 [2*N] struct { x, y int32 } 874 [1000]*float64 875 [3][5]int 876 [2][2][2]float64 // same as [2]([2]([2]float64)) 877 </pre> 878 879 <h3 id="Slice_types">Slice types</h3> 880 881 <p> 882 A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and 883 provides access to a numbered sequence of elements from that array. 884 A slice type denotes the set of all slices of arrays of its element type. 885 The value of an uninitialized slice is <code>nil</code>. 886 </p> 887 888 <pre class="ebnf"> 889 SliceType = "[" "]" ElementType . 890 </pre> 891 892 <p> 893 Like arrays, slices are indexable and have a length. The length of a 894 slice <code>s</code> can be discovered by the built-in function 895 <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during 896 execution. The elements can be addressed by integer <a href="#Index_expressions">indices</a> 897 0 through <code>len(s)-1</code>. The slice index of a 898 given element may be less than the index of the same element in the 899 underlying array. 900 </p> 901 <p> 902 A slice, once initialized, is always associated with an underlying 903 array that holds its elements. A slice therefore shares storage 904 with its array and with other slices of the same array; by contrast, 905 distinct arrays always represent distinct storage. 906 </p> 907 <p> 908 The array underlying a slice may extend past the end of the slice. 909 The <i>capacity</i> is a measure of that extent: it is the sum of 910 the length of the slice and the length of the array beyond the slice; 911 a slice of length up to that capacity can be created by 912 <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice. 913 The capacity of a slice <code>a</code> can be discovered using the 914 built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>. 915 </p> 916 917 <p> 918 A new, initialized slice value for a given element type <code>T</code> is 919 made using the built-in function 920 <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 921 which takes a slice type 922 and parameters specifying the length and optionally the capacity. 923 A slice created with <code>make</code> always allocates a new, hidden array 924 to which the returned slice value refers. That is, executing 925 </p> 926 927 <pre> 928 make([]T, length, capacity) 929 </pre> 930 931 <p> 932 produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a> 933 it, so these two expressions are equivalent: 934 </p> 935 936 <pre> 937 make([]int, 50, 100) 938 new([100]int)[0:50] 939 </pre> 940 941 <p> 942 Like arrays, slices are always one-dimensional but may be composed to construct 943 higher-dimensional objects. 944 With arrays of arrays, the inner arrays are, by construction, always the same length; 945 however with slices of slices (or arrays of slices), the inner lengths may vary dynamically. 946 Moreover, the inner slices must be initialized individually. 947 </p> 948 949 <h3 id="Struct_types">Struct types</h3> 950 951 <p> 952 A struct is a sequence of named elements, called fields, each of which has a 953 name and a type. Field names may be specified explicitly (IdentifierList) or 954 implicitly (EmbeddedField). 955 Within a struct, non-<a href="#Blank_identifier">blank</a> field names must 956 be <a href="#Uniqueness_of_identifiers">unique</a>. 957 </p> 958 959 <pre class="ebnf"> 960 StructType = "struct" "{" { FieldDecl ";" } "}" . 961 FieldDecl = (IdentifierList Type | EmbeddedField) [ Tag ] . 962 EmbeddedField = [ "*" ] TypeName . 963 Tag = string_lit . 964 </pre> 965 966 <pre> 967 // An empty struct. 968 struct {} 969 970 // A struct with 6 fields. 971 struct { 972 x, y int 973 u float32 974 _ float32 // padding 975 A *[]int 976 F func() 977 } 978 </pre> 979 980 <p> 981 A field declared with a type but no explicit field name is called an <i>embedded field</i>. 982 An embedded field must be specified as 983 a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>, 984 and <code>T</code> itself may not be 985 a pointer type. The unqualified type name acts as the field name. 986 </p> 987 988 <pre> 989 // A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4 990 struct { 991 T1 // field name is T1 992 *T2 // field name is T2 993 P.T3 // field name is T3 994 *P.T4 // field name is T4 995 x, y int // field names are x and y 996 } 997 </pre> 998 999 <p> 1000 The following declaration is illegal because field names must be unique 1001 in a struct type: 1002 </p> 1003 1004 <pre> 1005 struct { 1006 T // conflicts with embedded field *T and *P.T 1007 *T // conflicts with embedded field T and *P.T 1008 *P.T // conflicts with embedded field T and *T 1009 } 1010 </pre> 1011 1012 <p> 1013 A field or <a href="#Method_declarations">method</a> <code>f</code> of an 1014 embedded field in a struct <code>x</code> is called <i>promoted</i> if 1015 <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes 1016 that field or method <code>f</code>. 1017 </p> 1018 1019 <p> 1020 Promoted fields act like ordinary fields 1021 of a struct except that they cannot be used as field names in 1022 <a href="#Composite_literals">composite literals</a> of the struct. 1023 </p> 1024 1025 <p> 1026 Given a struct type <code>S</code> and a type named <code>T</code>, 1027 promoted methods are included in the method set of the struct as follows: 1028 </p> 1029 <ul> 1030 <li> 1031 If <code>S</code> contains an embedded field <code>T</code>, 1032 the <a href="#Method_sets">method sets</a> of <code>S</code> 1033 and <code>*S</code> both include promoted methods with receiver 1034 <code>T</code>. The method set of <code>*S</code> also 1035 includes promoted methods with receiver <code>*T</code>. 1036 </li> 1037 1038 <li> 1039 If <code>S</code> contains an embedded field <code>*T</code>, 1040 the method sets of <code>S</code> and <code>*S</code> both 1041 include promoted methods with receiver <code>T</code> or 1042 <code>*T</code>. 1043 </li> 1044 </ul> 1045 1046 <p> 1047 A field declaration may be followed by an optional string literal <i>tag</i>, 1048 which becomes an attribute for all the fields in the corresponding 1049 field declaration. An empty tag string is equivalent to an absent tag. 1050 The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a> 1051 and take part in <a href="#Type_identity">type identity</a> for structs 1052 but are otherwise ignored. 1053 </p> 1054 1055 <pre> 1056 struct { 1057 x, y float64 "" // an empty tag string is like an absent tag 1058 name string "any string is permitted as a tag" 1059 _ [4]byte "ceci n'est pas un champ de structure" 1060 } 1061 1062 // A struct corresponding to a TimeStamp protocol buffer. 1063 // The tag strings define the protocol buffer field numbers; 1064 // they follow the convention outlined by the reflect package. 1065 struct { 1066 microsec uint64 `protobuf:"1"` 1067 serverIP6 uint64 `protobuf:"2"` 1068 } 1069 </pre> 1070 1071 <h3 id="Pointer_types">Pointer types</h3> 1072 1073 <p> 1074 A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given 1075 type, called the <i>base type</i> of the pointer. 1076 The value of an uninitialized pointer is <code>nil</code>. 1077 </p> 1078 1079 <pre class="ebnf"> 1080 PointerType = "*" BaseType . 1081 BaseType = Type . 1082 </pre> 1083 1084 <pre> 1085 *Point 1086 *[4]int 1087 </pre> 1088 1089 <h3 id="Function_types">Function types</h3> 1090 1091 <p> 1092 A function type denotes the set of all functions with the same parameter 1093 and result types. The value of an uninitialized variable of function type 1094 is <code>nil</code>. 1095 </p> 1096 1097 <pre class="ebnf"> 1098 FunctionType = "func" Signature . 1099 Signature = Parameters [ Result ] . 1100 Result = Parameters | Type . 1101 Parameters = "(" [ ParameterList [ "," ] ] ")" . 1102 ParameterList = ParameterDecl { "," ParameterDecl } . 1103 ParameterDecl = [ IdentifierList ] [ "..." ] Type . 1104 </pre> 1105 1106 <p> 1107 Within a list of parameters or results, the names (IdentifierList) 1108 must either all be present or all be absent. If present, each name 1109 stands for one item (parameter or result) of the specified type and 1110 all non-<a href="#Blank_identifier">blank</a> names in the signature 1111 must be <a href="#Uniqueness_of_identifiers">unique</a>. 1112 If absent, each type stands for one item of that type. 1113 Parameter and result 1114 lists are always parenthesized except that if there is exactly 1115 one unnamed result it may be written as an unparenthesized type. 1116 </p> 1117 1118 <p> 1119 The final incoming parameter in a function signature may have 1120 a type prefixed with <code>...</code>. 1121 A function with such a parameter is called <i>variadic</i> and 1122 may be invoked with zero or more arguments for that parameter. 1123 </p> 1124 1125 <pre> 1126 func() 1127 func(x int) int 1128 func(a, _ int, z float32) bool 1129 func(a, b int, z float32) (bool) 1130 func(prefix string, values ...int) 1131 func(a, b int, z float64, opt ...interface{}) (success bool) 1132 func(int, int, float64) (float64, *[]int) 1133 func(n int) func(p *T) 1134 </pre> 1135 1136 1137 <h3 id="Interface_types">Interface types</h3> 1138 1139 <p> 1140 An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>. 1141 A variable of interface type can store a value of any type with a method set 1142 that is any superset of the interface. Such a type is said to 1143 <i>implement the interface</i>. 1144 The value of an uninitialized variable of interface type is <code>nil</code>. 1145 </p> 1146 1147 <pre class="ebnf"> 1148 InterfaceType = "interface" "{" { MethodSpec ";" } "}" . 1149 MethodSpec = MethodName Signature | InterfaceTypeName . 1150 MethodName = identifier . 1151 InterfaceTypeName = TypeName . 1152 </pre> 1153 1154 <p> 1155 As with all method sets, in an interface type, each method must have a 1156 <a href="#Uniqueness_of_identifiers">unique</a> 1157 non-<a href="#Blank_identifier">blank</a> name. 1158 </p> 1159 1160 <pre> 1161 // A simple File interface 1162 interface { 1163 Read(b Buffer) bool 1164 Write(b Buffer) bool 1165 Close() 1166 } 1167 </pre> 1168 1169 <p> 1170 More than one type may implement an interface. 1171 For instance, if two types <code>S1</code> and <code>S2</code> 1172 have the method set 1173 </p> 1174 1175 <pre> 1176 func (p T) Read(b Buffer) bool { return … } 1177 func (p T) Write(b Buffer) bool { return … } 1178 func (p T) Close() { … } 1179 </pre> 1180 1181 <p> 1182 (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>) 1183 then the <code>File</code> interface is implemented by both <code>S1</code> and 1184 <code>S2</code>, regardless of what other methods 1185 <code>S1</code> and <code>S2</code> may have or share. 1186 </p> 1187 1188 <p> 1189 A type implements any interface comprising any subset of its methods 1190 and may therefore implement several distinct interfaces. For 1191 instance, all types implement the <i>empty interface</i>: 1192 </p> 1193 1194 <pre> 1195 interface{} 1196 </pre> 1197 1198 <p> 1199 Similarly, consider this interface specification, 1200 which appears within a <a href="#Type_declarations">type declaration</a> 1201 to define an interface called <code>Locker</code>: 1202 </p> 1203 1204 <pre> 1205 type Locker interface { 1206 Lock() 1207 Unlock() 1208 } 1209 </pre> 1210 1211 <p> 1212 If <code>S1</code> and <code>S2</code> also implement 1213 </p> 1214 1215 <pre> 1216 func (p T) Lock() { … } 1217 func (p T) Unlock() { … } 1218 </pre> 1219 1220 <p> 1221 they implement the <code>Locker</code> interface as well 1222 as the <code>File</code> interface. 1223 </p> 1224 1225 <p> 1226 An interface <code>T</code> may use a (possibly qualified) interface type 1227 name <code>E</code> in place of a method specification. This is called 1228 <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds 1229 all (exported and non-exported) methods of <code>E</code> to the interface 1230 <code>T</code>. 1231 </p> 1232 1233 <pre> 1234 type ReadWriter interface { 1235 Read(b Buffer) bool 1236 Write(b Buffer) bool 1237 } 1238 1239 type File interface { 1240 ReadWriter // same as adding the methods of ReadWriter 1241 Locker // same as adding the methods of Locker 1242 Close() 1243 } 1244 1245 type LockedFile interface { 1246 Locker 1247 File // illegal: Lock, Unlock not unique 1248 Lock() // illegal: Lock not unique 1249 } 1250 </pre> 1251 1252 <p> 1253 An interface type <code>T</code> may not embed itself 1254 or any interface type that embeds <code>T</code>, recursively. 1255 </p> 1256 1257 <pre> 1258 // illegal: Bad cannot embed itself 1259 type Bad interface { 1260 Bad 1261 } 1262 1263 // illegal: Bad1 cannot embed itself using Bad2 1264 type Bad1 interface { 1265 Bad2 1266 } 1267 type Bad2 interface { 1268 Bad1 1269 } 1270 </pre> 1271 1272 <h3 id="Map_types">Map types</h3> 1273 1274 <p> 1275 A map is an unordered group of elements of one type, called the 1276 element type, indexed by a set of unique <i>keys</i> of another type, 1277 called the key type. 1278 The value of an uninitialized map is <code>nil</code>. 1279 </p> 1280 1281 <pre class="ebnf"> 1282 MapType = "map" "[" KeyType "]" ElementType . 1283 KeyType = Type . 1284 </pre> 1285 1286 <p> 1287 The <a href="#Comparison_operators">comparison operators</a> 1288 <code>==</code> and <code>!=</code> must be fully defined 1289 for operands of the key type; thus the key type must not be a function, map, or 1290 slice. 1291 If the key type is an interface type, these 1292 comparison operators must be defined for the dynamic key values; 1293 failure will cause a <a href="#Run_time_panics">run-time panic</a>. 1294 1295 </p> 1296 1297 <pre> 1298 map[string]int 1299 map[*T]struct{ x, y float64 } 1300 map[string]interface{} 1301 </pre> 1302 1303 <p> 1304 The number of map elements is called its length. 1305 For a map <code>m</code>, it can be discovered using the 1306 built-in function <a href="#Length_and_capacity"><code>len</code></a> 1307 and may change during execution. Elements may be added during execution 1308 using <a href="#Assignments">assignments</a> and retrieved with 1309 <a href="#Index_expressions">index expressions</a>; they may be removed with the 1310 <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function. 1311 </p> 1312 <p> 1313 A new, empty map value is made using the built-in 1314 function <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1315 which takes the map type and an optional capacity hint as arguments: 1316 </p> 1317 1318 <pre> 1319 make(map[string]int) 1320 make(map[string]int, 100) 1321 </pre> 1322 1323 <p> 1324 The initial capacity does not bound its size: 1325 maps grow to accommodate the number of items 1326 stored in them, with the exception of <code>nil</code> maps. 1327 A <code>nil</code> map is equivalent to an empty map except that no elements 1328 may be added. 1329 1330 <h3 id="Channel_types">Channel types</h3> 1331 1332 <p> 1333 A channel provides a mechanism for 1334 <a href="#Go_statements">concurrently executing functions</a> 1335 to communicate by 1336 <a href="#Send_statements">sending</a> and 1337 <a href="#Receive_operator">receiving</a> 1338 values of a specified element type. 1339 The value of an uninitialized channel is <code>nil</code>. 1340 </p> 1341 1342 <pre class="ebnf"> 1343 ChannelType = ( "chan" | "chan" "<-" | "<-" "chan" ) ElementType . 1344 </pre> 1345 1346 <p> 1347 The optional <code><-</code> operator specifies the channel <i>direction</i>, 1348 <i>send</i> or <i>receive</i>. If no direction is given, the channel is 1349 <i>bidirectional</i>. 1350 A channel may be constrained only to send or only to receive by 1351 <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>. 1352 </p> 1353 1354 <pre> 1355 chan T // can be used to send and receive values of type T 1356 chan<- float64 // can only be used to send float64s 1357 <-chan int // can only be used to receive ints 1358 </pre> 1359 1360 <p> 1361 The <code><-</code> operator associates with the leftmost <code>chan</code> 1362 possible: 1363 </p> 1364 1365 <pre> 1366 chan<- chan int // same as chan<- (chan int) 1367 chan<- <-chan int // same as chan<- (<-chan int) 1368 <-chan <-chan int // same as <-chan (<-chan int) 1369 chan (<-chan int) 1370 </pre> 1371 1372 <p> 1373 A new, initialized channel 1374 value can be made using the built-in function 1375 <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1376 which takes the channel type and an optional <i>capacity</i> as arguments: 1377 </p> 1378 1379 <pre> 1380 make(chan int, 100) 1381 </pre> 1382 1383 <p> 1384 The capacity, in number of elements, sets the size of the buffer in the channel. 1385 If the capacity is zero or absent, the channel is unbuffered and communication 1386 succeeds only when both a sender and receiver are ready. Otherwise, the channel 1387 is buffered and communication succeeds without blocking if the buffer 1388 is not full (sends) or not empty (receives). 1389 A <code>nil</code> channel is never ready for communication. 1390 </p> 1391 1392 <p> 1393 A channel may be closed with the built-in function 1394 <a href="#Close"><code>close</code></a>. 1395 The multi-valued assignment form of the 1396 <a href="#Receive_operator">receive operator</a> 1397 reports whether a received value was sent before 1398 the channel was closed. 1399 </p> 1400 1401 <p> 1402 A single channel may be used in 1403 <a href="#Send_statements">send statements</a>, 1404 <a href="#Receive_operator">receive operations</a>, 1405 and calls to the built-in functions 1406 <a href="#Length_and_capacity"><code>cap</code></a> and 1407 <a href="#Length_and_capacity"><code>len</code></a> 1408 by any number of goroutines without further synchronization. 1409 Channels act as first-in-first-out queues. 1410 For example, if one goroutine sends values on a channel 1411 and a second goroutine receives them, the values are 1412 received in the order sent. 1413 </p> 1414 1415 <h2 id="Properties_of_types_and_values">Properties of types and values</h2> 1416 1417 <h3 id="Type_identity">Type identity</h3> 1418 1419 <p> 1420 Two types are either <i>identical</i> or <i>different</i>. 1421 </p> 1422 1423 <p> 1424 A <a href="#Type_definitions">defined type</a> is always different from any other type. 1425 Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are 1426 structurally equivalent; that is, they have the same literal structure and corresponding 1427 components have identical types. In detail: 1428 </p> 1429 1430 <ul> 1431 <li>Two array types are identical if they have identical element types and 1432 the same array length.</li> 1433 1434 <li>Two slice types are identical if they have identical element types.</li> 1435 1436 <li>Two struct types are identical if they have the same sequence of fields, 1437 and if corresponding fields have the same names, and identical types, 1438 and identical tags. 1439 <a href="#Exported_identifiers">Non-exported</a> field names from different 1440 packages are always different.</li> 1441 1442 <li>Two pointer types are identical if they have identical base types.</li> 1443 1444 <li>Two function types are identical if they have the same number of parameters 1445 and result values, corresponding parameter and result types are 1446 identical, and either both functions are variadic or neither is. 1447 Parameter and result names are not required to match.</li> 1448 1449 <li>Two interface types are identical if they have the same set of methods 1450 with the same names and identical function types. 1451 <a href="#Exported_identifiers">Non-exported</a> method names from different 1452 packages are always different. The order of the methods is irrelevant.</li> 1453 1454 <li>Two map types are identical if they have identical key and value types.</li> 1455 1456 <li>Two channel types are identical if they have identical value types and 1457 the same direction.</li> 1458 </ul> 1459 1460 <p> 1461 Given the declarations 1462 </p> 1463 1464 <pre> 1465 type ( 1466 A0 = []string 1467 A1 = A0 1468 A2 = struct{ a, b int } 1469 A3 = int 1470 A4 = func(A3, float64) *A0 1471 A5 = func(x int, _ float64) *[]string 1472 ) 1473 1474 type ( 1475 B0 A0 1476 B1 []string 1477 B2 struct{ a, b int } 1478 B3 struct{ a, c int } 1479 B4 func(int, float64) *B0 1480 B5 func(x int, y float64) *A1 1481 ) 1482 1483 type C0 = B0 1484 </pre> 1485 1486 <p> 1487 these types are identical: 1488 </p> 1489 1490 <pre> 1491 A0, A1, and []string 1492 A2 and struct{ a, b int } 1493 A3 and int 1494 A4, func(int, float64) *[]string, and A5 1495 1496 B0, B0, and C0 1497 []int and []int 1498 struct{ a, b *T5 } and struct{ a, b *T5 } 1499 func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5 1500 </pre> 1501 1502 <p> 1503 <code>B0</code> and <code>B1</code> are different because they are new types 1504 created by distinct <a href="#Type_definitions">type definitions</a>; 1505 <code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code> 1506 are different because <code>B0</code> is different from <code>[]string</code>. 1507 </p> 1508 1509 1510 <h3 id="Assignability">Assignability</h3> 1511 1512 <p> 1513 A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code> 1514 ("<code>x</code> is assignable to <code>T</code>") if one of the following conditions applies: 1515 </p> 1516 1517 <ul> 1518 <li> 1519 <code>x</code>'s type is identical to <code>T</code>. 1520 </li> 1521 <li> 1522 <code>x</code>'s type <code>V</code> and <code>T</code> have identical 1523 <a href="#Types">underlying types</a> and at least one of <code>V</code> 1524 or <code>T</code> is not a <a href="#Type_definitions">defined</a> type. 1525 </li> 1526 <li> 1527 <code>T</code> is an interface type and 1528 <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>. 1529 </li> 1530 <li> 1531 <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type, 1532 <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types, 1533 and at least one of <code>V</code> or <code>T</code> is not a defined type. 1534 </li> 1535 <li> 1536 <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code> 1537 is a pointer, function, slice, map, channel, or interface type. 1538 </li> 1539 <li> 1540 <code>x</code> is an untyped <a href="#Constants">constant</a> 1541 <a href="#Representability">representable</a> 1542 by a value of type <code>T</code>. 1543 </li> 1544 </ul> 1545 1546 1547 <h3 id="Representability">Representability</h3> 1548 1549 <p> 1550 A <a href="#Constants">constant</a> <code>x</code> is <i>representable</i> 1551 by a value of type <code>T</code> if one of the following conditions applies: 1552 </p> 1553 1554 <ul> 1555 <li> 1556 <code>x</code> is in the set of values <a href="#Types">determined</a> by <code>T</code>. 1557 </li> 1558 1559 <li> 1560 <code>T</code> is a floating-point type and <code>x</code> can be rounded to <code>T</code>'s 1561 precision without overflow. Rounding uses IEEE 754 round-to-even rules but with an IEEE 1562 negative zero further simplified to an unsigned zero. Note that constant values never result 1563 in an IEEE negative zero, NaN, or infinity. 1564 </li> 1565 1566 <li> 1567 <code>T</code> is a complex type, and <code>x</code>'s 1568 <a href="#Complex_numbers">components</a> <code>real(x)</code> and <code>imag(x)</code> 1569 are representable by values of <code>T</code>'s component type (<code>float32</code> or 1570 <code>float64</code>). 