github.com/hlts2/go@v0.0.0-20170904000733-812b34efaed8/src/cmd/compile/internal/ssa/func.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"cmd/compile/internal/types"
     9  	"cmd/internal/src"
    10  	"crypto/sha1"
    11  	"fmt"
    12  	"io"
    13  	"math"
    14  	"os"
    15  	"strings"
    16  )
    17  
    18  type writeSyncer interface {
    19  	io.Writer
    20  	Sync() error
    21  }
    22  
    23  // A Func represents a Go func declaration (or function literal) and its body.
    24  // This package compiles each Func independently.
    25  // Funcs are single-use; a new Func must be created for every compiled function.
    26  type Func struct {
    27  	Config *Config     // architecture information
    28  	Cache  *Cache      // re-usable cache
    29  	fe     Frontend    // frontend state associated with this Func, callbacks into compiler frontend
    30  	pass   *pass       // current pass information (name, options, etc.)
    31  	Name   string      // e.g. bytes·Compare
    32  	Type   *types.Type // type signature of the function.
    33  	Blocks []*Block    // unordered set of all basic blocks (note: not indexable by ID)
    34  	Entry  *Block      // the entry basic block
    35  	bid    idAlloc     // block ID allocator
    36  	vid    idAlloc     // value ID allocator
    37  
    38  	// Given an environment variable used for debug hash match,
    39  	// what file (if any) receives the yes/no logging?
    40  	logfiles   map[string]writeSyncer
    41  	HTMLWriter *HTMLWriter // html writer, for debugging
    42  	DebugTest  bool        // default true unless $GOSSAHASH != ""; as a debugging aid, make new code conditional on this and use GOSSAHASH to binary search for failing cases
    43  
    44  	scheduled bool // Values in Blocks are in final order
    45  	NoSplit   bool // true if function is marked as nosplit.  Used by schedule check pass.
    46  
    47  	WBPos src.XPos // line number of first write barrier
    48  
    49  	// when register allocation is done, maps value ids to locations
    50  	RegAlloc []Location
    51  
    52  	// map from LocalSlot to set of Values that we want to store in that slot.
    53  	NamedValues map[LocalSlot][]*Value
    54  	// Names is a copy of NamedValues.Keys. We keep a separate list
    55  	// of keys to make iteration order deterministic.
    56  	Names []LocalSlot
    57  
    58  	freeValues *Value // free Values linked by argstorage[0].  All other fields except ID are 0/nil.
    59  	freeBlocks *Block // free Blocks linked by succstorage[0].b.  All other fields except ID are 0/nil.
    60  
    61  	cachedPostorder []*Block   // cached postorder traversal
    62  	cachedIdom      []*Block   // cached immediate dominators
    63  	cachedSdom      SparseTree // cached dominator tree
    64  	cachedLoopnest  *loopnest  // cached loop nest information
    65  
    66  	auxmap auxmap // map from aux values to opaque ids used by CSE
    67  
    68  	constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type
    69  }
    70  
    71  // NewFunc returns a new, empty function object.
    72  // Caller must set f.Config and f.Cache before using f.
    73  func NewFunc(fe Frontend) *Func {
    74  	return &Func{fe: fe, NamedValues: make(map[LocalSlot][]*Value)}
    75  }
    76  
    77  // NumBlocks returns an integer larger than the id of any Block in the Func.
    78  func (f *Func) NumBlocks() int {
    79  	return f.bid.num()
    80  }
    81  
    82  // NumValues returns an integer larger than the id of any Value in the Func.
    83  func (f *Func) NumValues() int {
    84  	return f.vid.num()
    85  }
    86  
    87  // newSparseSet returns a sparse set that can store at least up to n integers.
    88  func (f *Func) newSparseSet(n int) *sparseSet {
    89  	for i, scr := range f.Cache.scrSparse {
    90  		if scr != nil && scr.cap() >= n {
    91  			f.Cache.scrSparse[i] = nil
    92  			scr.clear()
    93  			return scr
    94  		}
    95  	}
    96  	return newSparseSet(n)
    97  }
    98  
    99  // retSparseSet returns a sparse set to the config's cache of sparse sets to be reused by f.newSparseSet.
