github.com/hlts2/go@v0.0.0-20170904000733-812b34efaed8/src/cmd/compile/internal/ssa/gen/generic.rules (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Simplifications that apply to all backend architectures. As an example, this
     6  // Go source code
     7  //
     8  // y := 0 * x
     9  //
    10  // can be translated into y := 0 without losing any information, which saves a
    11  // pointless multiplication instruction. Other .rules files in this directory
    12  // (for example AMD64.rules) contain rules specific to the architecture in the
    13  // filename. The rules here apply to every architecture.
    14  //
    15  // The code for parsing this file lives in rulegen.go; this file generates
    16  // ssa/rewritegeneric.go.
    17  
    18  // values are specified using the following format:
    19  // (op <type> [auxint] {aux} arg0 arg1 ...)
    20  // the type, aux, and auxint fields are optional
    21  // on the matching side
    22  //  - the type, aux, and auxint fields must match if they are specified.
    23  //  - the first occurrence of a variable defines that variable.  Subsequent
    24  //    uses must match (be == to) the first use.
    25  //  - v is defined to be the value matched.
    26  //  - an additional conditional can be provided after the match pattern with "&&".
    27  // on the generated side
    28  //  - the type of the top-level expression is the same as the one on the left-hand side.
    29  //  - the type of any subexpressions must be specified explicitly (or
    30  //    be specified in the op's type field).
    31  //  - auxint will be 0 if not specified.
    32  //  - aux will be nil if not specified.
    33  
    34  // blocks are specified using the following format:
    35  // (kind controlvalue succ0 succ1 ...)
    36  // controlvalue must be "nil" or a value expression
    37  // succ* fields must be variables
    38  // For now, the generated successors must be a permutation of the matched successors.
    39  
    40  // constant folding
    41  (Trunc16to8  (Const16 [c]))  -> (Const8   [int64(int8(c))])
    42  (Trunc32to8  (Const32 [c]))  -> (Const8   [int64(int8(c))])
    43  (Trunc32to16 (Const32 [c]))  -> (Const16  [int64(int16(c))])
    44  (Trunc64to8  (Const64 [c]))  -> (Const8   [int64(int8(c))])
    45  (Trunc64to16 (Const64 [c]))  -> (Const16  [int64(int16(c))])
    46  (Trunc64to32 (Const64 [c]))  -> (Const32  [int64(int32(c))])
    47  (Cvt64Fto32F (Const64F [c])) -> (Const32F [f2i(float64(i2f32(c)))])
    48  (Cvt32Fto64F (Const32F [c])) -> (Const64F [c]) // c is already a 64 bit float
    49  (Round32F x:(Const32F)) -> x
    50  (Round64F x:(Const64F)) -> x
    51  
    52  (Trunc16to8  (ZeroExt8to16  x)) -> x
    53  (Trunc32to8  (ZeroExt8to32  x)) -> x
    54  (Trunc32to16 (ZeroExt8to32  x)) -> (ZeroExt8to16  x)
    55  (Trunc32to16 (ZeroExt16to32 x)) -> x
    56  (Trunc64to8  (ZeroExt8to64  x)) -> x
    57  (Trunc64to16 (ZeroExt8to64  x)) -> (ZeroExt8to16  x)
    58  (Trunc64to16 (ZeroExt16to64 x)) -> x
    59  (Trunc64to32 (ZeroExt8to64  x)) -> (ZeroExt8to32  x)
    60  (Trunc64to32 (ZeroExt16to64 x)) -> (ZeroExt16to32 x)
    61  (Trunc64to32 (ZeroExt32to64 x)) -> x
    62  (Trunc16to8  (SignExt8to16  x)) -> x
    63  (Trunc32to8  (SignExt8to32  x)) -> x
    64  (Trunc32to16 (SignExt8to32  x)) -> (SignExt8to16  x)
    65  (Trunc32to16 (SignExt16to32 x)) -> x
    66  (Trunc64to8  (SignExt8to64  x)) -> x
    67  (Trunc64to16 (SignExt8to64  x)) -> (SignExt8to16  x)
    68  (Trunc64to16 (SignExt16to64 x)) -> x
    69  (Trunc64to32 (SignExt8to64  x)) -> (SignExt8to32  x)
    70  (Trunc64to32 (SignExt16to64 x)) -> (SignExt16to32 x)
    71  (Trunc64to32 (SignExt32to64 x)) -> x
    72  
    73  (ZeroExt8to16  (Const8  [c])) -> (Const16 [int64( uint8(c))])
    74  (ZeroExt8to32  (Const8  [c])) -> (Const32 [int64( uint8(c))])