1571 </li> 1572 </ul> 1573 1574 <pre> 1575 x T x is representable by a value of T because 1576 1577 'a' byte 97 is in the set of byte values 1578 97 rune rune is an alias for int32, and 97 is in the set of 32-bit integers 1579 "foo" string "foo" is in the set of string values 1580 1024 int16 1024 is in the set of 16-bit integers 1581 42.0 byte 42 is in the set of unsigned 8-bit integers 1582 1e10 uint64 10000000000 is in the set of unsigned 64-bit integers 1583 2.718281828459045 float32 2.718281828459045 rounds to 2.7182817 which is in the set of float32 values 1584 -1e-1000 float64 -1e-1000 rounds to IEEE -0.0 which is further simplified to 0.0 1585 0i int 0 is an integer value 1586 (42 + 0i) float32 42.0 (with zero imaginary part) is in the set of float32 values 1587 </pre> 1588 1589 <pre> 1590 x T x is not representable by a value of T because 1591 1592 0 bool 0 is not in the set of boolean values 1593 'a' string 'a' is a rune, it is not in the set of string values 1594 1024 byte 1024 is not in the set of unsigned 8-bit integers 1595 -1 uint16 -1 is not in the set of unsigned 16-bit integers 1596 1.1 int 1.1 is not an integer value 1597 42i float32 (0 + 42i) is not in the set of float32 values 1598 1e1000 float64 1e1000 overflows to IEEE +Inf after rounding 1599 </pre> 1600 1601 1602 <h2 id="Blocks">Blocks</h2> 1603 1604 <p> 1605 A <i>block</i> is a possibly empty sequence of declarations and statements 1606 within matching brace brackets. 1607 </p> 1608 1609 <pre class="ebnf"> 1610 Block = "{" StatementList "}" . 1611 StatementList = { Statement ";" } . 1612 </pre> 1613 1614 <p> 1615 In addition to explicit blocks in the source code, there are implicit blocks: 1616 </p> 1617 1618 <ol> 1619 <li>The <i>universe block</i> encompasses all Go source text.</li> 1620 1621 <li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all 1622 Go source text for that package.</li> 1623 1624 <li>Each file has a <i>file block</i> containing all Go source text 1625 in that file.</li> 1626 1627 <li>Each <a href="#If_statements">"if"</a>, 1628 <a href="#For_statements">"for"</a>, and 1629 <a href="#Switch_statements">"switch"</a> 1630 statement is considered to be in its own implicit block.</li> 1631 1632 <li>Each clause in a <a href="#Switch_statements">"switch"</a> 1633 or <a href="#Select_statements">"select"</a> statement 1634 acts as an implicit block.</li> 1635 </ol> 1636 1637 <p> 1638 Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>. 1639 </p> 1640 1641 1642 <h2 id="Declarations_and_scope">Declarations and scope</h2> 1643 1644 <p> 1645 A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a 1646 <a href="#Constant_declarations">constant</a>, 1647 <a href="#Type_declarations">type</a>, 1648 <a href="#Variable_declarations">variable</a>, 1649 <a href="#Function_declarations">function</a>, 1650 <a href="#Labeled_statements">label</a>, or 1651 <a href="#Import_declarations">package</a>. 1652 Every identifier in a program must be declared. 1653 No identifier may be declared twice in the same block, and 1654 no identifier may be declared in both the file and package block. 1655 </p> 1656 1657 <p> 1658 The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier 1659 in a declaration, but it does not introduce a binding and thus is not declared. 1660 In the package block, the identifier <code>init</code> may only be used for 1661 <a href="#Package_initialization"><code>init</code> function</a> declarations, 1662 and like the blank identifier it does not introduce a new binding. 1663 </p> 1664 1665 <pre class="ebnf"> 1666 Declaration = ConstDecl | TypeDecl | VarDecl . 1667 TopLevelDecl = Declaration | FunctionDecl | MethodDecl . 1668 </pre> 1669 1670 <p> 1671 The <i>scope</i> of a declared identifier is the extent of source text in which 1672 the identifier denotes the specified constant, type, variable, function, label, or package. 1673 </p> 1674 1675 <p> 1676 Go is lexically scoped using <a href="#Blocks">blocks</a>: 1677 </p> 1678 1679 <ol> 1680 <li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li> 1681 1682 <li>The scope of an identifier denoting a constant, type, variable, 1683 or function (but not method) declared at top level (outside any 1684 function) is the package block.</li> 1685 1686 <li>The scope of the package name of an imported package is the file block 1687 of the file containing the import declaration.</li> 1688 1689 <li>The scope of an identifier denoting a method receiver, function parameter, 1690 or result variable is the function body.</li> 1691 1692 <li>The scope of a constant or variable identifier declared 1693 inside a function begins at the end of the ConstSpec or VarSpec 1694 (ShortVarDecl for short variable declarations) 1695 and ends at the end of the innermost containing block.</li> 1696 1697 <li>The scope of a type identifier declared inside a function 1698 begins at the identifier in the TypeSpec 1699 and ends at the end of the innermost containing block.</li> 1700 </ol> 1701 1702 <p> 1703 An identifier declared in a block may be redeclared in an inner block. 1704 While the identifier of the inner declaration is in scope, it denotes 1705 the entity declared by the inner declaration. 1706 </p> 1707 1708 <p> 1709 The <a href="#Package_clause">package clause</a> is not a declaration; the package name 1710 does not appear in any scope. Its purpose is to identify the files belonging 1711 to the same <a href="#Packages">package</a> and to specify the default package name for import 1712 declarations. 1713 </p> 1714 1715 1716 <h3 id="Label_scopes">Label scopes</h3> 1717 1718 <p> 1719 Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are 1720 used in the <a href="#Break_statements">"break"</a>, 1721 <a href="#Continue_statements">"continue"</a>, and 1722 <a href="#Goto_statements">"goto"</a> statements. 1723 It is illegal to define a label that is never used. 1724 In contrast to other identifiers, labels are not block scoped and do 1725 not conflict with identifiers that are not labels. The scope of a label 1726 is the body of the function in which it is declared and excludes 1727 the body of any nested function. 1728 </p> 1729 1730 1731 <h3 id="Blank_identifier">Blank identifier</h3> 1732 1733 <p> 1734 The <i>blank identifier</i> is represented by the underscore character <code>_</code>. 1735 It serves as an anonymous placeholder instead of a regular (non-blank) 1736 identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>, 1737 as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>. 1738 </p> 1739 1740 1741 <h3 id="Predeclared_identifiers">Predeclared identifiers</h3> 1742 1743 <p> 1744 The following identifiers are implicitly declared in the 1745 <a href="#Blocks">universe block</a>: 1746 </p> 1747 <pre class="grammar"> 1748 Types: 1749 bool byte complex64 complex128 error float32 float64 1750 int int8 int16 int32 int64 rune string 1751 uint uint8 uint16 uint32 uint64 uintptr 1752 1753 Constants: 1754 true false iota 1755 1756 Zero value: 1757 nil 1758 1759 Functions: 1760 append cap close complex copy delete imag len 1761 make new panic print println real recover 1762 </pre> 1763 1764 1765 <h3 id="Exported_identifiers">Exported identifiers</h3> 1766 1767 <p> 1768 An identifier may be <i>exported</i> to permit access to it from another package. 1769 An identifier is exported if both: 1770 </p> 1771 <ol> 1772 <li>the first character of the identifier's name is a Unicode upper case 1773 letter (Unicode class "Lu"); and</li> 1774 <li>the identifier is declared in the <a href="#Blocks">package block</a> 1775 or it is a <a href="#Struct_types">field name</a> or 1776 <a href="#MethodName">method name</a>.</li> 1777 </ol> 1778 <p> 1779 All other identifiers are not exported. 1780 </p> 1781 1782 1783 <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3> 1784 1785 <p> 1786 Given a set of identifiers, an identifier is called <i>unique</i> if it is 1787 <i>different</i> from every other in the set. 1788 Two identifiers are different if they are spelled differently, or if they 1789 appear in different <a href="#Packages">packages</a> and are not 1790 <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same. 1791 </p> 1792 1793 <h3 id="Constant_declarations">Constant declarations</h3> 1794 1795 <p> 1796 A constant declaration binds a list of identifiers (the names of 1797 the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>. 1798 The number of identifiers must be equal 1799 to the number of expressions, and the <i>n</i>th identifier on 1800 the left is bound to the value of the <i>n</i>th expression on the 1801 right. 1802 </p> 1803 1804 <pre class="ebnf"> 1805 ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) . 1806 ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] . 1807 1808 IdentifierList = identifier { "," identifier } . 1809 ExpressionList = Expression { "," Expression } . 1810 </pre> 1811 1812 <p> 1813 If the type is present, all constants take the type specified, and 1814 the expressions must be <a href="#Assignability">assignable</a> to that type. 1815 If the type is omitted, the constants take the 1816 individual types of the corresponding expressions. 1817 If the expression values are untyped <a href="#Constants">constants</a>, 1818 the declared constants remain untyped and the constant identifiers 1819 denote the constant values. For instance, if the expression is a 1820 floating-point literal, the constant identifier denotes a floating-point 1821 constant, even if the literal's fractional part is zero. 1822 </p> 1823 1824 <pre> 1825 const Pi float64 = 3.14159265358979323846 1826 const zero = 0.0 // untyped floating-point constant 1827 const ( 1828 size int64 = 1024 1829 eof = -1 // untyped integer constant 1830 ) 1831 const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string constants 1832 const u, v float32 = 0, 3 // u = 0.0, v = 3.0 1833 </pre> 1834 1835 <p> 1836 Within a parenthesized <code>const</code> declaration list the 1837 expression list may be omitted from any but the first declaration. 1838 Such an empty list is equivalent to the textual substitution of the 1839 first preceding non-empty expression list and its type if any. 1840 Omitting the list of expressions is therefore equivalent to 1841 repeating the previous list. The number of identifiers must be equal 1842 to the number of expressions in the previous list. 1843 Together with the <a href="#Iota"><code>iota</code> constant generator</a> 1844 this mechanism permits light-weight declaration of sequential values: 1845 </p> 1846 1847 <pre> 1848 const ( 1849 Sunday = iota 1850 Monday 1851 Tuesday 1852 Wednesday 1853 Thursday 1854 Friday 1855 Partyday 1856 numberOfDays // this constant is not exported 1857 ) 1858 </pre> 1859 1860 1861 <h3 id="Iota">Iota</h3> 1862 1863 <p> 1864 Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier 1865 <code>iota</code> represents successive untyped integer <a href="#Constants"> 1866 constants</a>. It is reset to 0 whenever the reserved word <code>const</code> 1867 appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>. 1868 It can be used to construct a set of related constants: 1869 </p> 1870 1871 <pre> 1872 const ( // iota is reset to 0 1873 c0 = iota // c0 == 0 1874 c1 = iota // c1 == 1 1875 c2 = iota // c2 == 2 1876 ) 1877 1878 const ( // iota is reset to 0 1879 a = 1 << iota // a == 1 1880 b = 1 << iota // b == 2 1881 c = 3 // c == 3 (iota is not used but still incremented) 1882 d = 1 << iota // d == 8 1883 ) 1884 1885 const ( // iota is reset to 0 1886 u = iota * 42 // u == 0 (untyped integer constant) 1887 v float64 = iota * 42 // v == 42.0 (float64 constant) 1888 w = iota * 42 // w == 84 (untyped integer constant) 1889 ) 1890 1891 const x = iota // x == 0 (iota has been reset) 1892 const y = iota // y == 0 (iota has been reset) 1893 </pre> 1894 1895 <p> 1896 Within an ExpressionList, the value of each <code>iota</code> is the same because 1897 it is only incremented after each ConstSpec: 1898 </p> 1899 1900 <pre> 1901 const ( 1902 bit0, mask0 = 1 << iota, 1<<iota - 1 // bit0 == 1, mask0 == 0 1903 bit1, mask1 // bit1 == 2, mask1 == 1 1904 _, _ // skips iota == 2 1905 bit3, mask3 // bit3 == 8, mask3 == 7 1906 ) 1907 </pre> 1908 1909 <p> 1910 This last example exploits the implicit repetition of the 1911 last non-empty expression list. 1912 </p> 1913 1914 1915 <h3 id="Type_declarations">Type declarations</h3> 1916 1917 <p> 1918 A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>. 1919 Type declarations come in two forms: alias declarations and type definitions. 1920 <p> 1921 1922 <pre class="ebnf"> 1923 TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . 1924 TypeSpec = AliasDecl | TypeDef . 1925 </pre> 1926 1927 <h4 id="Alias_declarations">Alias declarations</h4> 1928 1929 <p> 1930 An alias declaration binds an identifier to the given type. 1931 </p> 1932 1933 <pre class="ebnf"> 1934 AliasDecl = identifier "=" Type . 1935 </pre> 1936 1937 <p> 1938 Within the <a href="#Declarations_and_scope">scope</a> of 1939 the identifier, it serves as an <i>alias</i> for the type. 1940 </p> 1941 1942 <pre> 1943 type ( 1944 nodeList = []*Node // nodeList and []*Node are identical types 1945 Polar = polar // Polar and polar denote identical types 1946 ) 1947 </pre> 1948 1949 1950 <h4 id="Type_definitions">Type definitions</h4> 1951 1952 <p> 1953 A type definition creates a new, distinct type with the same 1954 <a href="#Types">underlying type</a> and operations as the given type, 1955 and binds an identifier to it. 1956 </p> 1957 1958 <pre class="ebnf"> 1959 TypeDef = identifier Type . 1960 </pre> 1961 1962 <p> 1963 The new type is called a <i>defined type</i>. 1964 It is <a href="#Type_identity">different</a> from any other type, 1965 including the type it is created from. 1966 </p> 1967 1968 <pre> 1969 type ( 1970 Point struct{ x, y float64 } // Point and struct{ x, y float64 } are different types 1971 polar Point // polar and Point denote different types 1972 ) 1973 1974 type TreeNode struct { 1975 left, right *TreeNode 1976 value *Comparable 1977 } 1978 1979 type Block interface { 1980 BlockSize() int 1981 Encrypt(src, dst []byte) 1982 Decrypt(src, dst []byte) 1983 } 1984 </pre> 1985 1986 <p> 1987 A defined type may have <a href="#Method_declarations">methods</a> associated with it. 1988 It does not inherit any methods bound to the given type, 1989 but the <a href="#Method_sets">method set</a> 1990 of an interface type or of elements of a composite type remains unchanged: 1991 </p> 1992 1993 <pre> 1994 // A Mutex is a data type with two methods, Lock and Unlock. 1995 type Mutex struct { /* Mutex fields */ } 1996 func (m *Mutex) Lock() { /* Lock implementation */ } 1997 func (m *Mutex) Unlock() { /* Unlock implementation */ } 1998 1999 // NewMutex has the same composition as Mutex but its method set is empty. 2000 type NewMutex Mutex 2001 2002 // The method set of PtrMutex's underlying type *Mutex remains unchanged, 2003 // but the method set of PtrMutex is empty. 2004 type PtrMutex *Mutex 2005 2006 // The method set of *PrintableMutex contains the methods 2007 // Lock and Unlock bound to its embedded field Mutex. 2008 type PrintableMutex struct { 2009 Mutex 2010 } 2011 2012 // MyBlock is an interface type that has the same method set as Block. 2013 type MyBlock Block 2014 </pre> 2015 2016 <p> 2017 Type definitions may be used to define different boolean, numeric, 2018 or string types and associate methods with them: 2019 </p> 2020 2021 <pre> 2022 type TimeZone int 2023 2024 const ( 2025 EST TimeZone = -(5 + iota) 2026 CST 2027 MST 2028 PST 2029 ) 2030 2031 func (tz TimeZone) String() string { 2032 return fmt.Sprintf("GMT%+dh", tz) 2033 } 2034 </pre> 2035 2036 2037 <h3 id="Variable_declarations">Variable declarations</h3> 2038 2039 <p> 2040 A variable declaration creates one or more <a href="#Variables">variables</a>, 2041 binds corresponding identifiers to them, and gives each a type and an initial value. 2042 </p> 2043 2044 <pre class="ebnf"> 2045 VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) . 2046 VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) . 2047 </pre> 2048 2049 <pre> 2050 var i int 2051 var U, V, W float64 2052 var k = 0 2053 var x, y float32 = -1, -2 2054 var ( 2055 i int 2056 u, v, s = 2.0, 3.0, "bar" 2057 ) 2058 var re, im = complexSqrt(-1) 2059 var _, found = entries[name] // map lookup; only interested in "found" 2060 </pre> 2061 2062 <p> 2063 If a list of expressions is given, the variables are initialized 2064 with the expressions following the rules for <a href="#Assignments">assignments</a>. 2065 Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>. 2066 </p> 2067 2068 <p> 2069 If a type is present, each variable is given that type. 2070 Otherwise, each variable is given the type of the corresponding 2071 initialization value in the assignment. 2072 If that value is an untyped constant, it is first 2073 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>; 2074 if it is an untyped boolean value, it is first converted to type <code>bool</code>. 2075 The predeclared value <code>nil</code> cannot be used to initialize a variable 2076 with no explicit type. 2077 </p> 2078 2079 <pre> 2080 var d = math.Sin(0.5) // d is float64 2081 var i = 42 // i is int 2082 var t, ok = x.(T) // t is T, ok is bool 2083 var n = nil // illegal 2084 </pre> 2085 2086 <p> 2087 Implementation restriction: A compiler may make it illegal to declare a variable 2088 inside a <a href="#Function_declarations">function body</a> if the variable is 2089 never used. 2090 </p> 2091 2092 <h3 id="Short_variable_declarations">Short variable declarations</h3> 2093 2094 <p> 2095 A <i>short variable declaration</i> uses the syntax: 2096 </p> 2097 2098 <pre class="ebnf"> 2099 ShortVarDecl = IdentifierList ":=" ExpressionList . 2100 </pre> 2101 2102 <p> 2103 It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a> 2104 with initializer expressions but no types: 2105 </p> 2106 2107 <pre class="grammar"> 2108 "var" IdentifierList = ExpressionList . 2109 </pre> 2110 2111 <pre> 2112 i, j := 0, 10 2113 f := func() int { return 7 } 2114 ch := make(chan int) 2115 r, w := os.Pipe(fd) // os.Pipe() returns two values 2116 _, y, _ := coord(p) // coord() returns three values; only interested in y coordinate 2117 </pre> 2118 2119 <p> 2120 Unlike regular variable declarations, a short variable declaration may <i>redeclare</i> 2121 variables provided they were originally declared earlier in the same block 2122 (or the parameter lists if the block is the function body) with the same type, 2123 and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new. 2124 As a consequence, redeclaration can only appear in a multi-variable short declaration. 2125 Redeclaration does not introduce a new variable; it just assigns a new value to the original. 2126 </p> 2127 2128 <pre> 2129 field1, offset := nextField(str, 0) 2130 field2, offset := nextField(str, offset) // redeclares offset 2131 a, a := 1, 2 // illegal: double declaration of a or no new variable if a was declared elsewhere 2132 </pre> 2133 2134 <p> 2135 Short variable declarations may appear only inside functions. 2136 In some contexts such as the initializers for 2137 <a href="#If_statements">"if"</a>, 2138 <a href="#For_statements">"for"</a>, or 2139 <a href="#Switch_statements">"switch"</a> statements, 2140 they can be used to declare local temporary variables. 2141 </p> 2142 2143 <h3 id="Function_declarations">Function declarations</h3> 2144 2145 <p> 2146 A function declaration binds an identifier, the <i>function name</i>, 2147 to a function. 2148 </p> 2149 2150 <pre class="ebnf"> 2151 FunctionDecl = "func" FunctionName ( Function | Signature ) . 2152 FunctionName = identifier . 2153 Function = Signature FunctionBody . 2154 FunctionBody = Block . 2155 </pre> 2156 2157 <p> 2158 If the function's <a href="#Function_types">signature</a> declares 2159 result parameters, the function body's statement list must end in 2160 a <a href="#Terminating_statements">terminating statement</a>. 2161 </p> 2162 2163 <pre> 2164 func IndexRune(s string, r rune) int { 2165 for i, c := range s { 2166 if c == r { 2167 return i 2168 } 2169 } 2170 // invalid: missing return statement 2171 } 2172 </pre> 2173 2174 <p> 2175 A function declaration may omit the body. Such a declaration provides the 2176 signature for a function implemented outside Go, such as an assembly routine. 2177 </p> 2178 2179 <pre> 2180 func min(x int, y int) int { 2181 if x < y { 2182 return x 2183 } 2184 return y 2185 } 2186 2187 func flushICache(begin, end uintptr) // implemented externally 2188 </pre> 2189 2190 <h3 id="Method_declarations">Method declarations</h3> 2191 2192 <p> 2193 A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>. 2194 A method declaration binds an identifier, the <i>method name</i>, to a method, 2195 and associates the method with the receiver's <i>base type</i>. 2196 </p> 2197 2198 <pre class="ebnf"> 2199 MethodDecl = "func" Receiver MethodName ( Function | Signature ) . 2200 Receiver = Parameters . 2201 </pre> 2202 2203 <p> 2204 The receiver is specified via an extra parameter section preceding the method 2205 name. That parameter section must declare a single non-variadic parameter, the receiver. 2206 Its type must be of the form <code>T</code> or <code>*T</code> (possibly using 2207 parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called 2208 the receiver <i>base type</i>; it must not be a pointer or interface type and 2209 it must be <a href="#Type_definitions">defined</a> in the same package as the method. 2210 The method is said to be <i>bound</i> to the base type and the method name 2211 is visible only within <a href="#Selectors">selectors</a> for type <code>T</code> 2212 or <code>*T</code>. 2213 </p> 2214 2215 <p> 2216 A non-<a href="#Blank_identifier">blank</a> receiver identifier must be 2217 <a href="#Uniqueness_of_identifiers">unique</a> in the method signature. 2218 If the receiver's value is not referenced inside the body of the method, 2219 its identifier may be omitted in the declaration. The same applies in 2220 general to parameters of functions and methods. 2221 </p> 2222 2223 <p> 2224 For a base type, the non-blank names of methods bound to it must be unique. 2225 If the base type is a <a href="#Struct_types">struct type</a>, 2226 the non-blank method and field names must be distinct. 2227 </p> 2228 2229 <p> 2230 Given type <code>Point</code>, the declarations 2231 </p> 2232 2233 <pre> 2234 func (p *Point) Length() float64 { 2235 return math.Sqrt(p.x * p.x + p.y * p.y) 2236 } 2237 2238 func (p *Point) Scale(factor float64) { 2239 p.x *= factor 2240 p.y *= factor 2241 } 2242 </pre> 2243 2244 <p> 2245 bind the methods <code>Length</code> and <code>Scale</code>, 2246 with receiver type <code>*Point</code>, 2247 to the base type <code>Point</code>. 2248 </p> 2249 2250 <p> 2251 The type of a method is the type of a function with the receiver as first 2252 argument. For instance, the method <code>Scale</code> has type 2253 </p> 2254 2255 <pre> 2256 func(p *Point, factor float64) 2257 </pre> 2258 2259 <p> 2260 However, a function declared this way is not a method. 2261 </p> 2262 2263 2264 <h2 id="Expressions">Expressions</h2> 2265 2266 <p> 2267 An expression specifies the computation of a value by applying 2268 operators and functions to operands. 2269 </p> 2270 2271 <h3 id="Operands">Operands</h3> 2272 2273 <p> 2274 Operands denote the elementary values in an expression. An operand may be a 2275 literal, a (possibly <a href="#Qualified_identifiers">qualified</a>) 2276 non-<a href="#Blank_identifier">blank</a> identifier denoting a 2277 <a href="#Constant_declarations">constant</a>, 2278 <a href="#Variable_declarations">variable</a>, or 2279 <a href="#Function_declarations">function</a>, 2280 a <a href="#Method_expressions">method expression</a> yielding a function, 2281 or a parenthesized expression. 2282 </p> 2283 2284 <p> 2285 The <a href="#Blank_identifier">blank identifier</a> may appear as an 2286 operand only on the left-hand side of an <a href="#Assignments">assignment</a>. 2287 </p> 2288 2289 <pre class="ebnf"> 2290 Operand = Literal | OperandName | MethodExpr | "(" Expression ")" . 2291 Literal = BasicLit | CompositeLit | FunctionLit . 2292 BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit . 2293 OperandName = identifier | QualifiedIdent. 