   100  func (f *Func) retSparseSet(ss *sparseSet) {
   101  	for i, scr := range f.Cache.scrSparse {
   102  		if scr == nil {
   103  			f.Cache.scrSparse[i] = ss
   104  			return
   105  		}
   106  	}
   107  	f.Cache.scrSparse = append(f.Cache.scrSparse, ss)
   108  }
   109  
   110  // newValue allocates a new Value with the given fields and places it at the end of b.Values.
   111  func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value {
   112  	var v *Value
   113  	if f.freeValues != nil {
   114  		v = f.freeValues
   115  		f.freeValues = v.argstorage[0]
   116  		v.argstorage[0] = nil
   117  	} else {
   118  		ID := f.vid.get()
   119  		if int(ID) < len(f.Cache.values) {
   120  			v = &f.Cache.values[ID]
   121  			v.ID = ID
   122  		} else {
   123  			v = &Value{ID: ID}
   124  		}
   125  	}
   126  	v.Op = op
   127  	v.Type = t
   128  	v.Block = b
   129  	v.Pos = pos
   130  	b.Values = append(b.Values, v)
   131  	return v
   132  }
   133  
   134  // newValueNoBlock allocates a new Value with the given fields.
   135  // The returned value is not placed in any block.  Once the caller
   136  // decides on a block b, it must set b.Block and append
   137  // the returned value to b.Values.
   138  func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value {
   139  	var v *Value
   140  	if f.freeValues != nil {
   141  		v = f.freeValues
   142  		f.freeValues = v.argstorage[0]
   143  		v.argstorage[0] = nil
   144  	} else {
   145  		ID := f.vid.get()
   146  		if int(ID) < len(f.Cache.values) {
   147  			v = &f.Cache.values[ID]
   148  			v.ID = ID
   149  		} else {
   150  			v = &Value{ID: ID}
   151  		}
   152  	}
   153  	v.Op = op
   154  	v.Type = t
   155  	v.Block = nil // caller must fix this.
   156  	v.Pos = pos
   157  	return v
   158  }
   159  
   160  // logPassStat writes a string key and int value as a warning in a
   161  // tab-separated format easily handled by spreadsheets or awk.
   162  // file names, lines, and function names are included to provide enough (?)
   163  // context to allow item-by-item comparisons across runs.
   164  // For example:
   165  // awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log
   166  func (f *Func) LogStat(key string, args ...interface{}) {
   167  	value := ""
   168  	for _, a := range args {
   169  		value += fmt.Sprintf("\t%v", a)
   170  	}
   171  	n := "missing_pass"
   172  	if f.pass != nil {
   173  		n = strings.Replace(f.pass.name, " ", "_", -1)
   174  	}
   175  	f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name)
   176  }
   177  
   178  // freeValue frees a value. It must no longer be referenced or have any args.
   179  func (f *Func) freeValue(v *Value) {
   180  	if v.Block == nil {
   181  		f.Fatalf("trying to free an already freed value")
   182  	}
   183  	if v.Uses != 0 {
   184  		f.Fatalf("value %s still has %d uses", v, v.Uses)
   185  	}
   186  	if len(v.Args) != 0 {
   187  		f.Fatalf("value %s still has %d args", v, len(v.Args))
   188  	}
   189  	// Clear everything but ID (which we reuse).
   190  	id := v.ID
   191  
   192  	// Values with zero arguments and OpOffPtr values might be cached, so remove them there.
   193  	nArgs := opcodeTable[v.Op].argLen
   194  	if nArgs == 0 || v.Op == OpOffPtr {
   195  		vv := f.constants[v.AuxInt]
   196  		for i, cv := range vv {
   197  			if v == cv {
   198  				vv[i] = vv[len(vv)-1]
   199  				vv[len(vv)-1] = nil
   200  				f.constants[v.AuxInt] = vv[0 : len(vv)-1]
   201  				break
   202  			}
   203  		}
   204  	}
   205  	*v = Value{}
   206  	v.ID = id
   207  	v.argstorage[0] = f.freeValues
   208  	f.freeValues = v
   209  }
   210  
   211  // newBlock allocates a new Block of the given kind and places it at the end of f.Blocks.