    75  (ZeroExt8to64  (Const8  [c])) -> (Const64 [int64( uint8(c))])
    76  (ZeroExt16to32 (Const16 [c])) -> (Const32 [int64(uint16(c))])
    77  (ZeroExt16to64 (Const16 [c])) -> (Const64 [int64(uint16(c))])
    78  (ZeroExt32to64 (Const32 [c])) -> (Const64 [int64(uint32(c))])
    79  (SignExt8to16  (Const8  [c])) -> (Const16 [int64(  int8(c))])
    80  (SignExt8to32  (Const8  [c])) -> (Const32 [int64(  int8(c))])
    81  (SignExt8to64  (Const8  [c])) -> (Const64 [int64(  int8(c))])
    82  (SignExt16to32 (Const16 [c])) -> (Const32 [int64( int16(c))])
    83  (SignExt16to64 (Const16 [c])) -> (Const64 [int64( int16(c))])
    84  (SignExt32to64 (Const32 [c])) -> (Const64 [int64( int32(c))])
    85  
    86  (Neg8   (Const8   [c])) -> (Const8   [int64( -int8(c))])
    87  (Neg16  (Const16  [c])) -> (Const16  [int64(-int16(c))])
    88  (Neg32  (Const32  [c])) -> (Const32  [int64(-int32(c))])
    89  (Neg64  (Const64  [c])) -> (Const64  [-c])
    90  (Neg32F (Const32F [c])) && i2f(c) != 0 -> (Const32F [f2i(-i2f(c))])
    91  (Neg64F (Const64F [c])) && i2f(c) != 0 -> (Const64F [f2i(-i2f(c))])
    92  
    93  (Add8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c+d))])
    94  (Add16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c+d))])
    95  (Add32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c+d))])
    96  (Add64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c+d])
    97  (Add32F (Const32F [c]) (Const32F [d])) ->
    98          (Const32F [f2i(float64(i2f32(c) + i2f32(d)))]) // ensure we combine the operands with 32 bit precision
    99  (Add64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) + i2f(d))])
   100  (AddPtr <t> x (Const64 [c])) -> (OffPtr <t> x [c])
   101  (AddPtr <t> x (Const32 [c])) -> (OffPtr <t> x [c])
   102  
   103  (Sub8   (Const8 [c]) (Const8 [d]))     -> (Const8 [int64(int8(c-d))])
   104  (Sub16  (Const16 [c]) (Const16 [d]))   -> (Const16 [int64(int16(c-d))])
   105  (Sub32  (Const32 [c]) (Const32 [d]))   -> (Const32 [int64(int32(c-d))])
   106  (Sub64  (Const64 [c]) (Const64 [d]))   -> (Const64 [c-d])
   107  (Sub32F (Const32F [c]) (Const32F [d])) ->
   108          (Const32F [f2i(float64(i2f32(c) - i2f32(d)))])
   109  (Sub64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) - i2f(d))])
   110  
   111  (Mul8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c*d))])
   112  (Mul16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c*d))])
   113  (Mul32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c*d))])
   114  (Mul64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c*d])
   115  (Mul32F (Const32F [c]) (Const32F [d])) ->
   116          (Const32F [f2i(float64(i2f32(c) * i2f32(d)))])
   117  (Mul64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) * i2f(d))])
   118  
   119  (And8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c&d))])
   120  (And16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c&d))])
   121  (And32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c&d))])
   122  (And64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c&d])
   123  
   124  (Or8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c|d))])
   125  (Or16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c|d))])
   126  (Or32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c|d))])
   127  (Or64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c|d])
   128  
   129  (Xor8   (Const8 [c])   (Const8 [d]))   -> (Const8  [int64(int8(c^d))])
   130  (Xor16  (Const16 [c])  (Const16 [d]))  -> (Const16 [int64(int16(c^d))])
   131  (Xor32  (Const32 [c])  (Const32 [d]))  -> (Const32 [int64(int32(c^d))])
   132  (Xor64  (Const64 [c])  (Const64 [d]))  -> (Const64 [c^d])
   133  
   134  (Div8   (Const8  [c])  (Const8  [d])) && d != 0 -> (Const8  [int64(int8(c)/int8(d))])