2294 </pre> 2295 2296 <h3 id="Qualified_identifiers">Qualified identifiers</h3> 2297 2298 <p> 2299 A qualified identifier is an identifier qualified with a package name prefix. 2300 Both the package name and the identifier must not be 2301 <a href="#Blank_identifier">blank</a>. 2302 </p> 2303 2304 <pre class="ebnf"> 2305 QualifiedIdent = PackageName "." identifier . 2306 </pre> 2307 2308 <p> 2309 A qualified identifier accesses an identifier in a different package, which 2310 must be <a href="#Import_declarations">imported</a>. 2311 The identifier must be <a href="#Exported_identifiers">exported</a> and 2312 declared in the <a href="#Blocks">package block</a> of that package. 2313 </p> 2314 2315 <pre> 2316 math.Sin // denotes the Sin function in package math 2317 </pre> 2318 2319 <h3 id="Composite_literals">Composite literals</h3> 2320 2321 <p> 2322 Composite literals construct values for structs, arrays, slices, and maps 2323 and create a new value each time they are evaluated. 2324 They consist of the type of the literal followed by a brace-bound list of elements. 2325 Each element may optionally be preceded by a corresponding key. 2326 </p> 2327 2328 <pre class="ebnf"> 2329 CompositeLit = LiteralType LiteralValue . 2330 LiteralType = StructType | ArrayType | "[" "..." "]" ElementType | 2331 SliceType | MapType | TypeName . 2332 LiteralValue = "{" [ ElementList [ "," ] ] "}" . 2333 ElementList = KeyedElement { "," KeyedElement } . 2334 KeyedElement = [ Key ":" ] Element . 2335 Key = FieldName | Expression | LiteralValue . 2336 FieldName = identifier . 2337 Element = Expression | LiteralValue . 2338 </pre> 2339 2340 <p> 2341 The LiteralType's underlying type must be a struct, array, slice, or map type 2342 (the grammar enforces this constraint except when the type is given 2343 as a TypeName). 2344 The types of the elements and keys must be <a href="#Assignability">assignable</a> 2345 to the respective field, element, and key types of the literal type; 2346 there is no additional conversion. 2347 The key is interpreted as a field name for struct literals, 2348 an index for array and slice literals, and a key for map literals. 2349 For map literals, all elements must have a key. It is an error 2350 to specify multiple elements with the same field name or 2351 constant key value. For non-constant map keys, see the section on 2352 <a href="#Order_of_evaluation">evaluation order</a>. 2353 </p> 2354 2355 <p> 2356 For struct literals the following rules apply: 2357 </p> 2358 <ul> 2359 <li>A key must be a field name declared in the struct type. 2360 </li> 2361 <li>An element list that does not contain any keys must 2362 list an element for each struct field in the 2363 order in which the fields are declared. 2364 </li> 2365 <li>If any element has a key, every element must have a key. 2366 </li> 2367 <li>An element list that contains keys does not need to 2368 have an element for each struct field. Omitted fields 2369 get the zero value for that field. 2370 </li> 2371 <li>A literal may omit the element list; such a literal evaluates 2372 to the zero value for its type. 2373 </li> 2374 <li>It is an error to specify an element for a non-exported 2375 field of a struct belonging to a different package. 2376 </li> 2377 </ul> 2378 2379 <p> 2380 Given the declarations 2381 </p> 2382 <pre> 2383 type Point3D struct { x, y, z float64 } 2384 type Line struct { p, q Point3D } 2385 </pre> 2386 2387 <p> 2388 one may write 2389 </p> 2390 2391 <pre> 2392 origin := Point3D{} // zero value for Point3D 2393 line := Line{origin, Point3D{y: -4, z: 12.3}} // zero value for line.q.x 2394 </pre> 2395 2396 <p> 2397 For array and slice literals the following rules apply: 2398 </p> 2399 <ul> 2400 <li>Each element has an associated integer index marking 2401 its position in the array. 2402 </li> 2403 <li>An element with a key uses the key as its index. The 2404 key must be a non-negative constant 2405 <a href="#Representability">representable</a> by 2406 a value of type <code>int</code>; and if it is typed 2407 it must be of integer type. 2408 </li> 2409 <li>An element without a key uses the previous element's index plus one. 2410 If the first element has no key, its index is zero. 2411 </li> 2412 </ul> 2413 2414 <p> 2415 <a href="#Address_operators">Taking the address</a> of a composite literal 2416 generates a pointer to a unique <a href="#Variables">variable</a> initialized 2417 with the literal's value. 2418 </p> 2419 <pre> 2420 var pointer *Point3D = &Point3D{y: 1000} 2421 </pre> 2422 2423 <p> 2424 The length of an array literal is the length specified in the literal type. 2425 If fewer elements than the length are provided in the literal, the missing 2426 elements are set to the zero value for the array element type. 2427 It is an error to provide elements with index values outside the index range 2428 of the array. The notation <code>...</code> specifies an array length equal 2429 to the maximum element index plus one. 2430 </p> 2431 2432 <pre> 2433 buffer := [10]string{} // len(buffer) == 10 2434 intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6 2435 days := [...]string{"Sat", "Sun"} // len(days) == 2 2436 </pre> 2437 2438 <p> 2439 A slice literal describes the entire underlying array literal. 2440 Thus the length and capacity of a slice literal are the maximum 2441 element index plus one. A slice literal has the form 2442 </p> 2443 2444 <pre> 2445 []T{x1, x2, … xn} 2446 </pre> 2447 2448 <p> 2449 and is shorthand for a slice operation applied to an array: 2450 </p> 2451 2452 <pre> 2453 tmp := [n]T{x1, x2, … xn} 2454 tmp[0 : n] 2455 </pre> 2456 2457 <p> 2458 Within a composite literal of array, slice, or map type <code>T</code>, 2459 elements or map keys that are themselves composite literals may elide the respective 2460 literal type if it is identical to the element or key type of <code>T</code>. 2461 Similarly, elements or keys that are addresses of composite literals may elide 2462 the <code>&T</code> when the element or key type is <code>*T</code>. 2463 </p> 2464 2465 <pre> 2466 [...]Point{{1.5, -3.5}, {0, 0}} // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}} 2467 [][]int{{1, 2, 3}, {4, 5}} // same as [][]int{[]int{1, 2, 3}, []int{4, 5}} 2468 [][]Point{{{0, 1}, {1, 2}}} // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}} 2469 map[string]Point{"orig": {0, 0}} // same as map[string]Point{"orig": Point{0, 0}} 2470 map[Point]string{{0, 0}: "orig"} // same as map[Point]string{Point{0, 0}: "orig"} 2471 2472 type PPoint *Point 2473 [2]*Point{{1.5, -3.5}, {}} // same as [2]*Point{&Point{1.5, -3.5}, &Point{}} 2474 [2]PPoint{{1.5, -3.5}, {}} // same as [2]PPoint{PPoint(&Point{1.5, -3.5}), PPoint(&Point{})} 2475 </pre> 2476 2477 <p> 2478 A parsing ambiguity arises when a composite literal using the 2479 TypeName form of the LiteralType appears as an operand between the 2480 <a href="#Keywords">keyword</a> and the opening brace of the block 2481 of an "if", "for", or "switch" statement, and the composite literal 2482 is not enclosed in parentheses, square brackets, or curly braces. 2483 In this rare case, the opening brace of the literal is erroneously parsed 2484 as the one introducing the block of statements. To resolve the ambiguity, 2485 the composite literal must appear within parentheses. 2486 </p> 2487 2488 <pre> 2489 if x == (T{a,b,c}[i]) { … } 2490 if (x == T{a,b,c}[i]) { … } 2491 </pre> 2492 2493 <p> 2494 Examples of valid array, slice, and map literals: 2495 </p> 2496 2497 <pre> 2498 // list of prime numbers 2499 primes := []int{2, 3, 5, 7, 9, 2147483647} 2500 2501 // vowels[ch] is true if ch is a vowel 2502 vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true} 2503 2504 // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1} 2505 filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1} 2506 2507 // frequencies in Hz for equal-tempered scale (A4 = 440Hz) 2508 noteFrequency := map[string]float32{ 2509 "C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83, 2510 "G0": 24.50, "A0": 27.50, "B0": 30.87, 2511 } 2512 </pre> 2513 2514 2515 <h3 id="Function_literals">Function literals</h3> 2516 2517 <p> 2518 A function literal represents an anonymous <a href="#Function_declarations">function</a>. 2519 </p> 2520 2521 <pre class="ebnf"> 2522 FunctionLit = "func" Function . 2523 </pre> 2524 2525 <pre> 2526 func(a, b int, z float64) bool { return a*b < int(z) } 2527 </pre> 2528 2529 <p> 2530 A function literal can be assigned to a variable or invoked directly. 2531 </p> 2532 2533 <pre> 2534 f := func(x, y int) int { return x + y } 2535 func(ch chan int) { ch <- ACK }(replyChan) 2536 </pre> 2537 2538 <p> 2539 Function literals are <i>closures</i>: they may refer to variables 2540 defined in a surrounding function. Those variables are then shared between 2541 the surrounding function and the function literal, and they survive as long 2542 as they are accessible. 2543 </p> 2544 2545 2546 <h3 id="Primary_expressions">Primary expressions</h3> 2547 2548 <p> 2549 Primary expressions are the operands for unary and binary expressions. 2550 </p> 2551 2552 <pre class="ebnf"> 2553 PrimaryExpr = 2554 Operand | 2555 Conversion | 2556 PrimaryExpr Selector | 2557 PrimaryExpr Index | 2558 PrimaryExpr Slice | 2559 PrimaryExpr TypeAssertion | 2560 PrimaryExpr Arguments . 2561 2562 Selector = "." identifier . 2563 Index = "[" Expression "]" . 2564 Slice = "[" [ Expression ] ":" [ Expression ] "]" | 2565 "[" [ Expression ] ":" Expression ":" Expression "]" . 2566 TypeAssertion = "." "(" Type ")" . 2567 Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" . 2568 </pre> 2569 2570 2571 <pre> 2572 x 2573 2 2574 (s + ".txt") 2575 f(3.1415, true) 2576 Point{1, 2} 2577 m["foo"] 2578 s[i : j + 1] 2579 obj.color 2580 f.p[i].x() 2581 </pre> 2582 2583 2584 <h3 id="Selectors">Selectors</h3> 2585 2586 <p> 2587 For a <a href="#Primary_expressions">primary expression</a> <code>x</code> 2588 that is not a <a href="#Package_clause">package name</a>, the 2589 <i>selector expression</i> 2590 </p> 2591 2592 <pre> 2593 x.f 2594 </pre> 2595 2596 <p> 2597 denotes the field or method <code>f</code> of the value <code>x</code> 2598 (or sometimes <code>*x</code>; see below). 2599 The identifier <code>f</code> is called the (field or method) <i>selector</i>; 2600 it must not be the <a href="#Blank_identifier">blank identifier</a>. 2601 The type of the selector expression is the type of <code>f</code>. 2602 If <code>x</code> is a package name, see the section on 2603 <a href="#Qualified_identifiers">qualified identifiers</a>. 2604 </p> 2605 2606 <p> 2607 A selector <code>f</code> may denote a field or method <code>f</code> of 2608 a type <code>T</code>, or it may refer 2609 to a field or method <code>f</code> of a nested 2610 <a href="#Struct_types">embedded field</a> of <code>T</code>. 2611 The number of embedded fields traversed 2612 to reach <code>f</code> is called its <i>depth</i> in <code>T</code>. 2613 The depth of a field or method <code>f</code> 2614 declared in <code>T</code> is zero. 2615 The depth of a field or method <code>f</code> declared in 2616 an embedded field <code>A</code> in <code>T</code> is the 2617 depth of <code>f</code> in <code>A</code> plus one. 2618 </p> 2619 2620 <p> 2621 The following rules apply to selectors: 2622 </p> 2623 2624 <ol> 2625 <li> 2626 For a value <code>x</code> of type <code>T</code> or <code>*T</code> 2627 where <code>T</code> is not a pointer or interface type, 2628 <code>x.f</code> denotes the field or method at the shallowest depth 2629 in <code>T</code> where there 2630 is such an <code>f</code>. 2631 If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a> 2632 with shallowest depth, the selector expression is illegal. 2633 </li> 2634 2635 <li> 2636 For a value <code>x</code> of type <code>I</code> where <code>I</code> 2637 is an interface type, <code>x.f</code> denotes the actual method with name 2638 <code>f</code> of the dynamic value of <code>x</code>. 2639 If there is no method with name <code>f</code> in the 2640 <a href="#Method_sets">method set</a> of <code>I</code>, the selector 2641 expression is illegal. 2642 </li> 2643 2644 <li> 2645 As an exception, if the type of <code>x</code> is a named pointer type 2646 and <code>(*x).f</code> is a valid selector expression denoting a field 2647 (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>. 2648 </li> 2649 2650 <li> 2651 In all other cases, <code>x.f</code> is illegal. 2652 </li> 2653 2654 <li> 2655 If <code>x</code> is of pointer type and has the value 2656 <code>nil</code> and <code>x.f</code> denotes a struct field, 2657 assigning to or evaluating <code>x.f</code> 2658 causes a <a href="#Run_time_panics">run-time panic</a>. 2659 </li> 2660 2661 <li> 2662 If <code>x</code> is of interface type and has the value 2663 <code>nil</code>, <a href="#Calls">calling</a> or 2664 <a href="#Method_values">evaluating</a> the method <code>x.f</code> 2665 causes a <a href="#Run_time_panics">run-time panic</a>. 2666 </li> 2667 </ol> 2668 2669 <p> 2670 For example, given the declarations: 2671 </p> 2672 2673 <pre> 2674 type T0 struct { 2675 x int 2676 } 2677 2678 func (*T0) M0() 2679 2680 type T1 struct { 2681 y int 2682 } 2683 2684 func (T1) M1() 2685 2686 type T2 struct { 2687 z int 2688 T1 2689 *T0 2690 } 2691 2692 func (*T2) M2() 2693 2694 type Q *T2 2695 2696 var t T2 // with t.T0 != nil 2697 var p *T2 // with p != nil and (*p).T0 != nil 2698 var q Q = p 2699 </pre> 2700 2701 <p> 2702 one may write: 2703 </p> 2704 2705 <pre> 2706 t.z // t.z 2707 t.y // t.T1.y 2708 t.x // (*t.T0).x 2709 2710 p.z // (*p).z 2711 p.y // (*p).T1.y 2712 p.x // (*(*p).T0).x 2713 2714 q.x // (*(*q).T0).x (*q).x is a valid field selector 2715 2716 p.M0() // ((*p).T0).M0() M0 expects *T0 receiver 2717 p.M1() // ((*p).T1).M1() M1 expects T1 receiver 2718 p.M2() // p.M2() M2 expects *T2 receiver 2719 t.M2() // (&t).M2() M2 expects *T2 receiver, see section on Calls 2720 </pre> 2721 2722 <p> 2723 but the following is invalid: 2724 </p> 2725 2726 <pre> 2727 q.M0() // (*q).M0 is valid but not a field selector 2728 </pre> 2729 2730 2731 <h3 id="Method_expressions">Method expressions</h3> 2732 2733 <p> 2734 If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2735 <code>T.M</code> is a function that is callable as a regular function 2736 with the same arguments as <code>M</code> prefixed by an additional 2737 argument that is the receiver of the method. 2738 </p> 2739 2740 <pre class="ebnf"> 2741 MethodExpr = ReceiverType "." MethodName . 2742 ReceiverType = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" . 2743 </pre> 2744 2745 <p> 2746 Consider a struct type <code>T</code> with two methods, 2747 <code>Mv</code>, whose receiver is of type <code>T</code>, and 2748 <code>Mp</code>, whose receiver is of type <code>*T</code>. 2749 </p> 2750 2751 <pre> 2752 type T struct { 2753 a int 2754 } 2755 func (tv T) Mv(a int) int { return 0 } // value receiver 2756 func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 2757 2758 var t T 2759 </pre> 2760 2761 <p> 2762 The expression 2763 </p> 2764 2765 <pre> 2766 T.Mv 2767 </pre> 2768 2769 <p> 2770 yields a function equivalent to <code>Mv</code> but 2771 with an explicit receiver as its first argument; it has signature 2772 </p> 2773 2774 <pre> 2775 func(tv T, a int) int 2776 </pre> 2777 2778 <p> 2779 That function may be called normally with an explicit receiver, so 2780 these five invocations are equivalent: 2781 </p> 2782 2783 <pre> 2784 t.Mv(7) 2785 T.Mv(t, 7) 2786 (T).Mv(t, 7) 2787 f1 := T.Mv; f1(t, 7) 2788 f2 := (T).Mv; f2(t, 7) 2789 </pre> 2790 2791 <p> 2792 Similarly, the expression 2793 </p> 2794 2795 <pre> 2796 (*T).Mp 2797 </pre> 2798 2799 <p> 2800 yields a function value representing <code>Mp</code> with signature 2801 </p> 2802 2803 <pre> 2804 func(tp *T, f float32) float32 2805 </pre> 2806 2807 <p> 2808 For a method with a value receiver, one can derive a function 2809 with an explicit pointer receiver, so 2810 </p> 2811 2812 <pre> 2813 (*T).Mv 2814 </pre> 2815 2816 <p> 2817 yields a function value representing <code>Mv</code> with signature 2818 </p> 2819 2820 <pre> 2821 func(tv *T, a int) int 2822 </pre> 2823 2824 <p> 2825 Such a function indirects through the receiver to create a value 2826 to pass as the receiver to the underlying method; 2827 the method does not overwrite the value whose address is passed in 2828 the function call. 2829 </p> 2830 2831 <p> 2832 The final case, a value-receiver function for a pointer-receiver method, 2833 is illegal because pointer-receiver methods are not in the method set 2834 of the value type. 2835 </p> 2836 2837 <p> 2838 Function values derived from methods are called with function call syntax; 2839 the receiver is provided as the first argument to the call. 2840 That is, given <code>f := T.Mv</code>, <code>f</code> is invoked 2841 as <code>f(t, 7)</code> not <code>t.f(7)</code>. 2842 To construct a function that binds the receiver, use a 2843 <a href="#Function_literals">function literal</a> or 2844 <a href="#Method_values">method value</a>. 2845 </p> 2846 2847 <p> 2848 It is legal to derive a function value from a method of an interface type. 2849 The resulting function takes an explicit receiver of that interface type. 2850 </p> 2851 2852 <h3 id="Method_values">Method values</h3> 2853 2854 <p> 2855 If the expression <code>x</code> has static type <code>T</code> and 2856 <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2857 <code>x.M</code> is called a <i>method value</i>. 2858 The method value <code>x.M</code> is a function value that is callable 2859 with the same arguments as a method call of <code>x.M</code>. 2860 The expression <code>x</code> is evaluated and saved during the evaluation of the 2861 method value; the saved copy is then used as the receiver in any calls, 2862 which may be executed later. 2863 </p> 2864 2865 <p> 2866 The type <code>T</code> may be an interface or non-interface type. 2867 </p> 2868 2869 <p> 2870 As in the discussion of <a href="#Method_expressions">method expressions</a> above, 2871 consider a struct type <code>T</code> with two methods, 2872 <code>Mv</code>, whose receiver is of type <code>T</code>, and 2873 <code>Mp</code>, whose receiver is of type <code>*T</code>. 2874 </p> 2875 2876 <pre> 2877 type T struct { 2878 a int 2879 } 2880 func (tv T) Mv(a int) int { return 0 } // value receiver 2881 func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 2882 2883 var t T 2884 var pt *T 2885 func makeT() T 2886 </pre> 2887 2888 <p> 2889 The expression 2890 </p> 2891 2892 <pre> 2893 t.Mv 2894 </pre> 2895 2896 <p> 2897 yields a function value of type 2898 </p> 2899 2900 <pre> 2901 func(int) int 2902 </pre> 2903 2904 <p> 2905 These two invocations are equivalent: 2906 </p> 2907 2908 <pre> 2909 t.Mv(7) 2910 f := t.Mv; f(7) 2911 </pre> 2912 2913 <p> 2914 Similarly, the expression 2915 </p> 2916 2917 <pre> 2918 pt.Mp 2919 </pre> 2920 2921 <p> 2922 yields a function value of type 2923 </p> 2924 2925 <pre> 2926 func(float32) float32 2927 </pre> 2928 2929 <p> 2930 As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver 2931 using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>. 2932 </p> 2933 2934 <p> 2935 As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver 2936 using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&t).Mp</code>. 2937 </p> 2938 2939 <pre> 2940 f := t.Mv; f(7) // like t.Mv(7) 2941 f := pt.Mp; f(7) // like pt.Mp(7) 2942 f := pt.Mv; f(7) // like (*pt).Mv(7) 2943 f := t.Mp; f(7) // like (&t).Mp(7) 2944 f := makeT().Mp // invalid: result of makeT() is not addressable 2945 </pre> 2946 2947 <p> 2948 Although the examples above use non-interface types, it is also legal to create a method value 2949 from a value of interface type. 2950 </p> 2951 2952 <pre> 2953 var i interface { M(int) } = myVal 2954 f := i.M; f(7) // like i.M(7) 2955 </pre> 2956 2957 2958 <h3 id="Index_expressions">Index expressions</h3> 2959 2960 <p> 2961 A primary expression of the form 2962 </p> 2963 2964 <pre> 2965 a[x] 2966 </pre> 2967 2968 <p> 2969 denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>. 2970 The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively. 2971 The following rules apply: 2972 </p> 2973 2974 <p> 2975 If <code>a</code> is not a map: 2976 </p> 2977 <ul> 2978 <li>the index <code>x</code> must be of integer type or an untyped constant</li> 2979 <li>a constant index must be non-negative and 2980 <a href="#Representability">representable</a> by a value of type <code>int</code></li> 2981 <li>a constant index that is untyped is given type <code>int</code></li> 2982 <li>the index <code>x</code> is <i>in range</i> if <code>0 <= x < len(a)</code>, 2983 otherwise it is <i>out of range</i></li> 2984 </ul> 2985 2986 <p> 2987 For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>: 2988 </p> 2989 <ul> 2990 <li>a <a href="#Constants">constant</a> index must be in range</li> 2991 <li>if <code>x</code> is out of range at run time, 2992 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 2993 <li><code>a[x]</code> is the array element at index <code>x</code> and the type of 2994 <code>a[x]</code> is the element type of <code>A</code></li> 2995 </ul> 2996 2997 <p> 2998 For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type: 2999 </p> 3000 <ul> 3001 <li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li> 3002 </ul> 3003 3004 <p> 3005 For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>: 3006 </p> 3007 <ul> 3008 <li>if <code>x</code> is out of range at run time, 3009 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 3010 <li><code>a[x]</code> is the slice element at index <code>x</code> and the type of 3011 <code>a[x]</code> is the element type of <code>S</code></li> 3012 </ul> 3013 3014 <p> 3015 For <code>a</code> of <a href="#String_types">string type</a>: 3016 </p> 3017 <ul> 3018 <li>a <a href="#Constants">constant</a> index must be in range 3019 if the string <code>a</code> is also constant</li> 3020 <li>if <code>x</code> is out of range at run time, 3021 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 3022 <li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of 3023 <code>a[x]</code> is <code>byte</code></li> 3024 <li><code>a[x]</code> may not be assigned to</li> 3025 </ul> 3026 3027 <p> 3028 For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>: 3029 </p> 3030 <ul> 3031 <li><code>x</code>'s type must be 3032 <a href="#Assignability">assignable</a> 3033 to the key type of <code>M</code></li> 3034 <li>if the map contains an entry with key <code>x</code>, 3035 <code>a[x]</code> is the map value with key <code>x</code> 3036 and the type of <code>a[x]</code> is the value type of <code>M</code></li> 3037 <li>if the map is <code>nil</code> or does not contain such an entry, 3038 <code>a[x]</code> is the <a href="#The_zero_value">zero value</a> 3039 for the value type of <code>M</code></li> 3040 </ul> 3041 3042 <p> 3043 Otherwise <code>a[x]</code> is illegal. 3044 </p> 3045 3046 <p> 3047 An index expression on a map <code>a</code> of type <code>map[K]V</code> 3048 used in an <a href="#Assignments">assignment</a> or initialization of the special form 3049 </p> 3050 3051 <pre> 3052 v, ok = a[x] 3053 v, ok := a[x] 3054 var v, ok = a[x] 3055 var v, ok T = a[x] 3056 </pre> 3057 3058 <p> 3059 yields an additional untyped boolean value. The value of <code>ok</code> is 3060 <code>true</code> if the key <code>x</code> is present in the map, and 3061 <code>false</code> otherwise. 3062 </p> 3063 3064 <p> 3065 Assigning to an element of a <code>nil</code> map causes a 3066 <a href="#Run_time_panics">run-time panic</a>. 3067 </p> 3068 3069 3070 <h3 id="Slice_expressions">Slice expressions</h3> 3071 3072 <p> 3073 Slice expressions construct a substring or slice from a string, array, pointer 3074 to array, or slice. There are two variants: a simple form that specifies a low 3075 and high bound, and a full form that also specifies a bound on the capacity. 