   212  func (f *Func) NewBlock(kind BlockKind) *Block {
   213  	var b *Block
   214  	if f.freeBlocks != nil {
   215  		b = f.freeBlocks
   216  		f.freeBlocks = b.succstorage[0].b
   217  		b.succstorage[0].b = nil
   218  	} else {
   219  		ID := f.bid.get()
   220  		if int(ID) < len(f.Cache.blocks) {
   221  			b = &f.Cache.blocks[ID]
   222  			b.ID = ID
   223  		} else {
   224  			b = &Block{ID: ID}
   225  		}
   226  	}
   227  	b.Kind = kind
   228  	b.Func = f
   229  	b.Preds = b.predstorage[:0]
   230  	b.Succs = b.succstorage[:0]
   231  	b.Values = b.valstorage[:0]
   232  	f.Blocks = append(f.Blocks, b)
   233  	f.invalidateCFG()
   234  	return b
   235  }
   236  
   237  func (f *Func) freeBlock(b *Block) {
   238  	if b.Func == nil {
   239  		f.Fatalf("trying to free an already freed block")
   240  	}
   241  	// Clear everything but ID (which we reuse).
   242  	id := b.ID
   243  	*b = Block{}
   244  	b.ID = id
   245  	b.succstorage[0].b = f.freeBlocks
   246  	f.freeBlocks = b
   247  }
   248  
   249  // NewValue0 returns a new value in the block with no arguments and zero aux values.
   250  func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value {
   251  	v := b.Func.newValue(op, t, b, pos)
   252  	v.AuxInt = 0
   253  	v.Args = v.argstorage[:0]
   254  	return v
   255  }
   256  
   257  // NewValue returns a new value in the block with no arguments and an auxint value.
   258  func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value {
   259  	v := b.Func.newValue(op, t, b, pos)
   260  	v.AuxInt = auxint
   261  	v.Args = v.argstorage[:0]
   262  	return v
   263  }
   264  
   265  // NewValue returns a new value in the block with no arguments and an aux value.
   266  func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux interface{}) *Value {
   267  	if _, ok := aux.(int64); ok {
   268  		// Disallow int64 aux values. They should be in the auxint field instead.
   269  		// Maybe we want to allow this at some point, but for now we disallow it
   270  		// to prevent errors like using NewValue1A instead of NewValue1I.
   271  		b.Fatalf("aux field has int64 type op=%s type=%s aux=%v", op, t, aux)
   272  	}
   273  	v := b.Func.newValue(op, t, b, pos)
   274  	v.AuxInt = 0
   275  	v.Aux = aux
   276  	v.Args = v.argstorage[:0]
   277  	return v
   278  }
   279  
   280  // NewValue returns a new value in the block with no arguments and both an auxint and aux values.
   281  func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux interface{}) *Value {
   282  	v := b.Func.newValue(op, t, b, pos)
   283  	v.AuxInt = auxint
   284  	v.Aux = aux
   285  	v.Args = v.argstorage[:0]
   286  	return v
   287  }
   288  
   289  // NewValue1 returns a new value in the block with one argument and zero aux values.
   290  func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value {
   291  	v := b.Func.newValue(op, t, b, pos)
   292  	v.AuxInt = 0
   293  	v.Args = v.argstorage[:1]
   294  	v.argstorage[0] = arg
   295  	arg.Uses++
   296  	return v
   297  }
   298  
   299  // NewValue1I returns a new value in the block with one argument and an auxint value.
   300  func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value {
   301  	v := b.Func.newValue(op, t, b, pos)
   302  	v.AuxInt = auxint
   303  	v.Args = v.argstorage[:1]
   304  	v.argstorage[0] = arg
   305  	arg.Uses++
   306  	return v
   307  }
   308  
   309  // NewValue1A returns a new value in the block with one argument and an aux value.
   310  func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux interface{}, arg *Value) *Value {
   311  	v := b.Func.newValue(op, t, b, pos)
   312  	v.AuxInt = 0
   313  	v.Aux = aux
   314  	v.Args = v.argstorage[:1]
   315  	v.argstorage[0] = arg
   316  	arg.Uses++
   317  	return v
   318  }
   319  
   320  // NewValue1IA returns a new value in the block with one argument and both an auxint and aux values.