   135  (Div16  (Const16 [c])  (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c)/int16(d))])
   136  (Div32  (Const32 [c])  (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c)/int32(d))])
   137  (Div64  (Const64 [c])  (Const64 [d])) && d != 0 -> (Const64 [c/d])
   138  (Div8u  (Const8  [c])  (Const8  [d])) && d != 0 -> (Const8  [int64(int8(uint8(c)/uint8(d)))])
   139  (Div16u (Const16 [c])  (Const16 [d])) && d != 0 -> (Const16 [int64(int16(uint16(c)/uint16(d)))])
   140  (Div32u (Const32 [c])  (Const32 [d])) && d != 0 -> (Const32 [int64(int32(uint32(c)/uint32(d)))])
   141  (Div64u (Const64 [c])  (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c)/uint64(d))])
   142  (Div32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) / i2f32(d)))])
   143  (Div64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) / i2f(d))])
   144  
   145  // Convert x * 1 to x.
   146  (Mul8  (Const8  [1]) x) -> x
   147  (Mul16 (Const16 [1]) x) -> x
   148  (Mul32 (Const32 [1]) x) -> x
   149  (Mul64 (Const64 [1]) x) -> x
   150  
   151  // Convert x * -1 to -x.
   152  (Mul8  (Const8  [-1]) x) -> (Neg8  x)
   153  (Mul16 (Const16 [-1]) x) -> (Neg16 x)
   154  (Mul32 (Const32 [-1]) x) -> (Neg32 x)
   155  (Mul64 (Const64 [-1]) x) -> (Neg64 x)
   156  
   157  // Convert multiplication by a power of two to a shift.
   158  (Mul8  <t> n (Const8  [c])) && isPowerOfTwo(c) -> (Lsh8x64  <t> n (Const64 <typ.UInt64> [log2(c)]))
   159  (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(c)]))
   160  (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(c)]))
   161  (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(c)]))
   162  (Mul8  <t> n (Const8  [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg8  (Lsh8x64  <t> n (Const64 <typ.UInt64> [log2(-c)])))
   163  (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(-c)])))
   164  (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(-c)])))
   165  (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(-c)])))
   166  
   167  (Mod8  (Const8  [c]) (Const8  [d])) && d != 0 -> (Const8  [int64(int8(c % d))])
   168  (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c % d))])
   169  (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c % d))])
   170  (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c % d])
   171  
   172  (Mod8u  (Const8 [c])  (Const8  [d])) && d != 0 -> (Const8  [int64(uint8(c) % uint8(d))])
   173  (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(uint16(c) % uint16(d))])
   174  (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(uint32(c) % uint32(d))])
   175  (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c) % uint64(d))])
   176  
   177  (Lsh64x64  (Const64 [c]) (Const64 [d])) -> (Const64 [c << uint64(d)])
   178  (Rsh64x64  (Const64 [c]) (Const64 [d])) -> (Const64 [c >> uint64(d)])
   179  (Rsh64Ux64 (Const64 [c]) (Const64 [d])) -> (Const64 [int64(uint64(c) >> uint64(d))])
   180  (Lsh32x64  (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) << uint64(d))])
   181  (Rsh32x64  (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) >> uint64(d))])
   182  (Rsh32Ux64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(uint32(c) >> uint64(d)))])
   183  (Lsh16x64  (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) << uint64(d))])
   184  (Rsh16x64  (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) >> uint64(d))])
   185  (Rsh16Ux64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(uint16(c) >> uint64(d)))])
   186  (Lsh8x64   (Const8  [c]) (Const64 [d])) -> (Const8  [int64(int8(c) << uint64(d))])
   187  (Rsh8x64   (Const8  [c]) (Const64 [d])) -> (Const8  [int64(int8(c) >> uint64(d))])
   188  (Rsh8Ux64  (Const8  [c]) (Const64 [d])) -> (Const8  [int64(int8(uint8(c) >> uint64(d)))])
   189  
   190  // Fold IsInBounds when the range of the index cannot exceed the limit.