3076 </p> 3077 3078 <h4>Simple slice expressions</h4> 3079 3080 <p> 3081 For a string, array, pointer to array, or slice <code>a</code>, the primary expression 3082 </p> 3083 3084 <pre> 3085 a[low : high] 3086 </pre> 3087 3088 <p> 3089 constructs a substring or slice. The <i>indices</i> <code>low</code> and 3090 <code>high</code> select which elements of operand <code>a</code> appear 3091 in the result. The result has indices starting at 0 and length equal to 3092 <code>high</code> - <code>low</code>. 3093 After slicing the array <code>a</code> 3094 </p> 3095 3096 <pre> 3097 a := [5]int{1, 2, 3, 4, 5} 3098 s := a[1:4] 3099 </pre> 3100 3101 <p> 3102 the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements 3103 </p> 3104 3105 <pre> 3106 s[0] == 2 3107 s[1] == 3 3108 s[2] == 4 3109 </pre> 3110 3111 <p> 3112 For convenience, any of the indices may be omitted. A missing <code>low</code> 3113 index defaults to zero; a missing <code>high</code> index defaults to the length of the 3114 sliced operand: 3115 </p> 3116 3117 <pre> 3118 a[2:] // same as a[2 : len(a)] 3119 a[:3] // same as a[0 : 3] 3120 a[:] // same as a[0 : len(a)] 3121 </pre> 3122 3123 <p> 3124 If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for 3125 <code>(*a)[low : high]</code>. 3126 </p> 3127 3128 <p> 3129 For arrays or strings, the indices are <i>in range</i> if 3130 <code>0</code> <= <code>low</code> <= <code>high</code> <= <code>len(a)</code>, 3131 otherwise they are <i>out of range</i>. 3132 For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length. 3133 A <a href="#Constants">constant</a> index must be non-negative and 3134 <a href="#Representability">representable</a> by a value of type 3135 <code>int</code>; for arrays or constant strings, constant indices must also be in range. 3136 If both indices are constant, they must satisfy <code>low <= high</code>. 3137 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3138 </p> 3139 3140 <p> 3141 Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice, 3142 the result of the slice operation is a non-constant value of the same type as the operand. 3143 For untyped string operands the result is a non-constant value of type <code>string</code>. 3144 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a> 3145 and the result of the slice operation is a slice with the same element type as the array. 3146 </p> 3147 3148 <p> 3149 If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result 3150 is a <code>nil</code> slice. Otherwise, if the result is a slice, it shares its underlying 3151 array with the operand. 3152 </p> 3153 3154 <h4>Full slice expressions</h4> 3155 3156 <p> 3157 For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression 3158 </p> 3159 3160 <pre> 3161 a[low : high : max] 3162 </pre> 3163 3164 <p> 3165 constructs a slice of the same type, and with the same length and elements as the simple slice 3166 expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity 3167 by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0. 3168 After slicing the array <code>a</code> 3169 </p> 3170 3171 <pre> 3172 a := [5]int{1, 2, 3, 4, 5} 3173 t := a[1:3:5] 3174 </pre> 3175 3176 <p> 3177 the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements 3178 </p> 3179 3180 <pre> 3181 t[0] == 2 3182 t[1] == 3 3183 </pre> 3184 3185 <p> 3186 As for simple slice expressions, if <code>a</code> is a pointer to an array, 3187 <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>. 3188 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>. 3189 </p> 3190 3191 <p> 3192 The indices are <i>in range</i> if <code>0 <= low <= high <= max <= cap(a)</code>, 3193 otherwise they are <i>out of range</i>. 3194 A <a href="#Constants">constant</a> index must be non-negative and 3195 <a href="#Representability">representable</a> by a value of type 3196 <code>int</code>; for arrays, constant indices must also be in range. 3197 If multiple indices are constant, the constants that are present must be in range relative to each 3198 other. 3199 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3200 </p> 3201 3202 <h3 id="Type_assertions">Type assertions</h3> 3203 3204 <p> 3205 For an expression <code>x</code> of <a href="#Interface_types">interface type</a> 3206 and a type <code>T</code>, the primary expression 3207 </p> 3208 3209 <pre> 3210 x.(T) 3211 </pre> 3212 3213 <p> 3214 asserts that <code>x</code> is not <code>nil</code> 3215 and that the value stored in <code>x</code> is of type <code>T</code>. 3216 The notation <code>x.(T)</code> is called a <i>type assertion</i>. 3217 </p> 3218 <p> 3219 More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts 3220 that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a> 3221 to the type <code>T</code>. 3222 In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>; 3223 otherwise the type assertion is invalid since it is not possible for <code>x</code> 3224 to store a value of type <code>T</code>. 3225 If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type 3226 of <code>x</code> implements the interface <code>T</code>. 3227 </p> 3228 <p> 3229 If the type assertion holds, the value of the expression is the value 3230 stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false, 3231 a <a href="#Run_time_panics">run-time panic</a> occurs. 3232 In other words, even though the dynamic type of <code>x</code> 3233 is known only at run time, the type of <code>x.(T)</code> is 3234 known to be <code>T</code> in a correct program. 3235 </p> 3236 3237 <pre> 3238 var x interface{} = 7 // x has dynamic type int and value 7 3239 i := x.(int) // i has type int and value 7 3240 3241 type I interface { m() } 3242 3243 func f(y I) { 3244 s := y.(string) // illegal: string does not implement I (missing method m) 3245 r := y.(io.Reader) // r has type io.Reader and the dynamic type of y must implement both I and io.Reader 3246 … 3247 } 3248 </pre> 3249 3250 <p> 3251 A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form 3252 </p> 3253 3254 <pre> 3255 v, ok = x.(T) 3256 v, ok := x.(T) 3257 var v, ok = x.(T) 3258 var v, ok T1 = x.(T) 3259 </pre> 3260 3261 <p> 3262 yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code> 3263 if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is 3264 the <a href="#The_zero_value">zero value</a> for type <code>T</code>. 3265 No run-time panic occurs in this case. 3266 </p> 3267 3268 3269 <h3 id="Calls">Calls</h3> 3270 3271 <p> 3272 Given an expression <code>f</code> of function type 3273 <code>F</code>, 3274 </p> 3275 3276 <pre> 3277 f(a1, a2, … an) 3278 </pre> 3279 3280 <p> 3281 calls <code>f</code> with arguments <code>a1, a2, … an</code>. 3282 Except for one special case, arguments must be single-valued expressions 3283 <a href="#Assignability">assignable</a> to the parameter types of 3284 <code>F</code> and are evaluated before the function is called. 3285 The type of the expression is the result type 3286 of <code>F</code>. 3287 A method invocation is similar but the method itself 3288 is specified as a selector upon a value of the receiver type for 3289 the method. 3290 </p> 3291 3292 <pre> 3293 math.Atan2(x, y) // function call 3294 var pt *Point 3295 pt.Scale(3.5) // method call with receiver pt 3296 </pre> 3297 3298 <p> 3299 In a function call, the function value and arguments are evaluated in 3300 <a href="#Order_of_evaluation">the usual order</a>. 3301 After they are evaluated, the parameters of the call are passed by value to the function 3302 and the called function begins execution. 3303 The return parameters of the function are passed by value 3304 back to the calling function when the function returns. 3305 </p> 3306 3307 <p> 3308 Calling a <code>nil</code> function value 3309 causes a <a href="#Run_time_panics">run-time panic</a>. 3310 </p> 3311 3312 <p> 3313 As a special case, if the return values of a function or method 3314 <code>g</code> are equal in number and individually 3315 assignable to the parameters of another function or method 3316 <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code> 3317 will invoke <code>f</code> after binding the return values of 3318 <code>g</code> to the parameters of <code>f</code> in order. The call 3319 of <code>f</code> must contain no parameters other than the call of <code>g</code>, 3320 and <code>g</code> must have at least one return value. 3321 If <code>f</code> has a final <code>...</code> parameter, it is 3322 assigned the return values of <code>g</code> that remain after 3323 assignment of regular parameters. 3324 </p> 3325 3326 <pre> 3327 func Split(s string, pos int) (string, string) { 3328 return s[0:pos], s[pos:] 3329 } 3330 3331 func Join(s, t string) string { 3332 return s + t 3333 } 3334 3335 if Join(Split(value, len(value)/2)) != value { 3336 log.Panic("test fails") 3337 } 3338 </pre> 3339 3340 <p> 3341 A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a> 3342 of (the type of) <code>x</code> contains <code>m</code> and the 3343 argument list can be assigned to the parameter list of <code>m</code>. 3344 If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&x</code>'s method 3345 set contains <code>m</code>, <code>x.m()</code> is shorthand 3346 for <code>(&x).m()</code>: 3347 </p> 3348 3349 <pre> 3350 var p Point 3351 p.Scale(3.5) 3352 </pre> 3353 3354 <p> 3355 There is no distinct method type and there are no method literals. 3356 </p> 3357 3358 <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3> 3359 3360 <p> 3361 If <code>f</code> is <a href="#Function_types">variadic</a> with a final 3362 parameter <code>p</code> of type <code>...T</code>, then within <code>f</code> 3363 the type of <code>p</code> is equivalent to type <code>[]T</code>. 3364 If <code>f</code> is invoked with no actual arguments for <code>p</code>, 3365 the value passed to <code>p</code> is <code>nil</code>. 3366 Otherwise, the value passed is a new slice 3367 of type <code>[]T</code> with a new underlying array whose successive elements 3368 are the actual arguments, which all must be <a href="#Assignability">assignable</a> 3369 to <code>T</code>. The length and capacity of the slice is therefore 3370 the number of arguments bound to <code>p</code> and may differ for each 3371 call site. 3372 </p> 3373 3374 <p> 3375 Given the function and calls 3376 </p> 3377 <pre> 3378 func Greeting(prefix string, who ...string) 3379 Greeting("nobody") 3380 Greeting("hello:", "Joe", "Anna", "Eileen") 3381 </pre> 3382 3383 <p> 3384 within <code>Greeting</code>, <code>who</code> will have the value 3385 <code>nil</code> in the first call, and 3386 <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second. 3387 </p> 3388 3389 <p> 3390 If the final argument is assignable to a slice type <code>[]T</code>, it may be 3391 passed unchanged as the value for a <code>...T</code> parameter if the argument 3392 is followed by <code>...</code>. In this case no new slice is created. 3393 </p> 3394 3395 <p> 3396 Given the slice <code>s</code> and call 3397 </p> 3398 3399 <pre> 3400 s := []string{"James", "Jasmine"} 3401 Greeting("goodbye:", s...) 3402 </pre> 3403 3404 <p> 3405 within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code> 3406 with the same underlying array. 3407 </p> 3408 3409 3410 <h3 id="Operators">Operators</h3> 3411 3412 <p> 3413 Operators combine operands into expressions. 3414 </p> 3415 3416 <pre class="ebnf"> 3417 Expression = UnaryExpr | Expression binary_op Expression . 3418 UnaryExpr = PrimaryExpr | unary_op UnaryExpr . 3419 3420 binary_op = "||" | "&&" | rel_op | add_op | mul_op . 3421 rel_op = "==" | "!=" | "<" | "<=" | ">" | ">=" . 3422 add_op = "+" | "-" | "|" | "^" . 3423 mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" . 3424 3425 unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<-" . 3426 </pre> 3427 3428 <p> 3429 Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>. 3430 For other binary operators, the operand types must be <a href="#Type_identity">identical</a> 3431 unless the operation involves shifts or untyped <a href="#Constants">constants</a>. 3432 For operations involving constants only, see the section on 3433 <a href="#Constant_expressions">constant expressions</a>. 3434 </p> 3435 3436 <p> 3437 Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a> 3438 and the other operand is not, the constant is <a href="#Conversions">converted</a> 3439 to the type of the other operand. 3440 </p> 3441 3442 <p> 3443 The right operand in a shift expression must have unsigned integer type 3444 or be an untyped constant <a href="#Representability">representable</a> by a 3445 value of type <code>uint</code>. 3446 If the left operand of a non-constant shift expression is an untyped constant, 3447 it is first converted to the type it would assume if the shift expression were 3448 replaced by its left operand alone. 3449 </p> 3450 3451 <pre> 3452 var s uint = 33 3453 var i = 1<<s // 1 has type int 3454 var j int32 = 1<<s // 1 has type int32; j == 0 3455 var k = uint64(1<<s) // 1 has type uint64; k == 1<<33 3456 var m int = 1.0<<s // 1.0 has type int; m == 0 if ints are 32bits in size 3457 var n = 1.0<<s == j // 1.0 has type int32; n == true 3458 var o = 1<<s == 2<<s // 1 and 2 have type int; o == true if ints are 32bits in size 3459 var p = 1<<s == 1<<33 // illegal if ints are 32bits in size: 1 has type int, but 1<<33 overflows int 3460 var u = 1.0<<s // illegal: 1.0 has type float64, cannot shift 3461 var u1 = 1.0<<s != 0 // illegal: 1.0 has type float64, cannot shift 3462 var u2 = 1<<s != 1.0 // illegal: 1 has type float64, cannot shift 3463 var v float32 = 1<<s // illegal: 1 has type float32, cannot shift 3464 var w int64 = 1.0<<33 // 1.0<<33 is a constant shift expression 3465 var x = a[1.0<<s] // 1.0 has type int; x == a[0] if ints are 32bits in size 3466 var a = make([]byte, 1.0<<s) // 1.0 has type int; len(a) == 0 if ints are 32bits in size 3467 </pre> 3468 3469 3470 <h4 id="Operator_precedence">Operator precedence</h4> 3471 <p> 3472 Unary operators have the highest precedence. 3473 As the <code>++</code> and <code>--</code> operators form 3474 statements, not expressions, they fall 3475 outside the operator hierarchy. 3476 As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>. 3477 <p> 3478 There are five precedence levels for binary operators. 3479 Multiplication operators bind strongest, followed by addition 3480 operators, comparison operators, <code>&&</code> (logical AND), 3481 and finally <code>||</code> (logical OR): 3482 </p> 3483 3484 <pre class="grammar"> 3485 Precedence Operator 3486 5 * / % << >> & &^ 3487 4 + - | ^ 3488 3 == != < <= > >= 3489 2 && 3490 1 || 3491 </pre> 3492 3493 <p> 3494 Binary operators of the same precedence associate from left to right. 3495 For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>. 3496 </p> 3497 3498 <pre> 3499 +x 3500 23 + 3*x[i] 3501 x <= f() 3502 ^a >> b 3503 f() || g() 3504 x == y+1 && <-chanPtr > 0 3505 </pre> 3506 3507 3508 <h3 id="Arithmetic_operators">Arithmetic operators</h3> 3509 <p> 3510 Arithmetic operators apply to numeric values and yield a result of the same 3511 type as the first operand. The four standard arithmetic operators (<code>+</code>, 3512 <code>-</code>, <code>*</code>, <code>/</code>) apply to integer, 3513 floating-point, and complex types; <code>+</code> also applies to strings. 3514 The bitwise logical and shift operators apply to integers only. 3515 </p> 3516 3517 <pre class="grammar"> 3518 + sum integers, floats, complex values, strings 3519 - difference integers, floats, complex values 3520 * product integers, floats, complex values 3521 / quotient integers, floats, complex values 3522 % remainder integers 3523 3524 & bitwise AND integers 3525 | bitwise OR integers 3526 ^ bitwise XOR integers 3527 &^ bit clear (AND NOT) integers 3528 3529 << left shift integer << unsigned integer 3530 >> right shift integer >> unsigned integer 3531 </pre> 3532 3533 3534 <h4 id="Integer_operators">Integer operators</h4> 3535 3536 <p> 3537 For two integer values <code>x</code> and <code>y</code>, the integer quotient 3538 <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following 3539 relationships: 3540 </p> 3541 3542 <pre> 3543 x = q*y + r and |r| < |y| 3544 </pre> 3545 3546 <p> 3547 with <code>x / y</code> truncated towards zero 3548 (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>). 3549 </p> 3550 3551 <pre> 3552 x y x / y x % y 3553 5 3 1 2 3554 -5 3 -1 -2 3555 5 -3 -1 2 3556 -5 -3 1 -2 3557 </pre> 3558 3559 <p> 3560 As an exception to this rule, if the dividend <code>x</code> is the most 3561 negative value for the int type of <code>x</code>, the quotient 3562 <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>). 3563 </p> 3564 3565 <pre> 3566 x, q 3567 int8 -128 3568 int16 -32768 3569 int32 -2147483648 3570 int64 -9223372036854775808 3571 </pre> 3572 3573 <p> 3574 If the divisor is a <a href="#Constants">constant</a>, it must not be zero. 3575 If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3576 If the dividend is non-negative and the divisor is a constant power of 2, 3577 the division may be replaced by a right shift, and computing the remainder may 3578 be replaced by a bitwise AND operation: 3579 </p> 3580 3581 <pre> 3582 x x / 4 x % 4 x >> 2 x & 3 3583 11 2 3 2 3 3584 -11 -2 -3 -3 1 3585 </pre> 3586 3587 <p> 3588 The shift operators shift the left operand by the shift count specified by the 3589 right operand. They implement arithmetic shifts if the left operand is a signed 3590 integer and logical shifts if it is an unsigned integer. 3591 There is no upper limit on the shift count. Shifts behave 3592 as if the left operand is shifted <code>n</code> times by 1 for a shift 3593 count of <code>n</code>. 3594 As a result, <code>x << 1</code> is the same as <code>x*2</code> 3595 and <code>x >> 1</code> is the same as 3596 <code>x/2</code> but truncated towards negative infinity. 3597 </p> 3598 3599 <p> 3600 For integer operands, the unary operators 3601 <code>+</code>, <code>-</code>, and <code>^</code> are defined as 3602 follows: 3603 </p> 3604 3605 <pre class="grammar"> 3606 +x is 0 + x 3607 -x negation is 0 - x 3608 ^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x 3609 and m = -1 for signed x 3610 </pre> 3611 3612 3613 <h4 id="Integer_overflow">Integer overflow</h4> 3614 3615 <p> 3616 For unsigned integer values, the operations <code>+</code>, 3617 <code>-</code>, <code>*</code>, and <code><<</code> are 3618 computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of 3619 the <a href="#Numeric_types">unsigned integer</a>'s type. 3620 Loosely speaking, these unsigned integer operations 3621 discard high bits upon overflow, and programs may rely on ``wrap around''. 3622 </p> 3623 <p> 3624 For signed integers, the operations <code>+</code>, 3625 <code>-</code>, <code>*</code>, and <code><<</code> may legally 3626 overflow and the resulting value exists and is deterministically defined 3627 by the signed integer representation, the operation, and its operands. 3628 No exception is raised as a result of overflow. A 3629 compiler may not optimize code under the assumption that overflow does 3630 not occur. For instance, it may not assume that <code>x < x + 1</code> is always true. 3631 </p> 3632 3633 3634 <h4 id="Floating_point_operators">Floating-point operators</h4> 3635 3636 <p> 3637 For floating-point and complex numbers, 3638 <code>+x</code> is the same as <code>x</code>, 3639 while <code>-x</code> is the negation of <code>x</code>. 3640 The result of a floating-point or complex division by zero is not specified beyond the 3641 IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a> 3642 occurs is implementation-specific. 3643 </p> 3644 3645 <p> 3646 An implementation may combine multiple floating-point operations into a single 3647 fused operation, possibly across statements, and produce a result that differs 3648 from the value obtained by executing and rounding the instructions individually. 3649 A floating-point type <a href="#Conversions">conversion</a> explicitly rounds to 3650 the precision of the target type, preventing fusion that would discard that rounding. 3651 </p> 3652 3653 <p> 3654 For instance, some architectures provide a "fused multiply and add" (FMA) instruction 3655 that computes <code>x*y + z</code> without rounding the intermediate result <code>x*y</code>. 3656 These examples show when a Go implementation can use that instruction: 3657 </p> 3658 3659 <pre> 3660 // FMA allowed for computing r, because x*y is not explicitly rounded: 3661 r = x*y + z 3662 r = z; r += x*y 3663 t = x*y; r = t + z 3664 *p = x*y; r = *p + z 3665 r = x*y + float64(z) 3666 3667 // FMA disallowed for computing r, because it would omit rounding of x*y: 3668 r = float64(x*y) + z 3669 r = z; r += float64(x*y) 3670 t = float64(x*y); r = t + z 3671 </pre> 3672 3673 <h4 id="String_concatenation">String concatenation</h4> 3674 3675 <p> 3676 Strings can be concatenated using the <code>+</code> operator 3677 or the <code>+=</code> assignment operator: 3678 </p> 3679 3680 <pre> 3681 s := "hi" + string(c) 3682 s += " and good bye" 3683 </pre> 3684 3685 <p> 3686 String addition creates a new string by concatenating the operands. 3687 </p> 3688 3689 3690 <h3 id="Comparison_operators">Comparison operators</h3> 3691 3692 <p> 3693 Comparison operators compare two operands and yield an untyped boolean value. 3694 </p> 3695 3696 <pre class="grammar"> 3697 == equal 3698 != not equal 3699 < less 3700 <= less or equal 3701 > greater 3702 >= greater or equal 3703 </pre> 3704 3705 <p> 3706 In any comparison, the first operand 3707 must be <a href="#Assignability">assignable</a> 3708 to the type of the second operand, or vice versa. 3709 </p> 3710 <p> 3711 The equality operators <code>==</code> and <code>!=</code> apply 3712 to operands that are <i>comparable</i>. 3713 The ordering operators <code><</code>, <code><=</code>, <code>></code>, and <code>>=</code> 3714 apply to operands that are <i>ordered</i>. 3715 These terms and the result of the comparisons are defined as follows: 3716 </p> 3717 3718 <ul> 3719 <li> 3720 Boolean values are comparable. 3721 Two boolean values are equal if they are either both 3722 <code>true</code> or both <code>false</code>. 3723 </li> 3724 3725 <li> 3726 Integer values are comparable and ordered, in the usual way. 3727 </li> 3728 3729 <li> 3730 Floating-point values are comparable and ordered, 3731 as defined by the IEEE-754 standard. 3732 </li> 3733 3734 <li> 3735 Complex values are comparable. 3736 Two complex values <code>u</code> and <code>v</code> are 3737 equal if both <code>real(u) == real(v)</code> and 3738 <code>imag(u) == imag(v)</code>. 3739 </li> 3740 3741 <li> 3742 String values are comparable and ordered, lexically byte-wise. 3743 </li> 3744 3745 <li> 3746 Pointer values are comparable. 3747 Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>. 3748 Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal. 3749 </li> 3750 3751 <li> 3752 Channel values are comparable. 3753 Two channel values are equal if they were created by the same call to 3754 <a href="#Making_slices_maps_and_channels"><code>make</code></a> 3755 or if both have value <code>nil</code>. 3756 </li> 3757 3758 <li> 3759 Interface values are comparable. 3760 Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types 3761 and equal dynamic values or if both have value <code>nil</code>. 3762 </li> 3763 3764 <li> 3765 A value <code>x</code> of non-interface type <code>X</code> and 3766 a value <code>t</code> of interface type <code>T</code> are comparable when values 3767 of type <code>X</code> are comparable and 3768 <code>X</code> implements <code>T</code>. 