   321  func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux interface{}, arg *Value) *Value {
   322  	v := b.Func.newValue(op, t, b, pos)
   323  	v.AuxInt = auxint
   324  	v.Aux = aux
   325  	v.Args = v.argstorage[:1]
   326  	v.argstorage[0] = arg
   327  	arg.Uses++
   328  	return v
   329  }
   330  
   331  // NewValue2 returns a new value in the block with two arguments and zero aux values.
   332  func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value {
   333  	v := b.Func.newValue(op, t, b, pos)
   334  	v.AuxInt = 0
   335  	v.Args = v.argstorage[:2]
   336  	v.argstorage[0] = arg0
   337  	v.argstorage[1] = arg1
   338  	arg0.Uses++
   339  	arg1.Uses++
   340  	return v
   341  }
   342  
   343  // NewValue2I returns a new value in the block with two arguments and an auxint value.
   344  func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value {
   345  	v := b.Func.newValue(op, t, b, pos)
   346  	v.AuxInt = auxint
   347  	v.Args = v.argstorage[:2]
   348  	v.argstorage[0] = arg0
   349  	v.argstorage[1] = arg1
   350  	arg0.Uses++
   351  	arg1.Uses++
   352  	return v
   353  }
   354  
   355  // NewValue3 returns a new value in the block with three arguments and zero aux values.
   356  func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value {
   357  	v := b.Func.newValue(op, t, b, pos)
   358  	v.AuxInt = 0
   359  	v.Args = v.argstorage[:3]
   360  	v.argstorage[0] = arg0
   361  	v.argstorage[1] = arg1
   362  	v.argstorage[2] = arg2
   363  	arg0.Uses++
   364  	arg1.Uses++
   365  	arg2.Uses++
   366  	return v
   367  }
   368  
   369  // NewValue3I returns a new value in the block with three arguments and an auxint value.
   370  func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value {
   371  	v := b.Func.newValue(op, t, b, pos)
   372  	v.AuxInt = auxint
   373  	v.Args = v.argstorage[:3]
   374  	v.argstorage[0] = arg0
   375  	v.argstorage[1] = arg1
   376  	v.argstorage[2] = arg2
   377  	arg0.Uses++
   378  	arg1.Uses++
   379  	arg2.Uses++
   380  	return v
   381  }
   382  
   383  // NewValue3A returns a new value in the block with three argument and an aux value.
   384  func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *Value) *Value {
   385  	v := b.Func.newValue(op, t, b, pos)
   386  	v.AuxInt = 0
   387  	v.Aux = aux
   388  	v.Args = v.argstorage[:3]
   389  	v.argstorage[0] = arg0
   390  	v.argstorage[1] = arg1
   391  	v.argstorage[2] = arg2
   392  	arg0.Uses++
   393  	arg1.Uses++
   394  	arg2.Uses++
   395  	return v
   396  }
   397  
   398  // NewValue4 returns a new value in the block with four arguments and zero aux values.
   399  func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value {
   400  	v := b.Func.newValue(op, t, b, pos)
   401  	v.AuxInt = 0
   402  	v.Args = []*Value{arg0, arg1, arg2, arg3}
   403  	arg0.Uses++
   404  	arg1.Uses++
   405  	arg2.Uses++
   406  	arg3.Uses++
   407  	return v
   408  }
   409  
   410  // constVal returns a constant value for c.
   411  func (f *Func) constVal(pos src.XPos, op Op, t *types.Type, c int64, setAuxInt bool) *Value {
   412  	if f.constants == nil {
   413  		f.constants = make(map[int64][]*Value)
   414  	}
   415  	vv := f.constants[c]
   416  	for _, v := range vv {
   417  		if v.Op == op && v.Type.Compare(t) == types.CMPeq {
   418  			if setAuxInt && v.AuxInt != c {
   419  				panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c))
   420  			}
   421  			return v
   422  		}
   423  	}
   424  	var v *Value
   425  	if setAuxInt {
   426  		v = f.Entry.NewValue0I(pos, op, t, c)
   427  	} else {
   428  		v = f.Entry.NewValue0(pos, op, t)
   429  	}
   430  	f.constants[c] = append(vv, v)
   431  	return v
   432  }
   433  
   434  // These magic auxint values let us easily cache non-numeric constants
   435  // using the same constants map while making collisions unlikely.