   191  (IsInBounds (ZeroExt8to32  _) (Const32 [c])) && (1 << 8)  <= c -> (ConstBool [1])
   192  (IsInBounds (ZeroExt8to64  _) (Const64 [c])) && (1 << 8)  <= c -> (ConstBool [1])
   193  (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c -> (ConstBool [1])
   194  (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c -> (ConstBool [1])
   195  (IsInBounds x x) -> (ConstBool [0])
   196  (IsInBounds                (And8  (Const8  [c]) _)  (Const8  [d])) && 0 <= c && c < d -> (ConstBool [1])
   197  (IsInBounds (ZeroExt8to16  (And8  (Const8  [c]) _)) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1])
   198  (IsInBounds (ZeroExt8to32  (And8  (Const8  [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1])
   199  (IsInBounds (ZeroExt8to64  (And8  (Const8  [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1])
   200  (IsInBounds                (And16 (Const16 [c]) _)  (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1])
   201  (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1])
   202  (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1])
   203  (IsInBounds                (And32 (Const32 [c]) _)  (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1])
   204  (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1])
   205  (IsInBounds                (And64 (Const64 [c]) _)  (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1])
   206  (IsInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c < d)])
   207  (IsInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c < d)])
   208  // (Mod64u x y) is always between 0 (inclusive) and y (exclusive).
   209  (IsInBounds (Mod32u _ y) y) -> (ConstBool [1])
   210  (IsInBounds (Mod64u _ y) y) -> (ConstBool [1])
   211  // Right shifting a unsigned number limits its value.
   212  (IsInBounds (ZeroExt8to64  (Rsh8Ux64  _ (Const64 [c]))) (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1])
   213  (IsInBounds (ZeroExt8to32  (Rsh8Ux64  _ (Const64 [c]))) (Const32 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1])
   214  (IsInBounds (ZeroExt8to16  (Rsh8Ux64  _ (Const64 [c]))) (Const16 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1])
   215  (IsInBounds                (Rsh8Ux64  _ (Const64 [c]))  (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1])
   216  (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1])
   217  (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1])
   218  (IsInBounds                (Rsh16Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1])
   219  (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1])
   220  (IsInBounds                (Rsh32Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1])
   221  (IsInBounds                (Rsh64Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d -> (ConstBool [1])
   222  
   223  (IsSliceInBounds x x) -> (ConstBool [1])
   224  (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d -> (ConstBool [1])
   225  (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d -> (ConstBool [1])
   226  (IsSliceInBounds (Const32 [0]) _) -> (ConstBool [1])
   227  (IsSliceInBounds (Const64 [0]) _) -> (ConstBool [1])
   228  (IsSliceInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c <= d)])
   229  (IsSliceInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c <= d)])
   230  (IsSliceInBounds (SliceLen x) (SliceCap x)) -> (ConstBool [1])
   231  
   232  (Eq64 x x) -> (ConstBool [1])
   233  (Eq32 x x) -> (ConstBool [1])
   234  (Eq16 x x) -> (ConstBool [1])
   235  (Eq8  x x) -> (ConstBool [1])
   236  (EqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c == d)])
   237  (EqB (ConstBool [0]) x) -> (Not x)
   238  (EqB (ConstBool [1]) x) -> x
   239  
   240  (Neq64 x x) -> (ConstBool [0])