3769 They are equal if <code>t</code>'s dynamic type is identical to <code>X</code> 3770 and <code>t</code>'s dynamic value is equal to <code>x</code>. 3771 </li> 3772 3773 <li> 3774 Struct values are comparable if all their fields are comparable. 3775 Two struct values are equal if their corresponding 3776 non-<a href="#Blank_identifier">blank</a> fields are equal. 3777 </li> 3778 3779 <li> 3780 Array values are comparable if values of the array element type are comparable. 3781 Two array values are equal if their corresponding elements are equal. 3782 </li> 3783 </ul> 3784 3785 <p> 3786 A comparison of two interface values with identical dynamic types 3787 causes a <a href="#Run_time_panics">run-time panic</a> if values 3788 of that type are not comparable. This behavior applies not only to direct interface 3789 value comparisons but also when comparing arrays of interface values 3790 or structs with interface-valued fields. 3791 </p> 3792 3793 <p> 3794 Slice, map, and function values are not comparable. 3795 However, as a special case, a slice, map, or function value may 3796 be compared to the predeclared identifier <code>nil</code>. 3797 Comparison of pointer, channel, and interface values to <code>nil</code> 3798 is also allowed and follows from the general rules above. 3799 </p> 3800 3801 <pre> 3802 const c = 3 < 4 // c is the untyped boolean constant true 3803 3804 type MyBool bool 3805 var x, y int 3806 var ( 3807 // The result of a comparison is an untyped boolean. 3808 // The usual assignment rules apply. 3809 b3 = x == y // b3 has type bool 3810 b4 bool = x == y // b4 has type bool 3811 b5 MyBool = x == y // b5 has type MyBool 3812 ) 3813 </pre> 3814 3815 <h3 id="Logical_operators">Logical operators</h3> 3816 3817 <p> 3818 Logical operators apply to <a href="#Boolean_types">boolean</a> values 3819 and yield a result of the same type as the operands. 3820 The right operand is evaluated conditionally. 3821 </p> 3822 3823 <pre class="grammar"> 3824 && conditional AND p && q is "if p then q else false" 3825 || conditional OR p || q is "if p then true else q" 3826 ! NOT !p is "not p" 3827 </pre> 3828 3829 3830 <h3 id="Address_operators">Address operators</h3> 3831 3832 <p> 3833 For an operand <code>x</code> of type <code>T</code>, the address operation 3834 <code>&x</code> generates a pointer of type <code>*T</code> to <code>x</code>. 3835 The operand must be <i>addressable</i>, 3836 that is, either a variable, pointer indirection, or slice indexing 3837 operation; or a field selector of an addressable struct operand; 3838 or an array indexing operation of an addressable array. 3839 As an exception to the addressability requirement, <code>x</code> may also be a 3840 (possibly parenthesized) 3841 <a href="#Composite_literals">composite literal</a>. 3842 If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>, 3843 then the evaluation of <code>&x</code> does too. 3844 </p> 3845 3846 <p> 3847 For an operand <code>x</code> of pointer type <code>*T</code>, the pointer 3848 indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed 3849 to by <code>x</code>. 3850 If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code> 3851 will cause a <a href="#Run_time_panics">run-time panic</a>. 3852 </p> 3853 3854 <pre> 3855 &x 3856 &a[f(2)] 3857 &Point{2, 3} 3858 *p 3859 *pf(x) 3860 3861 var x *int = nil 3862 *x // causes a run-time panic 3863 &*x // causes a run-time panic 3864 </pre> 3865 3866 3867 <h3 id="Receive_operator">Receive operator</h3> 3868 3869 <p> 3870 For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>, 3871 the value of the receive operation <code><-ch</code> is the value received 3872 from the channel <code>ch</code>. The channel direction must permit receive operations, 3873 and the type of the receive operation is the element type of the channel. 3874 The expression blocks until a value is available. 3875 Receiving from a <code>nil</code> channel blocks forever. 3876 A receive operation on a <a href="#Close">closed</a> channel can always proceed 3877 immediately, yielding the element type's <a href="#The_zero_value">zero value</a> 3878 after any previously sent values have been received. 3879 </p> 3880 3881 <pre> 3882 v1 := <-ch 3883 v2 = <-ch 3884 f(<-ch) 3885 <-strobe // wait until clock pulse and discard received value 3886 </pre> 3887 3888 <p> 3889 A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form 3890 </p> 3891 3892 <pre> 3893 x, ok = <-ch 3894 x, ok := <-ch 3895 var x, ok = <-ch 3896 var x, ok T = <-ch 3897 </pre> 3898 3899 <p> 3900 yields an additional untyped boolean result reporting whether the 3901 communication succeeded. The value of <code>ok</code> is <code>true</code> 3902 if the value received was delivered by a successful send operation to the 3903 channel, or <code>false</code> if it is a zero value generated because the 3904 channel is closed and empty. 3905 </p> 3906 3907 3908 <h3 id="Conversions">Conversions</h3> 3909 3910 <p> 3911 Conversions are expressions of the form <code>T(x)</code> 3912 where <code>T</code> is a type and <code>x</code> is an expression 3913 that can be converted to type <code>T</code>. 3914 </p> 3915 3916 <pre class="ebnf"> 3917 Conversion = Type "(" Expression [ "," ] ")" . 3918 </pre> 3919 3920 <p> 3921 If the type starts with the operator <code>*</code> or <code><-</code>, 3922 or if the type starts with the keyword <code>func</code> 3923 and has no result list, it must be parenthesized when 3924 necessary to avoid ambiguity: 3925 </p> 3926 3927 <pre> 3928 *Point(p) // same as *(Point(p)) 3929 (*Point)(p) // p is converted to *Point 3930 <-chan int(c) // same as <-(chan int(c)) 3931 (<-chan int)(c) // c is converted to <-chan int 3932 func()(x) // function signature func() x 3933 (func())(x) // x is converted to func() 3934 (func() int)(x) // x is converted to func() int 3935 func() int(x) // x is converted to func() int (unambiguous) 3936 </pre> 3937 3938 <p> 3939 A <a href="#Constants">constant</a> value <code>x</code> can be converted to 3940 type <code>T</code> if <code>x</code> is <a href="#Representability">representable</a> 3941 by a value of <code>T</code>. 3942 As a special case, an integer constant <code>x</code> can be converted to a 3943 <a href="#String_types">string type</a> using the 3944 <a href="#Conversions_to_and_from_a_string_type">same rule</a> 3945 as for non-constant <code>x</code>. 3946 </p> 3947 3948 <p> 3949 Converting a constant yields a typed constant as result. 3950 </p> 3951 3952 <pre> 3953 uint(iota) // iota value of type uint 3954 float32(2.718281828) // 2.718281828 of type float32 3955 complex128(1) // 1.0 + 0.0i of type complex128 3956 float32(0.49999999) // 0.5 of type float32 3957 float64(-1e-1000) // 0.0 of type float64 3958 string('x') // "x" of type string 3959 string(0x266c) // "♬" of type string 3960 MyString("foo" + "bar") // "foobar" of type MyString 3961 string([]byte{'a'}) // not a constant: []byte{'a'} is not a constant 3962 (*int)(nil) // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type 3963 int(1.2) // illegal: 1.2 cannot be represented as an int 3964 string(65.0) // illegal: 65.0 is not an integer constant 3965 </pre> 3966 3967 <p> 3968 A non-constant value <code>x</code> can be converted to type <code>T</code> 3969 in any of these cases: 3970 </p> 3971 3972 <ul> 3973 <li> 3974 <code>x</code> is <a href="#Assignability">assignable</a> 3975 to <code>T</code>. 3976 </li> 3977 <li> 3978 ignoring struct tags (see below), 3979 <code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a> 3980 <a href="#Types">underlying types</a>. 3981 </li> 3982 <li> 3983 ignoring struct tags (see below), 3984 <code>x</code>'s type and <code>T</code> are pointer types 3985 that are not <a href="#Type_definitions">defined types</a>, 3986 and their pointer base types have identical underlying types. 3987 </li> 3988 <li> 3989 <code>x</code>'s type and <code>T</code> are both integer or floating 3990 point types. 3991 </li> 3992 <li> 3993 <code>x</code>'s type and <code>T</code> are both complex types. 3994 </li> 3995 <li> 3996 <code>x</code> is an integer or a slice of bytes or runes 3997 and <code>T</code> is a string type. 3998 </li> 3999 <li> 4000 <code>x</code> is a string and <code>T</code> is a slice of bytes or runes. 4001 </li> 4002 </ul> 4003 4004 <p> 4005 <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types 4006 for identity for the purpose of conversion: 4007 </p> 4008 4009 <pre> 4010 type Person struct { 4011 Name string 4012 Address *struct { 4013 Street string 4014 City string 4015 } 4016 } 4017 4018 var data *struct { 4019 Name string `json:"name"` 4020 Address *struct { 4021 Street string `json:"street"` 4022 City string `json:"city"` 4023 } `json:"address"` 4024 } 4025 4026 var person = (*Person)(data) // ignoring tags, the underlying types are identical 4027 </pre> 4028 4029 <p> 4030 Specific rules apply to (non-constant) conversions between numeric types or 4031 to and from a string type. 4032 These conversions may change the representation of <code>x</code> 4033 and incur a run-time cost. 4034 All other conversions only change the type but not the representation 4035 of <code>x</code>. 4036 </p> 4037 4038 <p> 4039 There is no linguistic mechanism to convert between pointers and integers. 4040 The package <a href="#Package_unsafe"><code>unsafe</code></a> 4041 implements this functionality under 4042 restricted circumstances. 4043 </p> 4044 4045 <h4>Conversions between numeric types</h4> 4046 4047 <p> 4048 For the conversion of non-constant numeric values, the following rules apply: 4049 </p> 4050 4051 <ol> 4052 <li> 4053 When converting between integer types, if the value is a signed integer, it is 4054 sign extended to implicit infinite precision; otherwise it is zero extended. 4055 It is then truncated to fit in the result type's size. 4056 For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>. 4057 The conversion always yields a valid value; there is no indication of overflow. 4058 </li> 4059 <li> 4060 When converting a floating-point number to an integer, the fraction is discarded 4061 (truncation towards zero). 4062 </li> 4063 <li> 4064 When converting an integer or floating-point number to a floating-point type, 4065 or a complex number to another complex type, the result value is rounded 4066 to the precision specified by the destination type. 4067 For instance, the value of a variable <code>x</code> of type <code>float32</code> 4068 may be stored using additional precision beyond that of an IEEE-754 32-bit number, 4069 but float32(x) represents the result of rounding <code>x</code>'s value to 4070 32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits 4071 of precision, but <code>float32(x + 0.1)</code> does not. 4072 </li> 4073 </ol> 4074 4075 <p> 4076 In all non-constant conversions involving floating-point or complex values, 4077 if the result type cannot represent the value the conversion 4078 succeeds but the result value is implementation-dependent. 4079 </p> 4080 4081 <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4> 4082 4083 <ol> 4084 <li> 4085 Converting a signed or unsigned integer value to a string type yields a 4086 string containing the UTF-8 representation of the integer. Values outside 4087 the range of valid Unicode code points are converted to <code>"\uFFFD"</code>. 4088 4089 <pre> 4090 string('a') // "a" 4091 string(-1) // "\ufffd" == "\xef\xbf\xbd" 4092 string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8" 4093 type MyString string 4094 MyString(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5" 4095 </pre> 4096 </li> 4097 4098 <li> 4099 Converting a slice of bytes to a string type yields 4100 a string whose successive bytes are the elements of the slice. 4101 4102 <pre> 4103 string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" 4104 string([]byte{}) // "" 4105 string([]byte(nil)) // "" 4106 4107 type MyBytes []byte 4108 string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" 4109 </pre> 4110 </li> 4111 4112 <li> 4113 Converting a slice of runes to a string type yields 4114 a string that is the concatenation of the individual rune values 4115 converted to strings. 4116 4117 <pre> 4118 string([]rune{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" 4119 string([]rune{}) // "" 4120 string([]rune(nil)) // "" 4121 4122 type MyRunes []rune 4123 string(MyRunes{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" 4124 </pre> 4125 </li> 4126 4127 <li> 4128 Converting a value of a string type to a slice of bytes type 4129 yields a slice whose successive elements are the bytes of the string. 4130 4131 <pre> 4132 []byte("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 4133 []byte("") // []byte{} 4134 4135 MyBytes("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 4136 </pre> 4137 </li> 4138 4139 <li> 4140 Converting a value of a string type to a slice of runes type 4141 yields a slice containing the individual Unicode code points of the string. 4142 4143 <pre> 4144 []rune(MyString("白鵬翔")) // []rune{0x767d, 0x9d6c, 0x7fd4} 4145 []rune("") // []rune{} 4146 4147 MyRunes("白鵬翔") // []rune{0x767d, 0x9d6c, 0x7fd4} 4148 </pre> 4149 </li> 4150 </ol> 4151 4152 4153 <h3 id="Constant_expressions">Constant expressions</h3> 4154 4155 <p> 4156 Constant expressions may contain only <a href="#Constants">constant</a> 4157 operands and are evaluated at compile time. 4158 </p> 4159 4160 <p> 4161 Untyped boolean, numeric, and string constants may be used as operands 4162 wherever it is legal to use an operand of boolean, numeric, or string type, 4163 respectively. 4164 Except for shift operations, if the operands of a binary operation are 4165 different kinds of untyped constants, the operation and, for non-boolean operations, the result use 4166 the kind that appears later in this list: integer, rune, floating-point, complex. 4167 For example, an untyped integer constant divided by an 4168 untyped complex constant yields an untyped complex constant. 4169 </p> 4170 4171 <p> 4172 A constant <a href="#Comparison_operators">comparison</a> always yields 4173 an untyped boolean constant. If the left operand of a constant 4174 <a href="#Operators">shift expression</a> is an untyped constant, the 4175 result is an integer constant; otherwise it is a constant of the same 4176 type as the left operand, which must be of 4177 <a href="#Numeric_types">integer type</a>. 4178 Applying all other operators to untyped constants results in an untyped 4179 constant of the same kind (that is, a boolean, integer, floating-point, 4180 complex, or string constant). 4181 </p> 4182 4183 <pre> 4184 const a = 2 + 3.0 // a == 5.0 (untyped floating-point constant) 4185 const b = 15 / 4 // b == 3 (untyped integer constant) 4186 const c = 15 / 4.0 // c == 3.75 (untyped floating-point constant) 4187 const Θ float64 = 3/2 // Θ == 1.0 (type float64, 3/2 is integer division) 4188 const Π float64 = 3/2. // Π == 1.5 (type float64, 3/2. is float division) 4189 const d = 1 << 3.0 // d == 8 (untyped integer constant) 4190 const e = 1.0 << 3 // e == 8 (untyped integer constant) 4191 const f = int32(1) << 33 // illegal (constant 8589934592 overflows int32) 4192 const g = float64(2) >> 1 // illegal (float64(2) is a typed floating-point constant) 4193 const h = "foo" > "bar" // h == true (untyped boolean constant) 4194 const j = true // j == true (untyped boolean constant) 4195 const k = 'w' + 1 // k == 'x' (untyped rune constant) 4196 const l = "hi" // l == "hi" (untyped string constant) 4197 const m = string(k) // m == "x" (type string) 4198 const Σ = 1 - 0.707i // (untyped complex constant) 4199 const Δ = Σ + 2.0e-4 // (untyped complex constant) 4200 const Φ = iota*1i - 1/1i // (untyped complex constant) 4201 </pre> 4202 4203 <p> 4204 Applying the built-in function <code>complex</code> to untyped 4205 integer, rune, or floating-point constants yields 4206 an untyped complex constant. 4207 </p> 4208 4209 <pre> 4210 const ic = complex(0, c) // ic == 3.75i (untyped complex constant) 4211 const iΘ = complex(0, Θ) // iΘ == 1i (type complex128) 4212 </pre> 4213 4214 <p> 4215 Constant expressions are always evaluated exactly; intermediate values and the 4216 constants themselves may require precision significantly larger than supported 4217 by any predeclared type in the language. The following are legal declarations: 4218 </p> 4219 4220 <pre> 4221 const Huge = 1 << 100 // Huge == 1267650600228229401496703205376 (untyped integer constant) 4222 const Four int8 = Huge >> 98 // Four == 4 (type int8) 4223 </pre> 4224 4225 <p> 4226 The divisor of a constant division or remainder operation must not be zero: 4227 </p> 4228 4229 <pre> 4230 3.14 / 0.0 // illegal: division by zero 4231 </pre> 4232 4233 <p> 4234 The values of <i>typed</i> constants must always be accurately 4235 <a href="#Representability">representable</a> by values 4236 of the constant type. The following constant expressions are illegal: 4237 </p> 4238 4239 <pre> 4240 uint(-1) // -1 cannot be represented as a uint 4241 int(3.14) // 3.14 cannot be represented as an int 4242 int64(Huge) // 1267650600228229401496703205376 cannot be represented as an int64 4243 Four * 300 // operand 300 cannot be represented as an int8 (type of Four) 4244 Four * 100 // product 400 cannot be represented as an int8 (type of Four) 4245 </pre> 4246 4247 <p> 4248 The mask used by the unary bitwise complement operator <code>^</code> matches 4249 the rule for non-constants: the mask is all 1s for unsigned constants 4250 and -1 for signed and untyped constants. 4251 </p> 4252 4253 <pre> 4254 ^1 // untyped integer constant, equal to -2 4255 uint8(^1) // illegal: same as uint8(-2), -2 cannot be represented as a uint8 4256 ^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE) 4257 int8(^1) // same as int8(-2) 4258 ^int8(1) // same as -1 ^ int8(1) = -2 4259 </pre> 4260 4261 <p> 4262 Implementation restriction: A compiler may use rounding while 4263 computing untyped floating-point or complex constant expressions; see 4264 the implementation restriction in the section 4265 on <a href="#Constants">constants</a>. This rounding may cause a 4266 floating-point constant expression to be invalid in an integer 4267 context, even if it would be integral when calculated using infinite 4268 precision, and vice versa. 4269 </p> 4270 4271 4272 <h3 id="Order_of_evaluation">Order of evaluation</h3> 4273 4274 <p> 4275 At package level, <a href="#Package_initialization">initialization dependencies</a> 4276 determine the evaluation order of individual initialization expressions in 4277 <a href="#Variable_declarations">variable declarations</a>. 4278 Otherwise, when evaluating the <a href="#Operands">operands</a> of an 4279 expression, assignment, or 4280 <a href="#Return_statements">return statement</a>, 4281 all function calls, method calls, and 4282 communication operations are evaluated in lexical left-to-right 4283 order. 4284 </p> 4285 4286 <p> 4287 For example, in the (function-local) assignment 4288 </p> 4289 <pre> 4290 y[f()], ok = g(h(), i()+x[j()], <-c), k() 4291 </pre> 4292 <p> 4293 the function calls and communication happen in the order 4294 <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>, 4295 <code><-c</code>, <code>g()</code>, and <code>k()</code>. 4296 However, the order of those events compared to the evaluation 4297 and indexing of <code>x</code> and the evaluation 4298 of <code>y</code> is not specified. 4299 </p> 4300 4301 <pre> 4302 a := 1 4303 f := func() int { a++; return a } 4304 x := []int{a, f()} // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified 4305 m := map[int]int{a: 1, a: 2} // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified 4306 n := map[int]int{a: f()} // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified 4307 </pre> 4308 4309 <p> 4310 At package level, initialization dependencies override the left-to-right rule 4311 for individual initialization expressions, but not for operands within each 4312 expression: 4313 </p> 4314 4315 <pre> 4316 var a, b, c = f() + v(), g(), sqr(u()) + v() 4317 4318 func f() int { return c } 4319 func g() int { return a } 4320 func sqr(x int) int { return x*x } 4321 4322 // functions u and v are independent of all other variables and functions 4323 </pre> 4324 4325 <p> 4326 The function calls happen in the order 4327 <code>u()</code>, <code>sqr()</code>, <code>v()</code>, 4328 <code>f()</code>, <code>v()</code>, and <code>g()</code>. 4329 </p> 4330 4331 <p> 4332 Floating-point operations within a single expression are evaluated according to 4333 the associativity of the operators. Explicit parentheses affect the evaluation 4334 by overriding the default associativity. 4335 In the expression <code>x + (y + z)</code> the addition <code>y + z</code> 4336 is performed before adding <code>x</code>. 4337 </p> 4338 4339 <h2 id="Statements">Statements</h2> 4340 4341 <p> 4342 Statements control execution. 4343 </p> 4344 4345 <pre class="ebnf"> 4346 Statement = 4347 Declaration | LabeledStmt | SimpleStmt | 4348 GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | 4349 FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | 4350 DeferStmt . 4351 4352 SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl . 4353 </pre> 4354 4355 <h3 id="Terminating_statements">Terminating statements</h3> 4356 4357 <p> 4358 A terminating statement is one of the following: 4359 </p> 4360 4361 <ol> 4362 <li> 4363 A <a href="#Return_statements">"return"</a> or 4364 <a href="#Goto_statements">"goto"</a> statement. 4365 <!-- ul below only for regular layout --> 4366 <ul> </ul> 4367 </li> 4368 4369 <li> 4370 A call to the built-in function 4371 <a href="#Handling_panics"><code>panic</code></a>. 4372 <!-- ul below only for regular layout --> 4373 <ul> </ul> 4374 </li> 4375 4376 <li> 4377 A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement. 4378 <!-- ul below only for regular layout --> 4379 <ul> </ul> 4380 </li> 4381 4382 <li> 4383 An <a href="#If_statements">"if" statement</a> in which: 4384 <ul> 4385 <li>the "else" branch is present, and</li> 4386 <li>both branches are terminating statements.</li> 4387 </ul> 4388 </li> 4389 4390 <li> 4391 A <a href="#For_statements">"for" statement</a> in which: 4392 <ul> 4393 <li>there are no "break" statements referring to the "for" statement, and</li> 4394 <li>the loop condition is absent.</li> 4395 </ul> 4396 </li> 4397 4398 <li> 4399 A <a href="#Switch_statements">"switch" statement</a> in which: 4400 <ul> 4401 <li>there are no "break" statements referring to the "switch" statement,</li> 4402 <li>there is a default case, and</li> 4403 <li>the statement lists in each case, including the default, end in a terminating 4404 statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough" 4405 statement</a>.</li> 4406 </ul> 4407 </li> 4408 4409 <li> 4410 A <a href="#Select_statements">"select" statement</a> in which: 4411 <ul> 4412 <li>there are no "break" statements referring to the "select" statement, and</li> 4413 <li>the statement lists in each case, including the default if present, 4414 end in a terminating statement.</li> 4415 </ul> 4416 </li> 4417 4418 <li> 4419 A <a href="#Labeled_statements">labeled statement</a> labeling 4420 a terminating statement. 4421 </li> 4422 </ol> 4423 4424 <p> 4425 All other statements are not terminating. 4426 </p> 4427 4428 <p> 4429 A <a href="#Blocks">statement list</a> ends in a terminating statement if the list 4430 is not empty and its final non-empty statement is terminating. 4431 </p> 4432 4433 4434 <h3 id="Empty_statements">Empty statements</h3> 4435 4436 <p> 4437 The empty statement does nothing. 4438 </p> 4439 4440 <pre class="ebnf"> 4441 EmptyStmt = . 4442 </pre> 4443 4444 4445 <h3 id="Labeled_statements">Labeled statements</h3> 4446 4447 <p> 4448 A labeled statement may be the target of a <code>goto</code>, 4449 <code>break</code> or <code>continue</code> statement. 