   436  // These values are unlikely to occur in regular code and
   437  // are easy to grep for in case of bugs.
   438  const (
   439  	constSliceMagic       = 1122334455
   440  	constInterfaceMagic   = 2233445566
   441  	constNilMagic         = 3344556677
   442  	constEmptyStringMagic = 4455667788
   443  )
   444  
   445  // ConstInt returns an int constant representing its argument.
   446  func (f *Func) ConstBool(pos src.XPos, t *types.Type, c bool) *Value {
   447  	i := int64(0)
   448  	if c {
   449  		i = 1
   450  	}
   451  	return f.constVal(pos, OpConstBool, t, i, true)
   452  }
   453  func (f *Func) ConstInt8(pos src.XPos, t *types.Type, c int8) *Value {
   454  	return f.constVal(pos, OpConst8, t, int64(c), true)
   455  }
   456  func (f *Func) ConstInt16(pos src.XPos, t *types.Type, c int16) *Value {
   457  	return f.constVal(pos, OpConst16, t, int64(c), true)
   458  }
   459  func (f *Func) ConstInt32(pos src.XPos, t *types.Type, c int32) *Value {
   460  	return f.constVal(pos, OpConst32, t, int64(c), true)
   461  }
   462  func (f *Func) ConstInt64(pos src.XPos, t *types.Type, c int64) *Value {
   463  	return f.constVal(pos, OpConst64, t, c, true)
   464  }
   465  func (f *Func) ConstFloat32(pos src.XPos, t *types.Type, c float64) *Value {
   466  	return f.constVal(pos, OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true)
   467  }
   468  func (f *Func) ConstFloat64(pos src.XPos, t *types.Type, c float64) *Value {
   469  	return f.constVal(pos, OpConst64F, t, int64(math.Float64bits(c)), true)
   470  }
   471  
   472  func (f *Func) ConstSlice(pos src.XPos, t *types.Type) *Value {
   473  	return f.constVal(pos, OpConstSlice, t, constSliceMagic, false)
   474  }
   475  func (f *Func) ConstInterface(pos src.XPos, t *types.Type) *Value {
   476  	return f.constVal(pos, OpConstInterface, t, constInterfaceMagic, false)
   477  }
   478  func (f *Func) ConstNil(pos src.XPos, t *types.Type) *Value {
   479  	return f.constVal(pos, OpConstNil, t, constNilMagic, false)
   480  }
   481  func (f *Func) ConstEmptyString(pos src.XPos, t *types.Type) *Value {
   482  	v := f.constVal(pos, OpConstString, t, constEmptyStringMagic, false)
   483  	v.Aux = ""
   484  	return v
   485  }
   486  func (f *Func) ConstOffPtrSP(pos src.XPos, t *types.Type, c int64, sp *Value) *Value {
   487  	v := f.constVal(pos, OpOffPtr, t, c, true)
   488  	if len(v.Args) == 0 {
   489  		v.AddArg(sp)
   490  	}
   491  	return v
   492  
   493  }
   494  
   495  func (f *Func) Frontend() Frontend                                  { return f.fe }
   496  func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) }
   497  func (f *Func) Logf(msg string, args ...interface{})                { f.fe.Logf(msg, args...) }
   498  func (f *Func) Log() bool                                           { return f.fe.Log() }
   499  func (f *Func) Fatalf(msg string, args ...interface{})              { f.fe.Fatalf(f.Entry.Pos, msg, args...) }
   500  
   501  // postorder returns the reachable blocks in f in a postorder traversal.
   502  func (f *Func) postorder() []*Block {
   503  	if f.cachedPostorder == nil {
   504  		f.cachedPostorder = postorder(f)
   505  	}
   506  	return f.cachedPostorder
   507  }
   508  
   509  func (f *Func) Postorder() []*Block {
   510  	return f.postorder()
   511  }
   512  
   513  // Idom returns a map from block ID to the immediate dominator of that block.
   514  // f.Entry.ID maps to nil. Unreachable blocks map to nil as well.