   241  (Neq32 x x) -> (ConstBool [0])
   242  (Neq16 x x) -> (ConstBool [0])
   243  (Neq8  x x) -> (ConstBool [0])
   244  (NeqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c != d)])
   245  (NeqB (ConstBool [0]) x) -> x
   246  (NeqB (ConstBool [1]) x) -> (Not x)
   247  (NeqB (Not x) (Not y)) -> (NeqB x y)
   248  
   249  (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Eq64 (Const64 <t> [c-d]) x)
   250  (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Eq32 (Const32 <t> [int64(int32(c-d))]) x)
   251  (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Eq16 (Const16 <t> [int64(int16(c-d))]) x)
   252  (Eq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) -> (Eq8  (Const8 <t> [int64(int8(c-d))]) x)
   253  
   254  (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Neq64 (Const64 <t> [c-d]) x)
   255  (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Neq32 (Const32 <t> [int64(int32(c-d))]) x)
   256  (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Neq16 (Const16 <t> [int64(int16(c-d))]) x)
   257  (Neq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) -> (Neq8 (Const8 <t> [int64(int8(c-d))]) x)
   258  
   259  // Canonicalize x-const to x+(-const)
   260  (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Add64 (Const64 <t> [-c]) x)
   261  (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 -> (Add32 (Const32 <t> [int64(int32(-c))]) x)
   262  (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 -> (Add16 (Const16 <t> [int64(int16(-c))]) x)
   263  (Sub8  x (Const8  <t> [c])) && x.Op != OpConst8  -> (Add8  (Const8  <t> [int64(int8(-c))]) x)
   264  
   265  // fold negation into comparison operators
   266  (Not (Eq64 x y)) -> (Neq64 x y)
   267  (Not (Eq32 x y)) -> (Neq32 x y)
   268  (Not (Eq16 x y)) -> (Neq16 x y)
   269  (Not (Eq8  x y)) -> (Neq8  x y)
   270  (Not (EqB  x y)) -> (NeqB  x y)
   271  
   272  (Not (Neq64 x y)) -> (Eq64 x y)
   273  (Not (Neq32 x y)) -> (Eq32 x y)
   274  (Not (Neq16 x y)) -> (Eq16 x y)
   275  (Not (Neq8  x y)) -> (Eq8  x y)
   276  (Not (NeqB  x y)) -> (EqB  x y)
   277  
   278  (Not (Greater64 x y)) -> (Leq64 x y)
   279  (Not (Greater32 x y)) -> (Leq32 x y)
   280  (Not (Greater16 x y)) -> (Leq16 x y)
   281  (Not (Greater8  x y)) -> (Leq8  x y)
   282  
   283  (Not (Greater64U x y)) -> (Leq64U x y)
   284  (Not (Greater32U x y)) -> (Leq32U x y)
   285  (Not (Greater16U x y)) -> (Leq16U x y)
   286  (Not (Greater8U  x y)) -> (Leq8U  x y)
   287  
   288  (Not (Geq64 x y)) -> (Less64 x y)
   289  (Not (Geq32 x y)) -> (Less32 x y)
   290  (Not (Geq16 x y)) -> (Less16 x y)
   291  (Not (Geq8  x y)) -> (Less8  x y)
   292  
   293  (Not (Geq64U x y)) -> (Less64U x y)
   294  (Not (Geq32U x y)) -> (Less32U x y)
   295  (Not (Geq16U x y)) -> (Less16U x y)
   296  (Not (Geq8U  x y)) -> (Less8U  x y)
   297  
   298  (Not (Less64 x y)) -> (Geq64 x y)
   299  (Not (Less32 x y)) -> (Geq32 x y)
   300  (Not (Less16 x y)) -> (Geq16 x y)
   301  (Not (Less8  x y)) -> (Geq8  x y)
   302  
   303  (Not (Less64U x y)) -> (Geq64U x y)
   304  (Not (Less32U x y)) -> (Geq32U x y)
   305  (Not (Less16U x y)) -> (Geq16U x y)
   306  (Not (Less8U  x y)) -> (Geq8U  x y)
   307  
   308  (Not (Leq64 x y)) -> (Greater64 x y)
   309  (Not (Leq32 x y)) -> (Greater32 x y)
   310  (Not (Leq16 x y)) -> (Greater16 x y)
   311  (Not (Leq8  x y)) -> (Greater8 x y)
   312  
   313  (Not (Leq64U x y)) -> (Greater64U x y)
   314  (Not (Leq32U x y)) -> (Greater32U x y)
   315  (Not (Leq16U x y)) -> (Greater16U x y)
   316  (Not (Leq8U  x y)) -> (Greater8U  x y)
   317  
   318  // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for:
   319  // a[i].b = ...; a[i+1].b = ...