4450 </p> 4451 4452 <pre class="ebnf"> 4453 LabeledStmt = Label ":" Statement . 4454 Label = identifier . 4455 </pre> 4456 4457 <pre> 4458 Error: log.Panic("error encountered") 4459 </pre> 4460 4461 4462 <h3 id="Expression_statements">Expression statements</h3> 4463 4464 <p> 4465 With the exception of specific built-in functions, 4466 function and method <a href="#Calls">calls</a> and 4467 <a href="#Receive_operator">receive operations</a> 4468 can appear in statement context. Such statements may be parenthesized. 4469 </p> 4470 4471 <pre class="ebnf"> 4472 ExpressionStmt = Expression . 4473 </pre> 4474 4475 <p> 4476 The following built-in functions are not permitted in statement context: 4477 </p> 4478 4479 <pre> 4480 append cap complex imag len make new real 4481 unsafe.Alignof unsafe.Offsetof unsafe.Sizeof 4482 </pre> 4483 4484 <pre> 4485 h(x+y) 4486 f.Close() 4487 <-ch 4488 (<-ch) 4489 len("foo") // illegal if len is the built-in function 4490 </pre> 4491 4492 4493 <h3 id="Send_statements">Send statements</h3> 4494 4495 <p> 4496 A send statement sends a value on a channel. 4497 The channel expression must be of <a href="#Channel_types">channel type</a>, 4498 the channel direction must permit send operations, 4499 and the type of the value to be sent must be <a href="#Assignability">assignable</a> 4500 to the channel's element type. 4501 </p> 4502 4503 <pre class="ebnf"> 4504 SendStmt = Channel "<-" Expression . 4505 Channel = Expression . 4506 </pre> 4507 4508 <p> 4509 Both the channel and the value expression are evaluated before communication 4510 begins. Communication blocks until the send can proceed. 4511 A send on an unbuffered channel can proceed if a receiver is ready. 4512 A send on a buffered channel can proceed if there is room in the buffer. 4513 A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>. 4514 A send on a <code>nil</code> channel blocks forever. 4515 </p> 4516 4517 <pre> 4518 ch <- 3 // send value 3 to channel ch 4519 </pre> 4520 4521 4522 <h3 id="IncDec_statements">IncDec statements</h3> 4523 4524 <p> 4525 The "++" and "--" statements increment or decrement their operands 4526 by the untyped <a href="#Constants">constant</a> <code>1</code>. 4527 As with an assignment, the operand must be <a href="#Address_operators">addressable</a> 4528 or a map index expression. 4529 </p> 4530 4531 <pre class="ebnf"> 4532 IncDecStmt = Expression ( "++" | "--" ) . 4533 </pre> 4534 4535 <p> 4536 The following <a href="#Assignments">assignment statements</a> are semantically 4537 equivalent: 4538 </p> 4539 4540 <pre class="grammar"> 4541 IncDec statement Assignment 4542 x++ x += 1 4543 x-- x -= 1 4544 </pre> 4545 4546 4547 <h3 id="Assignments">Assignments</h3> 4548 4549 <pre class="ebnf"> 4550 Assignment = ExpressionList assign_op ExpressionList . 4551 4552 assign_op = [ add_op | mul_op ] "=" . 4553 </pre> 4554 4555 <p> 4556 Each left-hand side operand must be <a href="#Address_operators">addressable</a>, 4557 a map index expression, or (for <code>=</code> assignments only) the 4558 <a href="#Blank_identifier">blank identifier</a>. 4559 Operands may be parenthesized. 4560 </p> 4561 4562 <pre> 4563 x = 1 4564 *p = f() 4565 a[i] = 23 4566 (k) = <-ch // same as: k = <-ch 4567 </pre> 4568 4569 <p> 4570 An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code> 4571 <code>y</code> where <i>op</i> is a binary <a href="#Arithmetic_operators">arithmetic operator</a> 4572 is equivalent to <code>x</code> <code>=</code> <code>x</code> <i>op</i> 4573 <code>(y)</code> but evaluates <code>x</code> 4574 only once. The <i>op</i><code>=</code> construct is a single token. 4575 In assignment operations, both the left- and right-hand expression lists 4576 must contain exactly one single-valued expression, and the left-hand 4577 expression must not be the blank identifier. 4578 </p> 4579 4580 <pre> 4581 a[i] <<= 2 4582 i &^= 1<<n 4583 </pre> 4584 4585 <p> 4586 A tuple assignment assigns the individual elements of a multi-valued 4587 operation to a list of variables. There are two forms. In the 4588 first, the right hand operand is a single multi-valued expression 4589 such as a function call, a <a href="#Channel_types">channel</a> or 4590 <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>. 4591 The number of operands on the left 4592 hand side must match the number of values. For instance, if 4593 <code>f</code> is a function returning two values, 4594 </p> 4595 4596 <pre> 4597 x, y = f() 4598 </pre> 4599 4600 <p> 4601 assigns the first value to <code>x</code> and the second to <code>y</code>. 4602 In the second form, the number of operands on the left must equal the number 4603 of expressions on the right, each of which must be single-valued, and the 4604 <i>n</i>th expression on the right is assigned to the <i>n</i>th 4605 operand on the left: 4606 </p> 4607 4608 <pre> 4609 one, two, three = '一', '二', '三' 4610 </pre> 4611 4612 <p> 4613 The <a href="#Blank_identifier">blank identifier</a> provides a way to 4614 ignore right-hand side values in an assignment: 4615 </p> 4616 4617 <pre> 4618 _ = x // evaluate x but ignore it 4619 x, _ = f() // evaluate f() but ignore second result value 4620 </pre> 4621 4622 <p> 4623 The assignment proceeds in two phases. 4624 First, the operands of <a href="#Index_expressions">index expressions</a> 4625 and <a href="#Address_operators">pointer indirections</a> 4626 (including implicit pointer indirections in <a href="#Selectors">selectors</a>) 4627 on the left and the expressions on the right are all 4628 <a href="#Order_of_evaluation">evaluated in the usual order</a>. 4629 Second, the assignments are carried out in left-to-right order. 4630 </p> 4631 4632 <pre> 4633 a, b = b, a // exchange a and b 4634 4635 x := []int{1, 2, 3} 4636 i := 0 4637 i, x[i] = 1, 2 // set i = 1, x[0] = 2 4638 4639 i = 0 4640 x[i], i = 2, 1 // set x[0] = 2, i = 1 4641 4642 x[0], x[0] = 1, 2 // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end) 4643 4644 x[1], x[3] = 4, 5 // set x[1] = 4, then panic setting x[3] = 5. 4645 4646 type Point struct { x, y int } 4647 var p *Point 4648 x[2], p.x = 6, 7 // set x[2] = 6, then panic setting p.x = 7 4649 4650 i = 2 4651 x = []int{3, 5, 7} 4652 for i, x[i] = range x { // set i, x[2] = 0, x[0] 4653 break 4654 } 4655 // after this loop, i == 0 and x == []int{3, 5, 3} 4656 </pre> 4657 4658 <p> 4659 In assignments, each value must be <a href="#Assignability">assignable</a> 4660 to the type of the operand to which it is assigned, with the following special cases: 4661 </p> 4662 4663 <ol> 4664 <li> 4665 Any typed value may be assigned to the blank identifier. 4666 </li> 4667 4668 <li> 4669 If an untyped constant 4670 is assigned to a variable of interface type or the blank identifier, 4671 the constant is first <a href="#Conversions">converted</a> to its 4672 <a href="#Constants">default type</a>. 4673 </li> 4674 4675 <li> 4676 If an untyped boolean value is assigned to a variable of interface type or 4677 the blank identifier, it is first converted to type <code>bool</code>. 4678 </li> 4679 </ol> 4680 4681 <h3 id="If_statements">If statements</h3> 4682 4683 <p> 4684 "If" statements specify the conditional execution of two branches 4685 according to the value of a boolean expression. If the expression 4686 evaluates to true, the "if" branch is executed, otherwise, if 4687 present, the "else" branch is executed. 4688 </p> 4689 4690 <pre class="ebnf"> 4691 IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] . 4692 </pre> 4693 4694 <pre> 4695 if x > max { 4696 x = max 4697 } 4698 </pre> 4699 4700 <p> 4701 The expression may be preceded by a simple statement, which 4702 executes before the expression is evaluated. 4703 </p> 4704 4705 <pre> 4706 if x := f(); x < y { 4707 return x 4708 } else if x > z { 4709 return z 4710 } else { 4711 return y 4712 } 4713 </pre> 4714 4715 4716 <h3 id="Switch_statements">Switch statements</h3> 4717 4718 <p> 4719 "Switch" statements provide multi-way execution. 4720 An expression or type specifier is compared to the "cases" 4721 inside the "switch" to determine which branch 4722 to execute. 4723 </p> 4724 4725 <pre class="ebnf"> 4726 SwitchStmt = ExprSwitchStmt | TypeSwitchStmt . 4727 </pre> 4728 4729 <p> 4730 There are two forms: expression switches and type switches. 4731 In an expression switch, the cases contain expressions that are compared 4732 against the value of the switch expression. 4733 In a type switch, the cases contain types that are compared against the 4734 type of a specially annotated switch expression. 4735 The switch expression is evaluated exactly once in a switch statement. 4736 </p> 4737 4738 <h4 id="Expression_switches">Expression switches</h4> 4739 4740 <p> 4741 In an expression switch, 4742 the switch expression is evaluated and 4743 the case expressions, which need not be constants, 4744 are evaluated left-to-right and top-to-bottom; the first one that equals the 4745 switch expression 4746 triggers execution of the statements of the associated case; 4747 the other cases are skipped. 4748 If no case matches and there is a "default" case, 4749 its statements are executed. 4750 There can be at most one default case and it may appear anywhere in the 4751 "switch" statement. 4752 A missing switch expression is equivalent to the boolean value 4753 <code>true</code>. 4754 </p> 4755 4756 <pre class="ebnf"> 4757 ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" . 4758 ExprCaseClause = ExprSwitchCase ":" StatementList . 4759 ExprSwitchCase = "case" ExpressionList | "default" . 4760 </pre> 4761 4762 <p> 4763 If the switch expression evaluates to an untyped constant, it is first 4764 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>; 4765 if it is an untyped boolean value, it is first converted to type <code>bool</code>. 4766 The predeclared untyped value <code>nil</code> cannot be used as a switch expression. 4767 </p> 4768 4769 <p> 4770 If a case expression is untyped, it is first <a href="#Conversions">converted</a> 4771 to the type of the switch expression. 4772 For each (possibly converted) case expression <code>x</code> and the value <code>t</code> 4773 of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>. 4774 </p> 4775 4776 <p> 4777 In other words, the switch expression is treated as if it were used to declare and 4778 initialize a temporary variable <code>t</code> without explicit type; it is that 4779 value of <code>t</code> against which each case expression <code>x</code> is tested 4780 for equality. 4781 </p> 4782 4783 <p> 4784 In a case or default clause, the last non-empty statement 4785 may be a (possibly <a href="#Labeled_statements">labeled</a>) 4786 <a href="#Fallthrough_statements">"fallthrough" statement</a> to 4787 indicate that control should flow from the end of this clause to 4788 the first statement of the next clause. 4789 Otherwise control flows to the end of the "switch" statement. 4790 A "fallthrough" statement may appear as the last statement of all 4791 but the last clause of an expression switch. 4792 </p> 4793 4794 <p> 4795 The switch expression may be preceded by a simple statement, which 4796 executes before the expression is evaluated. 4797 </p> 4798 4799 <pre> 4800 switch tag { 4801 default: s3() 4802 case 0, 1, 2, 3: s1() 4803 case 4, 5, 6, 7: s2() 4804 } 4805 4806 switch x := f(); { // missing switch expression means "true" 4807 case x < 0: return -x 4808 default: return x 4809 } 4810 4811 switch { 4812 case x < y: f1() 4813 case x < z: f2() 4814 case x == 4: f3() 4815 } 4816 </pre> 4817 4818 <p> 4819 Implementation restriction: A compiler may disallow multiple case 4820 expressions evaluating to the same constant. 4821 For instance, the current compilers disallow duplicate integer, 4822 floating point, or string constants in case expressions. 4823 </p> 4824 4825 <h4 id="Type_switches">Type switches</h4> 4826 4827 <p> 4828 A type switch compares types rather than values. It is otherwise similar 4829 to an expression switch. It is marked by a special switch expression that 4830 has the form of a <a href="#Type_assertions">type assertion</a> 4831 using the reserved word <code>type</code> rather than an actual type: 4832 </p> 4833 4834 <pre> 4835 switch x.(type) { 4836 // cases 4837 } 4838 </pre> 4839 4840 <p> 4841 Cases then match actual types <code>T</code> against the dynamic type of the 4842 expression <code>x</code>. As with type assertions, <code>x</code> must be of 4843 <a href="#Interface_types">interface type</a>, and each non-interface type 4844 <code>T</code> listed in a case must implement the type of <code>x</code>. 4845 The types listed in the cases of a type switch must all be 4846 <a href="#Type_identity">different</a>. 4847 </p> 4848 4849 <pre class="ebnf"> 4850 TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" . 4851 TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . 4852 TypeCaseClause = TypeSwitchCase ":" StatementList . 4853 TypeSwitchCase = "case" TypeList | "default" . 4854 TypeList = Type { "," Type } . 4855 </pre> 4856 4857 <p> 4858 The TypeSwitchGuard may include a 4859 <a href="#Short_variable_declarations">short variable declaration</a>. 4860 When that form is used, the variable is declared at the end of the 4861 TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause. 4862 In clauses with a case listing exactly one type, the variable 4863 has that type; otherwise, the variable has the type of the expression 4864 in the TypeSwitchGuard. 4865 </p> 4866 4867 <p> 4868 Instead of a type, a case may use the predeclared identifier 4869 <a href="#Predeclared_identifiers"><code>nil</code></a>; 4870 that case is selected when the expression in the TypeSwitchGuard 4871 is a <code>nil</code> interface value. 4872 There may be at most one <code>nil</code> case. 4873 </p> 4874 4875 <p> 4876 Given an expression <code>x</code> of type <code>interface{}</code>, 4877 the following type switch: 4878 </p> 4879 4880 <pre> 4881 switch i := x.(type) { 4882 case nil: 4883 printString("x is nil") // type of i is type of x (interface{}) 4884 case int: 4885 printInt(i) // type of i is int 4886 case float64: 4887 printFloat64(i) // type of i is float64 4888 case func(int) float64: 4889 printFunction(i) // type of i is func(int) float64 4890 case bool, string: 4891 printString("type is bool or string") // type of i is type of x (interface{}) 4892 default: 4893 printString("don't know the type") // type of i is type of x (interface{}) 4894 } 4895 </pre> 4896 4897 <p> 4898 could be rewritten: 4899 </p> 4900 4901 <pre> 4902 v := x // x is evaluated exactly once 4903 if v == nil { 4904 i := v // type of i is type of x (interface{}) 4905 printString("x is nil") 4906 } else if i, isInt := v.(int); isInt { 4907 printInt(i) // type of i is int 4908 } else if i, isFloat64 := v.(float64); isFloat64 { 4909 printFloat64(i) // type of i is float64 4910 } else if i, isFunc := v.(func(int) float64); isFunc { 4911 printFunction(i) // type of i is func(int) float64 4912 } else { 4913 _, isBool := v.(bool) 4914 _, isString := v.(string) 4915 if isBool || isString { 4916 i := v // type of i is type of x (interface{}) 4917 printString("type is bool or string") 4918 } else { 4919 i := v // type of i is type of x (interface{}) 4920 printString("don't know the type") 4921 } 4922 } 4923 </pre> 4924 4925 <p> 4926 The type switch guard may be preceded by a simple statement, which 4927 executes before the guard is evaluated. 4928 </p> 4929 4930 <p> 4931 The "fallthrough" statement is not permitted in a type switch. 4932 </p> 4933 4934 <h3 id="For_statements">For statements</h3> 4935 4936 <p> 4937 A "for" statement specifies repeated execution of a block. There are three forms: 4938 The iteration may be controlled by a single condition, a "for" clause, or a "range" clause. 4939 </p> 4940 4941 <pre class="ebnf"> 4942 ForStmt = "for" [ Condition | ForClause | RangeClause ] Block . 4943 Condition = Expression . 4944 </pre> 4945 4946 <h4 id="For_condition">For statements with single condition</h4> 4947 4948 <p> 4949 In its simplest form, a "for" statement specifies the repeated execution of 4950 a block as long as a boolean condition evaluates to true. 4951 The condition is evaluated before each iteration. 4952 If the condition is absent, it is equivalent to the boolean value 4953 <code>true</code>. 4954 </p> 4955 4956 <pre> 4957 for a < b { 4958 a *= 2 4959 } 4960 </pre> 4961 4962 <h4 id="For_clause">For statements with <code>for</code> clause</h4> 4963 4964 <p> 4965 A "for" statement with a ForClause is also controlled by its condition, but 4966 additionally it may specify an <i>init</i> 4967 and a <i>post</i> statement, such as an assignment, 4968 an increment or decrement statement. The init statement may be a 4969 <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not. 4970 Variables declared by the init statement are re-used in each iteration. 4971 </p> 4972 4973 <pre class="ebnf"> 4974 ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] . 4975 InitStmt = SimpleStmt . 4976 PostStmt = SimpleStmt . 4977 </pre> 4978 4979 <pre> 4980 for i := 0; i < 10; i++ { 4981 f(i) 4982 } 4983 </pre> 4984 4985 <p> 4986 If non-empty, the init statement is executed once before evaluating the 4987 condition for the first iteration; 4988 the post statement is executed after each execution of the block (and 4989 only if the block was executed). 4990 Any element of the ForClause may be empty but the 4991 <a href="#Semicolons">semicolons</a> are 4992 required unless there is only a condition. 4993 If the condition is absent, it is equivalent to the boolean value 4994 <code>true</code>. 4995 </p> 4996 4997 <pre> 4998 for cond { S() } is the same as for ; cond ; { S() } 4999 for { S() } is the same as for true { S() } 5000 </pre> 5001 5002 <h4 id="For_range">For statements with <code>range</code> clause</h4> 5003 5004 <p> 5005 A "for" statement with a "range" clause 5006 iterates through all entries of an array, slice, string or map, 5007 or values received on a channel. For each entry it assigns <i>iteration values</i> 5008 to corresponding <i>iteration variables</i> if present and then executes the block. 5009 </p> 5010 5011 <pre class="ebnf"> 5012 RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression . 5013 </pre> 5014 5015 <p> 5016 The expression on the right in the "range" clause is called the <i>range expression</i>, 5017 which may be an array, pointer to an array, slice, string, map, or channel permitting 5018 <a href="#Receive_operator">receive operations</a>. 5019 As with an assignment, if present the operands on the left must be 5020 <a href="#Address_operators">addressable</a> or map index expressions; they 5021 denote the iteration variables. If the range expression is a channel, at most 5022 one iteration variable is permitted, otherwise there may be up to two. 5023 If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>, 5024 the range clause is equivalent to the same clause without that identifier. 5025 </p> 5026 5027 <p> 5028 The range expression is evaluated once before beginning the loop, 5029 with one exception: if the range expression is an array or a pointer to an array 5030 and at most one iteration variable is present, only the range expression's 5031 length is evaluated; if that length is constant, 5032 <a href="#Length_and_capacity">by definition</a> 5033 the range expression itself will not be evaluated. 5034 </p> 5035 5036 <p> 5037 Function calls on the left are evaluated once per iteration. 5038 For each iteration, iteration values are produced as follows 5039 if the respective iteration variables are present: 5040 </p> 5041 5042 <pre class="grammar"> 5043 Range expression 1st value 2nd value 5044 5045 array or slice a [n]E, *[n]E, or []E index i int a[i] E 5046 string s string type index i int see below rune 5047 map m map[K]V key k K m[k] V 5048 channel c chan E, <-chan E element e E 5049 </pre> 5050 5051 <ol> 5052 <li> 5053 For an array, pointer to array, or slice value <code>a</code>, the index iteration 5054 values are produced in increasing order, starting at element index 0. 5055 If at most one iteration variable is present, the range loop produces 5056 iteration values from 0 up to <code>len(a)-1</code> and does not index into the array 5057 or slice itself. For a <code>nil</code> slice, the number of iterations is 0. 5058 </li> 5059 5060 <li> 5061 For a string value, the "range" clause iterates over the Unicode code points 5062 in the string starting at byte index 0. On successive iterations, the index value will be the 5063 index of the first byte of successive UTF-8-encoded code points in the string, 5064 and the second value, of type <code>rune</code>, will be the value of 5065 the corresponding code point. If the iteration encounters an invalid 5066 UTF-8 sequence, the second value will be <code>0xFFFD</code>, 5067 the Unicode replacement character, and the next iteration will advance 5068 a single byte in the string. 5069 </li> 5070 5071 <li> 5072 The iteration order over maps is not specified 5073 and is not guaranteed to be the same from one iteration to the next. 5074 If a map entry that has not yet been reached is removed during iteration, 5075 the corresponding iteration value will not be produced. If a map entry is 5076 created during iteration, that entry may be produced during the iteration or 5077 may be skipped. The choice may vary for each entry created and from one 5078 iteration to the next. 5079 If the map is <code>nil</code>, the number of iterations is 0. 5080 </li> 5081 5082 <li> 5083 For channels, the iteration values produced are the successive values sent on 5084 the channel until the channel is <a href="#Close">closed</a>. If the channel 5085 is <code>nil</code>, the range expression blocks forever. 5086 </li> 5087 </ol> 5088 5089 <p> 5090 The iteration values are assigned to the respective 5091 iteration variables as in an <a href="#Assignments">assignment statement</a>. 5092 </p> 5093 5094 <p> 5095 The iteration variables may be declared by the "range" clause using a form of 5096 <a href="#Short_variable_declarations">short variable declaration</a> 5097 (<code>:=</code>). 5098 In this case their types are set to the types of the respective iteration values 5099 and their <a href="#Declarations_and_scope">scope</a> is the block of the "for" 5100 statement; they are re-used in each iteration. 5101 If the iteration variables are declared outside the "for" statement, 5102 after execution their values will be those of the last iteration. 5103 </p> 5104 5105 <pre> 5106 var testdata *struct { 5107 a *[7]int 5108 } 5109 for i, _ := range testdata.a { 5110 // testdata.a is never evaluated; len(testdata.a) is constant 5111 // i ranges from 0 to 6 5112 f(i) 5113 } 5114 5115 var a [10]string 5116 for i, s := range a { 5117 // type of i is int 5118 // type of s is string 5119 // s == a[i] 5120 g(i, s) 5121 } 5122 5123 var key string 5124 var val interface {} // value type of m is assignable to val 5125 m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6} 5126 for key, val = range m { 5127 h(key, val) 5128 } 5129 // key == last map key encountered in iteration 5130 // val == map[key] 5131 5132 var ch chan Work = producer() 5133 for w := range ch { 5134 doWork(w) 5135 } 5136 5137 // empty a channel 5138 for range ch {} 5139 </pre> 5140 5141 5142 <h3 id="Go_statements">Go statements</h3> 5143 5144 <p> 5145 A "go" statement starts the execution of a function call 5146 as an independent concurrent thread of control, or <i>goroutine</i>, 5147 within the same address space. 5148 </p> 5149 5150 <pre class="ebnf"> 5151 GoStmt = "go" Expression . 5152 </pre> 5153 5154 <p> 5155 The expression must be a function or method call; it cannot be parenthesized. 