   515  func (f *Func) Idom() []*Block {
   516  	if f.cachedIdom == nil {
   517  		f.cachedIdom = dominators(f)
   518  	}
   519  	return f.cachedIdom
   520  }
   521  
   522  // sdom returns a sparse tree representing the dominator relationships
   523  // among the blocks of f.
   524  func (f *Func) sdom() SparseTree {
   525  	if f.cachedSdom == nil {
   526  		f.cachedSdom = newSparseTree(f, f.Idom())
   527  	}
   528  	return f.cachedSdom
   529  }
   530  
   531  // loopnest returns the loop nest information for f.
   532  func (f *Func) loopnest() *loopnest {
   533  	if f.cachedLoopnest == nil {
   534  		f.cachedLoopnest = loopnestfor(f)
   535  	}
   536  	return f.cachedLoopnest
   537  }
   538  
   539  // invalidateCFG tells f that its CFG has changed.
   540  func (f *Func) invalidateCFG() {
   541  	f.cachedPostorder = nil
   542  	f.cachedIdom = nil
   543  	f.cachedSdom = nil
   544  	f.cachedLoopnest = nil
   545  }
   546  
   547  // DebugHashMatch returns true if environment variable evname
   548  // 1) is empty (this is a special more-quickly implemented case of 3)
   549  // 2) is "y" or "Y"
   550  // 3) is a suffix of the sha1 hash of name
   551  // 4) is a suffix of the environment variable
   552  //    fmt.Sprintf("%s%d", evname, n)
   553  //    provided that all such variables are nonempty for 0 <= i <= n
   554  // Otherwise it returns false.
   555  // When true is returned the message
   556  //  "%s triggered %s\n", evname, name
   557  // is printed on the file named in environment variable
   558  //  GSHS_LOGFILE
   559  // or standard out if that is empty or there is an error
   560  // opening the file.
   561  func (f *Func) DebugHashMatch(evname, name string) bool {
   562  	evhash := os.Getenv(evname)
   563  	switch evhash {
   564  	case "":
   565  		return true // default behavior with no EV is "on"
   566  	case "y", "Y":
   567  		f.logDebugHashMatch(evname, name)
   568  		return true
   569  	case "n", "N":
   570  		return false
   571  	}
   572  	// Check the hash of the name against a partial input hash.
   573  	// We use this feature to do a binary search to
   574  	// find a function that is incorrectly compiled.
   575  	hstr := ""
   576  	for _, b := range sha1.Sum([]byte(name)) {
   577  		hstr += fmt.Sprintf("%08b", b)
   578  	}
   579  
   580  	if strings.HasSuffix(hstr, evhash) {
   581  		f.logDebugHashMatch(evname, name)
   582  		return true
   583  	}
   584  
   585  	// Iteratively try additional hashes to allow tests for multi-point
   586  	// failure.
   587  	for i := 0; true; i++ {
   588  		ev := fmt.Sprintf("%s%d", evname, i)
   589  		evv := os.Getenv(ev)
   590  		if evv == "" {
   591  			break
   592  		}
   593  		if strings.HasSuffix(hstr, evv) {
   594  			f.logDebugHashMatch(ev, name)
   595  			return true
   596  		}
   597  	}
   598  	return false
   599  }
   600  
   601  func (f *Func) logDebugHashMatch(evname, name string) {
   602  	if f.logfiles == nil {
   603  		f.logfiles = make(map[string]writeSyncer)
   604  	}
   605  	file := f.logfiles[evname]
   606  	if file == nil {
   607  		file = os.Stdout
   608  		if tmpfile := os.Getenv("GSHS_LOGFILE"); tmpfile != "" {
   609  			var err error
   610  			file, err = os.Create(tmpfile)
   611  			if err != nil {
   612  				f.Fatalf("could not open hash-testing logfile %s", tmpfile)
   613  			}
   614  		}
   615  		f.logfiles[evname] = file
   616  	}
   617  	fmt.Fprintf(file, "%s triggered %s\n", evname, name)
   618  	file.Sync()
   619  }
   620  
   621  func DebugNameMatch(evname, name string) bool {
   622  	return os.Getenv(evname) == name
   623  }