   320  (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) ->
   321    (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x))
   322  (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) ->
   323    (Add32 (Const32 <t> [int64(int32(c*d))]) (Mul32 <t> (Const32 <t> [c]) x))
   324  
   325  // Rewrite x*y + x*z  to  x*(y+z)
   326  (Add64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Add64 <t> y z))
   327  (Add32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Add32 <t> y z))
   328  (Add16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Add16 <t> y z))
   329  (Add8  <t> (Mul8  x y) (Mul8  x z)) -> (Mul8  x (Add8  <t> y z))
   330  
   331  // Rewrite x*y - x*z  to  x*(y-z)
   332  (Sub64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Sub64 <t> y z))
   333  (Sub32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Sub32 <t> y z))
   334  (Sub16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Sub16 <t> y z))
   335  (Sub8  <t> (Mul8  x y) (Mul8  x z)) -> (Mul8  x (Sub8  <t> y z))
   336  
   337  // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce
   338  // the number of the other rewrite rules for const shifts
   339  (Lsh64x32  <t> x (Const32 [c])) -> (Lsh64x64  x (Const64 <t> [int64(uint32(c))]))
   340  (Lsh64x16  <t> x (Const16 [c])) -> (Lsh64x64  x (Const64 <t> [int64(uint16(c))]))
   341  (Lsh64x8   <t> x (Const8  [c])) -> (Lsh64x64  x (Const64 <t> [int64(uint8(c))]))
   342  (Rsh64x32  <t> x (Const32 [c])) -> (Rsh64x64  x (Const64 <t> [int64(uint32(c))]))
   343  (Rsh64x16  <t> x (Const16 [c])) -> (Rsh64x64  x (Const64 <t> [int64(uint16(c))]))
   344  (Rsh64x8   <t> x (Const8  [c])) -> (Rsh64x64  x (Const64 <t> [int64(uint8(c))]))
   345  (Rsh64Ux32 <t> x (Const32 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))]))
   346  (Rsh64Ux16 <t> x (Const16 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))]))
   347  (Rsh64Ux8  <t> x (Const8  [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))]))
   348  
   349  (Lsh32x32  <t> x (Const32 [c])) -> (Lsh32x64  x (Const64 <t> [int64(uint32(c))]))
   350  (Lsh32x16  <t> x (Const16 [c])) -> (Lsh32x64  x (Const64 <t> [int64(uint16(c))]))
   351  (Lsh32x8   <t> x (Const8  [c])) -> (Lsh32x64  x (Const64 <t> [int64(uint8(c))]))
   352  (Rsh32x32  <t> x (Const32 [c])) -> (Rsh32x64  x (Const64 <t> [int64(uint32(c))]))
   353  (Rsh32x16  <t> x (Const16 [c])) -> (Rsh32x64  x (Const64 <t> [int64(uint16(c))]))
   354  (Rsh32x8   <t> x (Const8  [c])) -> (Rsh32x64  x (Const64 <t> [int64(uint8(c))]))
   355  (Rsh32Ux32 <t> x (Const32 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))]))
   356  (Rsh32Ux16 <t> x (Const16 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))]))
   357  (Rsh32Ux8  <t> x (Const8  [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))]))
   358  
   359  (Lsh16x32  <t> x (Const32 [c])) -> (Lsh16x64  x (Const64 <t> [int64(uint32(c))]))
   360  (Lsh16x16  <t> x (Const16 [c])) -> (Lsh16x64  x (Const64 <t> [int64(uint16(c))]))
   361  (Lsh16x8   <t> x (Const8  [c])) -> (Lsh16x64  x (Const64 <t> [int64(uint8(c))]))