5156 Calls of built-in functions are restricted as for 5157 <a href="#Expression_statements">expression statements</a>. 5158 </p> 5159 5160 <p> 5161 The function value and parameters are 5162 <a href="#Calls">evaluated as usual</a> 5163 in the calling goroutine, but 5164 unlike with a regular call, program execution does not wait 5165 for the invoked function to complete. 5166 Instead, the function begins executing independently 5167 in a new goroutine. 5168 When the function terminates, its goroutine also terminates. 5169 If the function has any return values, they are discarded when the 5170 function completes. 5171 </p> 5172 5173 <pre> 5174 go Server() 5175 go func(ch chan<- bool) { for { sleep(10); ch <- true }} (c) 5176 </pre> 5177 5178 5179 <h3 id="Select_statements">Select statements</h3> 5180 5181 <p> 5182 A "select" statement chooses which of a set of possible 5183 <a href="#Send_statements">send</a> or 5184 <a href="#Receive_operator">receive</a> 5185 operations will proceed. 5186 It looks similar to a 5187 <a href="#Switch_statements">"switch"</a> statement but with the 5188 cases all referring to communication operations. 5189 </p> 5190 5191 <pre class="ebnf"> 5192 SelectStmt = "select" "{" { CommClause } "}" . 5193 CommClause = CommCase ":" StatementList . 5194 CommCase = "case" ( SendStmt | RecvStmt ) | "default" . 5195 RecvStmt = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr . 5196 RecvExpr = Expression . 5197 </pre> 5198 5199 <p> 5200 A case with a RecvStmt may assign the result of a RecvExpr to one or 5201 two variables, which may be declared using a 5202 <a href="#Short_variable_declarations">short variable declaration</a>. 5203 The RecvExpr must be a (possibly parenthesized) receive operation. 5204 There can be at most one default case and it may appear anywhere 5205 in the list of cases. 5206 </p> 5207 5208 <p> 5209 Execution of a "select" statement proceeds in several steps: 5210 </p> 5211 5212 <ol> 5213 <li> 5214 For all the cases in the statement, the channel operands of receive operations 5215 and the channel and right-hand-side expressions of send statements are 5216 evaluated exactly once, in source order, upon entering the "select" statement. 5217 The result is a set of channels to receive from or send to, 5218 and the corresponding values to send. 5219 Any side effects in that evaluation will occur irrespective of which (if any) 5220 communication operation is selected to proceed. 5221 Expressions on the left-hand side of a RecvStmt with a short variable declaration 5222 or assignment are not yet evaluated. 5223 </li> 5224 5225 <li> 5226 If one or more of the communications can proceed, 5227 a single one that can proceed is chosen via a uniform pseudo-random selection. 5228 Otherwise, if there is a default case, that case is chosen. 5229 If there is no default case, the "select" statement blocks until 5230 at least one of the communications can proceed. 5231 </li> 5232 5233 <li> 5234 Unless the selected case is the default case, the respective communication 5235 operation is executed. 5236 </li> 5237 5238 <li> 5239 If the selected case is a RecvStmt with a short variable declaration or 5240 an assignment, the left-hand side expressions are evaluated and the 5241 received value (or values) are assigned. 5242 </li> 5243 5244 <li> 5245 The statement list of the selected case is executed. 5246 </li> 5247 </ol> 5248 5249 <p> 5250 Since communication on <code>nil</code> channels can never proceed, 5251 a select with only <code>nil</code> channels and no default case blocks forever. 5252 </p> 5253 5254 <pre> 5255 var a []int 5256 var c, c1, c2, c3, c4 chan int 5257 var i1, i2 int 5258 select { 5259 case i1 = <-c1: 5260 print("received ", i1, " from c1\n") 5261 case c2 <- i2: 5262 print("sent ", i2, " to c2\n") 5263 case i3, ok := (<-c3): // same as: i3, ok := <-c3 5264 if ok { 5265 print("received ", i3, " from c3\n") 5266 } else { 5267 print("c3 is closed\n") 5268 } 5269 case a[f()] = <-c4: 5270 // same as: 5271 // case t := <-c4 5272 // a[f()] = t 5273 default: 5274 print("no communication\n") 5275 } 5276 5277 for { // send random sequence of bits to c 5278 select { 5279 case c <- 0: // note: no statement, no fallthrough, no folding of cases 5280 case c <- 1: 5281 } 5282 } 5283 5284 select {} // block forever 5285 </pre> 5286 5287 5288 <h3 id="Return_statements">Return statements</h3> 5289 5290 <p> 5291 A "return" statement in a function <code>F</code> terminates the execution 5292 of <code>F</code>, and optionally provides one or more result values. 5293 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 5294 are executed before <code>F</code> returns to its caller. 5295 </p> 5296 5297 <pre class="ebnf"> 5298 ReturnStmt = "return" [ ExpressionList ] . 5299 </pre> 5300 5301 <p> 5302 In a function without a result type, a "return" statement must not 5303 specify any result values. 5304 </p> 5305 <pre> 5306 func noResult() { 5307 return 5308 } 5309 </pre> 5310 5311 <p> 5312 There are three ways to return values from a function with a result 5313 type: 5314 </p> 5315 5316 <ol> 5317 <li>The return value or values may be explicitly listed 5318 in the "return" statement. Each expression must be single-valued 5319 and <a href="#Assignability">assignable</a> 5320 to the corresponding element of the function's result type. 5321 <pre> 5322 func simpleF() int { 5323 return 2 5324 } 5325 5326 func complexF1() (re float64, im float64) { 5327 return -7.0, -4.0 5328 } 5329 </pre> 5330 </li> 5331 <li>The expression list in the "return" statement may be a single 5332 call to a multi-valued function. The effect is as if each value 5333 returned from that function were assigned to a temporary 5334 variable with the type of the respective value, followed by a 5335 "return" statement listing these variables, at which point the 5336 rules of the previous case apply. 5337 <pre> 5338 func complexF2() (re float64, im float64) { 5339 return complexF1() 5340 } 5341 </pre> 5342 </li> 5343 <li>The expression list may be empty if the function's result 5344 type specifies names for its <a href="#Function_types">result parameters</a>. 5345 The result parameters act as ordinary local variables 5346 and the function may assign values to them as necessary. 5347 The "return" statement returns the values of these variables. 5348 <pre> 5349 func complexF3() (re float64, im float64) { 5350 re = 7.0 5351 im = 4.0 5352 return 5353 } 5354 5355 func (devnull) Write(p []byte) (n int, _ error) { 5356 n = len(p) 5357 return 5358 } 5359 </pre> 5360 </li> 5361 </ol> 5362 5363 <p> 5364 Regardless of how they are declared, all the result values are initialized to 5365 the <a href="#The_zero_value">zero values</a> for their type upon entry to the 5366 function. A "return" statement that specifies results sets the result parameters before 5367 any deferred functions are executed. 5368 </p> 5369 5370 <p> 5371 Implementation restriction: A compiler may disallow an empty expression list 5372 in a "return" statement if a different entity (constant, type, or variable) 5373 with the same name as a result parameter is in 5374 <a href="#Declarations_and_scope">scope</a> at the place of the return. 5375 </p> 5376 5377 <pre> 5378 func f(n int) (res int, err error) { 5379 if _, err := f(n-1); err != nil { 5380 return // invalid return statement: err is shadowed 5381 } 5382 return 5383 } 5384 </pre> 5385 5386 <h3 id="Break_statements">Break statements</h3> 5387 5388 <p> 5389 A "break" statement terminates execution of the innermost 5390 <a href="#For_statements">"for"</a>, 5391 <a href="#Switch_statements">"switch"</a>, or 5392 <a href="#Select_statements">"select"</a> statement 5393 within the same function. 5394 </p> 5395 5396 <pre class="ebnf"> 5397 BreakStmt = "break" [ Label ] . 5398 </pre> 5399 5400 <p> 5401 If there is a label, it must be that of an enclosing 5402 "for", "switch", or "select" statement, 5403 and that is the one whose execution terminates. 5404 </p> 5405 5406 <pre> 5407 OuterLoop: 5408 for i = 0; i < n; i++ { 5409 for j = 0; j < m; j++ { 5410 switch a[i][j] { 5411 case nil: 5412 state = Error 5413 break OuterLoop 5414 case item: 5415 state = Found 5416 break OuterLoop 5417 } 5418 } 5419 } 5420 </pre> 5421 5422 <h3 id="Continue_statements">Continue statements</h3> 5423 5424 <p> 5425 A "continue" statement begins the next iteration of the 5426 innermost <a href="#For_statements">"for" loop</a> at its post statement. 5427 The "for" loop must be within the same function. 5428 </p> 5429 5430 <pre class="ebnf"> 5431 ContinueStmt = "continue" [ Label ] . 5432 </pre> 5433 5434 <p> 5435 If there is a label, it must be that of an enclosing 5436 "for" statement, and that is the one whose execution 5437 advances. 5438 </p> 5439 5440 <pre> 5441 RowLoop: 5442 for y, row := range rows { 5443 for x, data := range row { 5444 if data == endOfRow { 5445 continue RowLoop 5446 } 5447 row[x] = data + bias(x, y) 5448 } 5449 } 5450 </pre> 5451 5452 <h3 id="Goto_statements">Goto statements</h3> 5453 5454 <p> 5455 A "goto" statement transfers control to the statement with the corresponding label 5456 within the same function. 5457 </p> 5458 5459 <pre class="ebnf"> 5460 GotoStmt = "goto" Label . 5461 </pre> 5462 5463 <pre> 5464 goto Error 5465 </pre> 5466 5467 <p> 5468 Executing the "goto" statement must not cause any variables to come into 5469 <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto. 5470 For instance, this example: 5471 </p> 5472 5473 <pre> 5474 goto L // BAD 5475 v := 3 5476 L: 5477 </pre> 5478 5479 <p> 5480 is erroneous because the jump to label <code>L</code> skips 5481 the creation of <code>v</code>. 5482 </p> 5483 5484 <p> 5485 A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block. 5486 For instance, this example: 5487 </p> 5488 5489 <pre> 5490 if n%2 == 1 { 5491 goto L1 5492 } 5493 for n > 0 { 5494 f() 5495 n-- 5496 L1: 5497 f() 5498 n-- 5499 } 5500 </pre> 5501 5502 <p> 5503 is erroneous because the label <code>L1</code> is inside 5504 the "for" statement's block but the <code>goto</code> is not. 5505 </p> 5506 5507 <h3 id="Fallthrough_statements">Fallthrough statements</h3> 5508 5509 <p> 5510 A "fallthrough" statement transfers control to the first statement of the 5511 next case clause in an <a href="#Expression_switches">expression "switch" statement</a>. 5512 It may be used only as the final non-empty statement in such a clause. 5513 </p> 5514 5515 <pre class="ebnf"> 5516 FallthroughStmt = "fallthrough" . 5517 </pre> 5518 5519 5520 <h3 id="Defer_statements">Defer statements</h3> 5521 5522 <p> 5523 A "defer" statement invokes a function whose execution is deferred 5524 to the moment the surrounding function returns, either because the 5525 surrounding function executed a <a href="#Return_statements">return statement</a>, 5526 reached the end of its <a href="#Function_declarations">function body</a>, 5527 or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>. 5528 </p> 5529 5530 <pre class="ebnf"> 5531 DeferStmt = "defer" Expression . 5532 </pre> 5533 5534 <p> 5535 The expression must be a function or method call; it cannot be parenthesized. 5536 Calls of built-in functions are restricted as for 5537 <a href="#Expression_statements">expression statements</a>. 5538 </p> 5539 5540 <p> 5541 Each time a "defer" statement 5542 executes, the function value and parameters to the call are 5543 <a href="#Calls">evaluated as usual</a> 5544 and saved anew but the actual function is not invoked. 5545 Instead, deferred functions are invoked immediately before 5546 the surrounding function returns, in the reverse order 5547 they were deferred. 5548 If a deferred function value evaluates 5549 to <code>nil</code>, execution <a href="#Handling_panics">panics</a> 5550 when the function is invoked, not when the "defer" statement is executed. 5551 </p> 5552 5553 <p> 5554 For instance, if the deferred function is 5555 a <a href="#Function_literals">function literal</a> and the surrounding 5556 function has <a href="#Function_types">named result parameters</a> that 5557 are in scope within the literal, the deferred function may access and modify 5558 the result parameters before they are returned. 5559 If the deferred function has any return values, they are discarded when 5560 the function completes. 5561 (See also the section on <a href="#Handling_panics">handling panics</a>.) 5562 </p> 5563 5564 <pre> 5565 lock(l) 5566 defer unlock(l) // unlocking happens before surrounding function returns 5567 5568 // prints 3 2 1 0 before surrounding function returns 5569 for i := 0; i <= 3; i++ { 5570 defer fmt.Print(i) 5571 } 5572 5573 // f returns 1 5574 func f() (result int) { 5575 defer func() { 5576 result++ 5577 }() 5578 return 0 5579 } 5580 </pre> 5581 5582 <h2 id="Built-in_functions">Built-in functions</h2> 5583 5584 <p> 5585 Built-in functions are 5586 <a href="#Predeclared_identifiers">predeclared</a>. 5587 They are called like any other function but some of them 5588 accept a type instead of an expression as the first argument. 5589 </p> 5590 5591 <p> 5592 The built-in functions do not have standard Go types, 5593 so they can only appear in <a href="#Calls">call expressions</a>; 5594 they cannot be used as function values. 5595 </p> 5596 5597 <h3 id="Close">Close</h3> 5598 5599 <p> 5600 For a channel <code>c</code>, the built-in function <code>close(c)</code> 5601 records that no more values will be sent on the channel. 5602 It is an error if <code>c</code> is a receive-only channel. 5603 Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>. 5604 Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>. 5605 After calling <code>close</code>, and after any previously 5606 sent values have been received, receive operations will return 5607 the zero value for the channel's type without blocking. 5608 The multi-valued <a href="#Receive_operator">receive operation</a> 5609 returns a received value along with an indication of whether the channel is closed. 5610 </p> 5611 5612 5613 <h3 id="Length_and_capacity">Length and capacity</h3> 5614 5615 <p> 5616 The built-in functions <code>len</code> and <code>cap</code> take arguments 5617 of various types and return a result of type <code>int</code>. 5618 The implementation guarantees that the result always fits into an <code>int</code>. 5619 </p> 5620 5621 <pre class="grammar"> 5622 Call Argument type Result 5623 5624 len(s) string type string length in bytes 5625 [n]T, *[n]T array length (== n) 5626 []T slice length 5627 map[K]T map length (number of defined keys) 5628 chan T number of elements queued in channel buffer 5629 5630 cap(s) [n]T, *[n]T array length (== n) 5631 []T slice capacity 5632 chan T channel buffer capacity 5633 </pre> 5634 5635 <p> 5636 The capacity of a slice is the number of elements for which there is 5637 space allocated in the underlying array. 5638 At any time the following relationship holds: 5639 </p> 5640 5641 <pre> 5642 0 <= len(s) <= cap(s) 5643 </pre> 5644 5645 <p> 5646 The length of a <code>nil</code> slice, map or channel is 0. 5647 The capacity of a <code>nil</code> slice or channel is 0. 5648 </p> 5649 5650 <p> 5651 The expression <code>len(s)</code> is <a href="#Constants">constant</a> if 5652 <code>s</code> is a string constant. The expressions <code>len(s)</code> and 5653 <code>cap(s)</code> are constants if the type of <code>s</code> is an array 5654 or pointer to an array and the expression <code>s</code> does not contain 5655 <a href="#Receive_operator">channel receives</a> or (non-constant) 5656 <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated. 5657 Otherwise, invocations of <code>len</code> and <code>cap</code> are not 5658 constant and <code>s</code> is evaluated. 5659 </p> 5660 5661 <pre> 5662 const ( 5663 c1 = imag(2i) // imag(2i) = 2.0 is a constant 5664 c2 = len([10]float64{2}) // [10]float64{2} contains no function calls 5665 c3 = len([10]float64{c1}) // [10]float64{c1} contains no function calls 5666 c4 = len([10]float64{imag(2i)}) // imag(2i) is a constant and no function call is issued 5667 c5 = len([10]float64{imag(z)}) // invalid: imag(z) is a (non-constant) function call 5668 ) 5669 var z complex128 5670 </pre> 5671 5672 <h3 id="Allocation">Allocation</h3> 5673 5674 <p> 5675 The built-in function <code>new</code> takes a type <code>T</code>, 5676 allocates storage for a <a href="#Variables">variable</a> of that type 5677 at run time, and returns a value of type <code>*T</code> 5678 <a href="#Pointer_types">pointing</a> to it. 5679 The variable is initialized as described in the section on 5680 <a href="#The_zero_value">initial values</a>. 5681 </p> 5682 5683 <pre class="grammar"> 5684 new(T) 5685 </pre> 5686 5687 <p> 5688 For instance 5689 </p> 5690 5691 <pre> 5692 type S struct { a int; b float64 } 5693 new(S) 5694 </pre> 5695 5696 <p> 5697 allocates storage for a variable of type <code>S</code>, 5698 initializes it (<code>a=0</code>, <code>b=0.0</code>), 5699 and returns a value of type <code>*S</code> containing the address 5700 of the location. 5701 </p> 5702 5703 <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3> 5704 5705 <p> 5706 The built-in function <code>make</code> takes a type <code>T</code>, 5707 which must be a slice, map or channel type, 5708 optionally followed by a type-specific list of expressions. 5709 It returns a value of type <code>T</code> (not <code>*T</code>). 5710 The memory is initialized as described in the section on 5711 <a href="#The_zero_value">initial values</a>. 5712 </p> 5713 5714 <pre class="grammar"> 5715 Call Type T Result 5716 5717 make(T, n) slice slice of type T with length n and capacity n 5718 make(T, n, m) slice slice of type T with length n and capacity m 5719 5720 make(T) map map of type T 5721 make(T, n) map map of type T with initial space for approximately n elements 5722 5723 make(T) channel unbuffered channel of type T 5724 make(T, n) channel buffered channel of type T, buffer size n 5725 </pre> 5726 5727 5728 <p> 5729 Each of the size arguments <code>n</code> and <code>m</code> must be of integer type 5730 or an untyped <a href="#Constants">constant</a>. 5731 A constant size argument must be non-negative and <a href="#Representability">representable</a> 5732 by a value of type <code>int</code>; if it is an untyped constant it is given type <code>int</code>. 5733 If both <code>n</code> and <code>m</code> are provided and are constant, then 5734 <code>n</code> must be no larger than <code>m</code>. 5735 If <code>n</code> is negative or larger than <code>m</code> at run time, 5736 a <a href="#Run_time_panics">run-time panic</a> occurs. 5737 </p> 5738 5739 <pre> 5740 s := make([]int, 10, 100) // slice with len(s) == 10, cap(s) == 100 5741 s := make([]int, 1e3) // slice with len(s) == cap(s) == 1000 5742 s := make([]int, 1<<63) // illegal: len(s) is not representable by a value of type int 5743 s := make([]int, 10, 0) // illegal: len(s) > cap(s) 5744 c := make(chan int, 10) // channel with a buffer size of 10 5745 m := make(map[string]int, 100) // map with initial space for approximately 100 elements 5746 </pre> 5747 5748 <p> 5749 Calling <code>make</code> with a map type and size hint <code>n</code> will 5750 create a map with initial space to hold <code>n</code> map elements. 5751 The precise behavior is implementation-dependent. 5752 </p> 5753 5754 5755 <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3> 5756 5757 <p> 5758 The built-in functions <code>append</code> and <code>copy</code> assist in 5759 common slice operations. 5760 For both functions, the result is independent of whether the memory referenced 5761 by the arguments overlaps. 5762 </p> 5763 5764 <p> 5765 The <a href="#Function_types">variadic</a> function <code>append</code> 5766 appends zero or more values <code>x</code> 5767 to <code>s</code> of type <code>S</code>, which must be a slice type, and 5768 returns the resulting slice, also of type <code>S</code>. 5769 The values <code>x</code> are passed to a parameter of type <code>...T</code> 5770 where <code>T</code> is the <a href="#Slice_types">element type</a> of 5771 <code>S</code> and the respective 5772 <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply. 5773 As a special case, <code>append</code> also accepts a first argument 5774 assignable to type <code>[]byte</code> with a second argument of 5775 string type followed by <code>...</code>. This form appends the 5776 bytes of the string. 5777 </p> 5778 5779 <pre class="grammar"> 5780 append(s S, x ...T) S // T is the element type of S 5781 </pre> 5782 5783 <p> 5784 If the capacity of <code>s</code> is not large enough to fit the additional 5785 values, <code>append</code> allocates a new, sufficiently large underlying 5786 array that fits both the existing slice elements and the additional values. 5787 Otherwise, <code>append</code> re-uses the underlying array. 5788 </p> 5789 5790 <pre> 5791 s0 := []int{0, 0} 5792 s1 := append(s0, 2) // append a single element s1 == []int{0, 0, 2} 5793 s2 := append(s1, 3, 5, 7) // append multiple elements s2 == []int{0, 0, 2, 3, 5, 7} 5794 s3 := append(s2, s0...) // append a slice s3 == []int{0, 0, 2, 3, 5, 7, 0, 0} 5795 s4 := append(s3[3:6], s3[2:]...) // append overlapping slice s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0} 5796 5797 var t []interface{} 5798 t = append(t, 42, 3.1415, "foo") // t == []interface{}{42, 3.1415, "foo"} 5799 5800 var b []byte 5801 b = append(b, "bar"...) // append string contents b == []byte{'b', 'a', 'r' } 5802 </pre> 5803 5804 <p> 5805 The function <code>copy</code> copies slice elements from 5806 a source <code>src</code> to a destination <code>dst</code> and returns the 5807 number of elements copied. 5808 Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be 5809 <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>. 5810 The number of elements copied is the minimum of 5811 <code>len(src)</code> and <code>len(dst)</code>. 5812 As a special case, <code>copy</code> also accepts a destination argument assignable 5813 to type <code>[]byte</code> with a source argument of a string type. 5814 This form copies the bytes from the string into the byte slice. 5815 </p> 5816 5817 <pre class="grammar"> 5818 copy(dst, src []T) int 5819 copy(dst []byte, src string) int 5820 </pre> 5821 5822 <p> 5823 Examples: 5824 </p> 5825 5826 <pre> 5827 var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7} 5828 var s = make([]int, 6) 5829 var b = make([]byte, 5) 5830 n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5} 5831 n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5} 5832 n3 := copy(b, "Hello, World!") // n3 == 5, b == []byte("Hello") 5833 </pre> 5834 5835 5836 <h3 id="Deletion_of_map_elements">Deletion of map elements</h3> 5837 5838 <p> 5839 The built-in function <code>delete</code> removes the element with key 5840 <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The 5841 type of <code>k</code> must be <a href="#Assignability">assignable</a> 5842 to the key type of <code>m</code>. 5843 </p> 5844 5845 <pre class="grammar"> 5846 delete(m, k) // remove element m[k] from map m 5847 </pre> 5848 5849 <p> 5850 If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code> 5851 does not exist, <code>delete</code> is a no-op. 5852 </p> 5853 5854 5855 <h3 id="Complex_numbers">Manipulating complex numbers</h3> 5856 5857 <p> 5858 Three functions assemble and disassemble complex numbers. 5859 The built-in function <code>complex</code> constructs a complex 5860 value from a floating-point real and imaginary part, while 5861 <code>real</code> and <code>imag</code> 5862 extract the real and imaginary parts of a complex value. 5863 </p> 5864 5865 <pre class="grammar"> 5866 complex(realPart, imaginaryPart floatT) complexT 5867 real(complexT) floatT 5868 imag(complexT) floatT 5869 </pre> 5870 5871 <p> 5872 The type of the arguments and return value correspond. 