   362  (Rsh16x32  <t> x (Const32 [c])) -> (Rsh16x64  x (Const64 <t> [int64(uint32(c))]))
   363  (Rsh16x16  <t> x (Const16 [c])) -> (Rsh16x64  x (Const64 <t> [int64(uint16(c))]))
   364  (Rsh16x8   <t> x (Const8  [c])) -> (Rsh16x64  x (Const64 <t> [int64(uint8(c))]))
   365  (Rsh16Ux32 <t> x (Const32 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))]))
   366  (Rsh16Ux16 <t> x (Const16 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))]))
   367  (Rsh16Ux8  <t> x (Const8  [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))]))
   368  
   369  (Lsh8x32  <t> x (Const32 [c])) -> (Lsh8x64  x (Const64 <t> [int64(uint32(c))]))
   370  (Lsh8x16  <t> x (Const16 [c])) -> (Lsh8x64  x (Const64 <t> [int64(uint16(c))]))
   371  (Lsh8x8   <t> x (Const8  [c])) -> (Lsh8x64  x (Const64 <t> [int64(uint8(c))]))
   372  (Rsh8x32  <t> x (Const32 [c])) -> (Rsh8x64  x (Const64 <t> [int64(uint32(c))]))
   373  (Rsh8x16  <t> x (Const16 [c])) -> (Rsh8x64  x (Const64 <t> [int64(uint16(c))]))
   374  (Rsh8x8   <t> x (Const8  [c])) -> (Rsh8x64  x (Const64 <t> [int64(uint8(c))]))
   375  (Rsh8Ux32 <t> x (Const32 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))]))
   376  (Rsh8Ux16 <t> x (Const16 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))]))
   377  (Rsh8Ux8  <t> x (Const8  [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))]))
   378  
   379  // shifts by zero
   380  (Lsh64x64  x (Const64 [0])) -> x
   381  (Rsh64x64  x (Const64 [0])) -> x
   382  (Rsh64Ux64 x (Const64 [0])) -> x
   383  (Lsh32x64  x (Const64 [0])) -> x
   384  (Rsh32x64  x (Const64 [0])) -> x
   385  (Rsh32Ux64 x (Const64 [0])) -> x
   386  (Lsh16x64  x (Const64 [0])) -> x
   387  (Rsh16x64  x (Const64 [0])) -> x
   388  (Rsh16Ux64 x (Const64 [0])) -> x
   389  (Lsh8x64   x (Const64 [0])) -> x
   390  (Rsh8x64   x (Const64 [0])) -> x
   391  (Rsh8Ux64  x (Const64 [0])) -> x
   392  
   393  // zero shifted.
   394  (Lsh64x64  (Const64 [0]) _) -> (Const64 [0])
   395  (Lsh64x32  (Const64 [0]) _) -> (Const64 [0])
   396  (Lsh64x16  (Const64 [0]) _) -> (Const64 [0])
   397  (Lsh64x8  (Const64 [0]) _) -> (Const64 [0])
   398  (Rsh64x64  (Const64 [0]) _) -> (Const64 [0])
   399  (Rsh64x32  (Const64 [0]) _) -> (Const64 [0])
   400  (Rsh64x16  (Const64 [0]) _) -> (Const64 [0])
   401  (Rsh64x8  (Const64 [0]) _) -> (Const64 [0])
   402  (Rsh64Ux64 (Const64 [0]) _) -> (Const64 [0])
   403  (Rsh64Ux32 (Const64 [0]) _) -> (Const64 [0])
   404  (Rsh64Ux16 (Const64 [0]) _) -> (Const64 [0])
   405  (Rsh64Ux8 (Const64 [0]) _) -> (Const64 [0])
   406  (Lsh32x64  (Const32 [0]) _) -> (Const32 [0])
   407  (Lsh32x32  (Const32 [0]) _) -> (Const32 [0])
   408  (Lsh32x16  (Const32 [0]) _) -> (Const32 [0])
   409  (Lsh32x8  (Const32 [0]) _) -> (Const32 [0])
   410  (Rsh32x64  (Const32 [0]) _) -> (Const32 [0])
   411  (Rsh32x32  (Const32 [0]) _) -> (Const32 [0])
   412  (Rsh32x16  (Const32 [0]) _) -> (Const32 [0])
   413  (Rsh32x8  (Const32 [0]) _) -> (Const32 [0])
   414  (Rsh32Ux64 (Const32 [0]) _) -> (Const32 [0])
   415  (Rsh32Ux32 (Const32 [0]) _) -> (Const32 [0])
   416  (Rsh32Ux16 (Const32 [0]) _) -> (Const32 [0])
   417  (Rsh32Ux8 (Const32 [0]) _) -> (Const32 [0])