5873 For <code>complex</code>, the two arguments must be of the same 5874 floating-point type and the return type is the complex type 5875 with the corresponding floating-point constituents: 5876 <code>complex64</code> for <code>float32</code> arguments, and 5877 <code>complex128</code> for <code>float64</code> arguments. 5878 If one of the arguments evaluates to an untyped constant, it is first 5879 <a href="#Conversions">converted</a> to the type of the other argument. 5880 If both arguments evaluate to untyped constants, they must be non-complex 5881 numbers or their imaginary parts must be zero, and the return value of 5882 the function is an untyped complex constant. 5883 </p> 5884 5885 <p> 5886 For <code>real</code> and <code>imag</code>, the argument must be 5887 of complex type, and the return type is the corresponding floating-point 5888 type: <code>float32</code> for a <code>complex64</code> argument, and 5889 <code>float64</code> for a <code>complex128</code> argument. 5890 If the argument evaluates to an untyped constant, it must be a number, 5891 and the return value of the function is an untyped floating-point constant. 5892 </p> 5893 5894 <p> 5895 The <code>real</code> and <code>imag</code> functions together form the inverse of 5896 <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>, 5897 <code>z == Z(complex(real(z), imag(z)))</code>. 5898 </p> 5899 5900 <p> 5901 If the operands of these functions are all constants, the return 5902 value is a constant. 5903 </p> 5904 5905 <pre> 5906 var a = complex(2, -2) // complex128 5907 const b = complex(1.0, -1.4) // untyped complex constant 1 - 1.4i 5908 x := float32(math.Cos(math.Pi/2)) // float32 5909 var c64 = complex(5, -x) // complex64 5910 var s uint = complex(1, 0) // untyped complex constant 1 + 0i can be converted to uint 5911 _ = complex(1, 2<<s) // illegal: 2 assumes floating-point type, cannot shift 5912 var rl = real(c64) // float32 5913 var im = imag(a) // float64 5914 const c = imag(b) // untyped constant -1.4 5915 _ = imag(3 << s) // illegal: 3 assumes complex type, cannot shift 5916 </pre> 5917 5918 <h3 id="Handling_panics">Handling panics</h3> 5919 5920 <p> Two built-in functions, <code>panic</code> and <code>recover</code>, 5921 assist in reporting and handling <a href="#Run_time_panics">run-time panics</a> 5922 and program-defined error conditions. 5923 </p> 5924 5925 <pre class="grammar"> 5926 func panic(interface{}) 5927 func recover() interface{} 5928 </pre> 5929 5930 <p> 5931 While executing a function <code>F</code>, 5932 an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a> 5933 terminates the execution of <code>F</code>. 5934 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 5935 are then executed as usual. 5936 Next, any deferred functions run by <code>F's</code> caller are run, 5937 and so on up to any deferred by the top-level function in the executing goroutine. 5938 At that point, the program is terminated and the error 5939 condition is reported, including the value of the argument to <code>panic</code>. 5940 This termination sequence is called <i>panicking</i>. 5941 </p> 5942 5943 <pre> 5944 panic(42) 5945 panic("unreachable") 5946 panic(Error("cannot parse")) 5947 </pre> 5948 5949 <p> 5950 The <code>recover</code> function allows a program to manage behavior 5951 of a panicking goroutine. 5952 Suppose a function <code>G</code> defers a function <code>D</code> that calls 5953 <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code> 5954 is executing. 5955 When the running of deferred functions reaches <code>D</code>, 5956 the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>. 5957 If <code>D</code> returns normally, without starting a new 5958 <code>panic</code>, the panicking sequence stops. In that case, 5959 the state of functions called between <code>G</code> and the call to <code>panic</code> 5960 is discarded, and normal execution resumes. 5961 Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s 5962 execution terminates by returning to its caller. 5963 </p> 5964 5965 <p> 5966 The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds: 5967 </p> 5968 <ul> 5969 <li> 5970 <code>panic</code>'s argument was <code>nil</code>; 5971 </li> 5972 <li> 5973 the goroutine is not panicking; 5974 </li> 5975 <li> 5976 <code>recover</code> was not called directly by a deferred function. 5977 </li> 5978 </ul> 5979 5980 <p> 5981 The <code>protect</code> function in the example below invokes 5982 the function argument <code>g</code> and protects callers from 5983 run-time panics raised by <code>g</code>. 5984 </p> 5985 5986 <pre> 5987 func protect(g func()) { 5988 defer func() { 5989 log.Println("done") // Println executes normally even if there is a panic 5990 if x := recover(); x != nil { 5991 log.Printf("run time panic: %v", x) 5992 } 5993 }() 5994 log.Println("start") 5995 g() 5996 } 5997 </pre> 5998 5999 6000 <h3 id="Bootstrapping">Bootstrapping</h3> 6001 6002 <p> 6003 Current implementations provide several built-in functions useful during 6004 bootstrapping. These functions are documented for completeness but are not 6005 guaranteed to stay in the language. They do not return a result. 6006 </p> 6007 6008 <pre class="grammar"> 6009 Function Behavior 6010 6011 print prints all arguments; formatting of arguments is implementation-specific 6012 println like print but prints spaces between arguments and a newline at the end 6013 </pre> 6014 6015 <p> 6016 Implementation restriction: <code>print</code> and <code>println</code> need not 6017 accept arbitrary argument types, but printing of boolean, numeric, and string 6018 <a href="#Types">types</a> must be supported. 6019 </p> 6020 6021 <h2 id="Packages">Packages</h2> 6022 6023 <p> 6024 Go programs are constructed by linking together <i>packages</i>. 6025 A package in turn is constructed from one or more source files 6026 that together declare constants, types, variables and functions 6027 belonging to the package and which are accessible in all files 6028 of the same package. Those elements may be 6029 <a href="#Exported_identifiers">exported</a> and used in another package. 6030 </p> 6031 6032 <h3 id="Source_file_organization">Source file organization</h3> 6033 6034 <p> 6035 Each source file consists of a package clause defining the package 6036 to which it belongs, followed by a possibly empty set of import 6037 declarations that declare packages whose contents it wishes to use, 6038 followed by a possibly empty set of declarations of functions, 6039 types, variables, and constants. 6040 </p> 6041 6042 <pre class="ebnf"> 6043 SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } . 6044 </pre> 6045 6046 <h3 id="Package_clause">Package clause</h3> 6047 6048 <p> 6049 A package clause begins each source file and defines the package 6050 to which the file belongs. 6051 </p> 6052 6053 <pre class="ebnf"> 6054 PackageClause = "package" PackageName . 6055 PackageName = identifier . 6056 </pre> 6057 6058 <p> 6059 The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>. 6060 </p> 6061 6062 <pre> 6063 package math 6064 </pre> 6065 6066 <p> 6067 A set of files sharing the same PackageName form the implementation of a package. 6068 An implementation may require that all source files for a package inhabit the same directory. 6069 </p> 6070 6071 <h3 id="Import_declarations">Import declarations</h3> 6072 6073 <p> 6074 An import declaration states that the source file containing the declaration 6075 depends on functionality of the <i>imported</i> package 6076 (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>) 6077 and enables access to <a href="#Exported_identifiers">exported</a> identifiers 6078 of that package. 6079 The import names an identifier (PackageName) to be used for access and an ImportPath 6080 that specifies the package to be imported. 6081 </p> 6082 6083 <pre class="ebnf"> 6084 ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) . 6085 ImportSpec = [ "." | PackageName ] ImportPath . 6086 ImportPath = string_lit . 6087 </pre> 6088 6089 <p> 6090 The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a> 6091 to access exported identifiers of the package within the importing source file. 6092 It is declared in the <a href="#Blocks">file block</a>. 6093 If the PackageName is omitted, it defaults to the identifier specified in the 6094 <a href="#Package_clause">package clause</a> of the imported package. 6095 If an explicit period (<code>.</code>) appears instead of a name, all the 6096 package's exported identifiers declared in that package's 6097 <a href="#Blocks">package block</a> will be declared in the importing source 6098 file's file block and must be accessed without a qualifier. 6099 </p> 6100 6101 <p> 6102 The interpretation of the ImportPath is implementation-dependent but 6103 it is typically a substring of the full file name of the compiled 6104 package and may be relative to a repository of installed packages. 6105 </p> 6106 6107 <p> 6108 Implementation restriction: A compiler may restrict ImportPaths to 6109 non-empty strings using only characters belonging to 6110 <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a> 6111 L, M, N, P, and S general categories (the Graphic characters without 6112 spaces) and may also exclude the characters 6113 <code>!"#$%&'()*,:;<=>?[\]^`{|}</code> 6114 and the Unicode replacement character U+FFFD. 6115 </p> 6116 6117 <p> 6118 Assume we have compiled a package containing the package clause 6119 <code>package math</code>, which exports function <code>Sin</code>, and 6120 installed the compiled package in the file identified by 6121 <code>"lib/math"</code>. 6122 This table illustrates how <code>Sin</code> is accessed in files 6123 that import the package after the 6124 various types of import declaration. 6125 </p> 6126 6127 <pre class="grammar"> 6128 Import declaration Local name of Sin 6129 6130 import "lib/math" math.Sin 6131 import m "lib/math" m.Sin 6132 import . "lib/math" Sin 6133 </pre> 6134 6135 <p> 6136 An import declaration declares a dependency relation between 6137 the importing and imported package. 6138 It is illegal for a package to import itself, directly or indirectly, 6139 or to directly import a package without 6140 referring to any of its exported identifiers. To import a package solely for 6141 its side-effects (initialization), use the <a href="#Blank_identifier">blank</a> 6142 identifier as explicit package name: 6143 </p> 6144 6145 <pre> 6146 import _ "lib/math" 6147 </pre> 6148 6149 6150 <h3 id="An_example_package">An example package</h3> 6151 6152 <p> 6153 Here is a complete Go package that implements a concurrent prime sieve. 6154 </p> 6155 6156 <pre> 6157 package main 6158 6159 import "fmt" 6160 6161 // Send the sequence 2, 3, 4, … to channel 'ch'. 6162 func generate(ch chan<- int) { 6163 for i := 2; ; i++ { 6164 ch <- i // Send 'i' to channel 'ch'. 6165 } 6166 } 6167 6168 // Copy the values from channel 'src' to channel 'dst', 6169 // removing those divisible by 'prime'. 6170 func filter(src <-chan int, dst chan<- int, prime int) { 6171 for i := range src { // Loop over values received from 'src'. 6172 if i%prime != 0 { 6173 dst <- i // Send 'i' to channel 'dst'. 6174 } 6175 } 6176 } 6177 6178 // The prime sieve: Daisy-chain filter processes together. 6179 func sieve() { 6180 ch := make(chan int) // Create a new channel. 6181 go generate(ch) // Start generate() as a subprocess. 6182 for { 6183 prime := <-ch 6184 fmt.Print(prime, "\n") 6185 ch1 := make(chan int) 6186 go filter(ch, ch1, prime) 6187 ch = ch1 6188 } 6189 } 6190 6191 func main() { 6192 sieve() 6193 } 6194 </pre> 6195 6196 <h2 id="Program_initialization_and_execution">Program initialization and execution</h2> 6197 6198 <h3 id="The_zero_value">The zero value</h3> 6199 <p> 6200 When storage is allocated for a <a href="#Variables">variable</a>, 6201 either through a declaration or a call of <code>new</code>, or when 6202 a new value is created, either through a composite literal or a call 6203 of <code>make</code>, 6204 and no explicit initialization is provided, the variable or value is 6205 given a default value. Each element of such a variable or value is 6206 set to the <i>zero value</i> for its type: <code>false</code> for booleans, 6207 <code>0</code> for numeric types, <code>""</code> 6208 for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps. 6209 This initialization is done recursively, so for instance each element of an 6210 array of structs will have its fields zeroed if no value is specified. 6211 </p> 6212 <p> 6213 These two simple declarations are equivalent: 6214 </p> 6215 6216 <pre> 6217 var i int 6218 var i int = 0 6219 </pre> 6220 6221 <p> 6222 After 6223 </p> 6224 6225 <pre> 6226 type T struct { i int; f float64; next *T } 6227 t := new(T) 6228 </pre> 6229 6230 <p> 6231 the following holds: 6232 </p> 6233 6234 <pre> 6235 t.i == 0 6236 t.f == 0.0 6237 t.next == nil 6238 </pre> 6239 6240 <p> 6241 The same would also be true after 6242 </p> 6243 6244 <pre> 6245 var t T 6246 </pre> 6247 6248 <h3 id="Package_initialization">Package initialization</h3> 6249 6250 <p> 6251 Within a package, package-level variables are initialized in 6252 <i>declaration order</i> but after any of the variables 6253 they <i>depend</i> on. 6254 </p> 6255 6256 <p> 6257 More precisely, a package-level variable is considered <i>ready for 6258 initialization</i> if it is not yet initialized and either has 6259 no <a href="#Variable_declarations">initialization expression</a> or 6260 its initialization expression has no dependencies on uninitialized variables. 6261 Initialization proceeds by repeatedly initializing the next package-level 6262 variable that is earliest in declaration order and ready for initialization, 6263 until there are no variables ready for initialization. 6264 </p> 6265 6266 <p> 6267 If any variables are still uninitialized when this 6268 process ends, those variables are part of one or more initialization cycles, 6269 and the program is not valid. 6270 </p> 6271 6272 <p> 6273 The declaration order of variables declared in multiple files is determined 6274 by the order in which the files are presented to the compiler: Variables 6275 declared in the first file are declared before any of the variables declared 6276 in the second file, and so on. 6277 </p> 6278 6279 <p> 6280 Dependency analysis does not rely on the actual values of the 6281 variables, only on lexical <i>references</i> to them in the source, 6282 analyzed transitively. For instance, if a variable <code>x</code>'s 6283 initialization expression refers to a function whose body refers to 6284 variable <code>y</code> then <code>x</code> depends on <code>y</code>. 6285 Specifically: 6286 </p> 6287 6288 <ul> 6289 <li> 6290 A reference to a variable or function is an identifier denoting that 6291 variable or function. 6292 </li> 6293 6294 <li> 6295 A reference to a method <code>m</code> is a 6296 <a href="#Method_values">method value</a> or 6297 <a href="#Method_expressions">method expression</a> of the form 6298 <code>t.m</code>, where the (static) type of <code>t</code> is 6299 not an interface type, and the method <code>m</code> is in the 6300 <a href="#Method_sets">method set</a> of <code>t</code>. 6301 It is immaterial whether the resulting function value 6302 <code>t.m</code> is invoked. 6303 </li> 6304 6305 <li> 6306 A variable, function, or method <code>x</code> depends on a variable 6307 <code>y</code> if <code>x</code>'s initialization expression or body 6308 (for functions and methods) contains a reference to <code>y</code> 6309 or to a function or method that depends on <code>y</code>. 6310 </li> 6311 </ul> 6312 6313 <p> 6314 Dependency analysis is performed per package; only references referring 6315 to variables, functions, and methods declared in the current package 6316 are considered. 6317 </p> 6318 6319 <p> 6320 For example, given the declarations 6321 </p> 6322 6323 <pre> 6324 var ( 6325 a = c + b 6326 b = f() 6327 c = f() 6328 d = 3 6329 ) 6330 6331 func f() int { 6332 d++ 6333 return d 6334 } 6335 </pre> 6336 6337 <p> 6338 the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>. 6339 </p> 6340 6341 <p> 6342 Variables may also be initialized using functions named <code>init</code> 6343 declared in the package block, with no arguments and no result parameters. 6344 </p> 6345 6346 <pre> 6347 func init() { … } 6348 </pre> 6349 6350 <p> 6351 Multiple such functions may be defined per package, even within a single 6352 source file. In the package block, the <code>init</code> identifier can 6353 be used only to declare <code>init</code> functions, yet the identifier 6354 itself is not <a href="#Declarations_and_scope">declared</a>. Thus 6355 <code>init</code> functions cannot be referred to from anywhere 6356 in a program. 6357 </p> 6358 6359 <p> 6360 A package with no imports is initialized by assigning initial values 6361 to all its package-level variables followed by calling all <code>init</code> 6362 functions in the order they appear in the source, possibly in multiple files, 6363 as presented to the compiler. 6364 If a package has imports, the imported packages are initialized 6365 before initializing the package itself. If multiple packages import 6366 a package, the imported package will be initialized only once. 6367 The importing of packages, by construction, guarantees that there 6368 can be no cyclic initialization dependencies. 6369 </p> 6370 6371 <p> 6372 Package initialization—variable initialization and the invocation of 6373 <code>init</code> functions—happens in a single goroutine, 6374 sequentially, one package at a time. 6375 An <code>init</code> function may launch other goroutines, which can run 6376 concurrently with the initialization code. However, initialization 6377 always sequences 6378 the <code>init</code> functions: it will not invoke the next one 6379 until the previous one has returned. 6380 </p> 6381 6382 <p> 6383 To ensure reproducible initialization behavior, build systems are encouraged 6384 to present multiple files belonging to the same package in lexical file name 6385 order to a compiler. 6386 </p> 6387 6388 6389 <h3 id="Program_execution">Program execution</h3> 6390 <p> 6391 A complete program is created by linking a single, unimported package 6392 called the <i>main package</i> with all the packages it imports, transitively. 6393 The main package must 6394 have package name <code>main</code> and 6395 declare a function <code>main</code> that takes no 6396 arguments and returns no value. 6397 </p> 6398 6399 <pre> 6400 func main() { … } 6401 </pre> 6402 6403 <p> 6404 Program execution begins by initializing the main package and then 6405 invoking the function <code>main</code>. 6406 When that function invocation returns, the program exits. 6407 It does not wait for other (non-<code>main</code>) goroutines to complete. 6408 </p> 6409 6410 <h2 id="Errors">Errors</h2> 6411 6412 <p> 6413 The predeclared type <code>error</code> is defined as 6414 </p> 6415 6416 <pre> 6417 type error interface { 6418 Error() string 6419 } 6420 </pre> 6421 6422 <p> 6423 It is the conventional interface for representing an error condition, 6424 with the nil value representing no error. 6425 For instance, a function to read data from a file might be defined: 6426 </p> 6427 6428 <pre> 6429 func Read(f *File, b []byte) (n int, err error) 6430 </pre> 6431 6432 <h2 id="Run_time_panics">Run-time panics</h2> 6433 6434 <p> 6435 Execution errors such as attempting to index an array out 6436 of bounds trigger a <i>run-time panic</i> equivalent to a call of 6437 the built-in function <a href="#Handling_panics"><code>panic</code></a> 6438 with a value of the implementation-defined interface type <code>runtime.Error</code>. 6439 That type satisfies the predeclared interface type 6440 <a href="#Errors"><code>error</code></a>. 6441 The exact error values that 6442 represent distinct run-time error conditions are unspecified. 6443 </p> 6444 6445 <pre> 6446 package runtime 6447 6448 type Error interface { 6449 error 6450 // and perhaps other methods 6451 } 6452 </pre> 6453 6454 <h2 id="System_considerations">System considerations</h2> 6455 6456 <h3 id="Package_unsafe">Package <code>unsafe</code></h3> 6457 6458 <p> 6459 The built-in package <code>unsafe</code>, known to the compiler, 6460 provides facilities for low-level programming including operations 6461 that violate the type system. A package using <code>unsafe</code> 6462 must be vetted manually for type safety and may not be portable. 6463 The package provides the following interface: 6464 </p> 6465 6466 <pre class="grammar"> 6467 package unsafe 6468 6469 type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type 6470 type Pointer *ArbitraryType 6471 6472 func Alignof(variable ArbitraryType) uintptr 6473 func Offsetof(selector ArbitraryType) uintptr 6474 func Sizeof(variable ArbitraryType) uintptr 6475 </pre> 6476 6477 <p> 6478 A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code> 6479 value may not be <a href="#Address_operators">dereferenced</a>. 6480 Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to 6481 a type of underlying type <code>Pointer</code> and vice versa. 6482 The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined. 6483 </p> 6484 6485 <pre> 6486 var f float64 6487 bits = *(*uint64)(unsafe.Pointer(&f)) 6488 6489 type ptr unsafe.Pointer 6490 bits = *(*uint64)(ptr(&f)) 6491 6492 var p ptr = nil 6493 </pre> 6494 6495 <p> 6496 The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code> 6497 of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code> 6498 as if <code>v</code> was declared via <code>var v = x</code>. 6499 </p> 6500 <p> 6501 The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a> 6502 <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code> 6503 or <code>*s</code>, and returns the field offset in bytes relative to the struct's address. 6504 If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable 6505 without pointer indirections through fields of the struct. 6506 For a struct <code>s</code> with field <code>f</code>: 6507 </p> 6508 6509 <pre> 6510 uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&s.f)) 6511 </pre> 6512 6513 <p> 6514 Computer architectures may require memory addresses to be <i>aligned</i>; 6515 that is, for addresses of a variable to be a multiple of a factor, 6516 the variable's type's <i>alignment</i>. The function <code>Alignof</code> 6517 takes an expression denoting a variable of any type and returns the 6518 alignment of the (type of the) variable in bytes. For a variable 6519 <code>x</code>: 6520 </p> 6521 6522 <pre> 6523 uintptr(unsafe.Pointer(&x)) % unsafe.Alignof(x) == 0 6524 </pre> 6525 6526 <p> 6527 Calls to <code>Alignof</code>, <code>Offsetof</code>, and 6528 <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>. 6529 </p> 6530 6531 <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3> 6532 6533 <p> 6534 For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed: 6535 </p> 6536 6537 <pre class="grammar"> 6538 type size in bytes 6539 6540 byte, uint8, int8 1 6541 uint16, int16 2 6542 uint32, int32, float32 4 6543 uint64, int64, float64, complex64 8 6544 complex128 16 6545 </pre> 6546 6547 <p> 6548 The following minimal alignment properties are guaranteed: 6549 </p> 6550 <ol> 6551 <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1. 6552 </li> 6553 6554 <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of 6555 all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1. 6556 </li> 6557 6558 <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as 6559 the alignment of a variable of the array's element type. 6560 </li> 6561 </ol> 6562 6563 <p> 6564 A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory. 6565 </p>