   418  (Lsh16x64  (Const16 [0]) _) -> (Const16 [0])
   419  (Lsh16x32  (Const16 [0]) _) -> (Const16 [0])
   420  (Lsh16x16  (Const16 [0]) _) -> (Const16 [0])
   421  (Lsh16x8  (Const16 [0]) _) -> (Const16 [0])
   422  (Rsh16x64  (Const16 [0]) _) -> (Const16 [0])
   423  (Rsh16x32  (Const16 [0]) _) -> (Const16 [0])
   424  (Rsh16x16  (Const16 [0]) _) -> (Const16 [0])
   425  (Rsh16x8  (Const16 [0]) _) -> (Const16 [0])
   426  (Rsh16Ux64 (Const16 [0]) _) -> (Const16 [0])
   427  (Rsh16Ux32 (Const16 [0]) _) -> (Const16 [0])
   428  (Rsh16Ux16 (Const16 [0]) _) -> (Const16 [0])
   429  (Rsh16Ux8 (Const16 [0]) _) -> (Const16 [0])
   430  (Lsh8x64   (Const8 [0]) _) -> (Const8  [0])
   431  (Lsh8x32   (Const8 [0]) _) -> (Const8  [0])
   432  (Lsh8x16   (Const8 [0]) _) -> (Const8  [0])
   433  (Lsh8x8   (Const8 [0]) _) -> (Const8  [0])
   434  (Rsh8x64   (Const8 [0]) _) -> (Const8  [0])
   435  (Rsh8x32   (Const8 [0]) _) -> (Const8  [0])
   436  (Rsh8x16   (Const8 [0]) _) -> (Const8  [0])
   437  (Rsh8x8   (Const8 [0]) _) -> (Const8  [0])
   438  (Rsh8Ux64  (Const8 [0]) _) -> (Const8  [0])
   439  (Rsh8Ux32  (Const8 [0]) _) -> (Const8  [0])
   440  (Rsh8Ux16  (Const8 [0]) _) -> (Const8  [0])
   441  (Rsh8Ux8  (Const8 [0]) _) -> (Const8  [0])
   442  
   443  // large left shifts of all values, and right shifts of unsigned values
   444  (Lsh64x64  _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0])
   445  (Rsh64Ux64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0])
   446  (Lsh32x64  _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0])
   447  (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0])
   448  (Lsh16x64  _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0])
   449  (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0])
   450  (Lsh8x64   _ (Const64 [c])) && uint64(c) >= 8  -> (Const8  [0])
   451  (Rsh8Ux64  _ (Const64 [c])) && uint64(c) >= 8  -> (Const8  [0])
   452  
   453  // combine const shifts
   454  (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh64x64 x (Const64 <t> [c+d]))
   455  (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh32x64 x (Const64 <t> [c+d]))
   456  (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh16x64 x (Const64 <t> [c+d]))
   457  (Lsh8x64  <t> (Lsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh8x64  x (Const64 <t> [c+d]))
   458  
   459  (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64x64 x (Const64 <t> [c+d]))
   460  (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32x64 x (Const64 <t> [c+d]))
   461  (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16x64 x (Const64 <t> [c+d]))
   462  (Rsh8x64  <t> (Rsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8x64  x (Const64 <t> [c+d]))
   463  
   464  (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64Ux64 x (Const64 <t> [c+d]))
   465  (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32Ux64 x (Const64 <t> [c+d]))
   466  (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16Ux64 x (Const64 <t> [c+d]))
   467  (Rsh8Ux64  <t> (Rsh8Ux64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8Ux64  x (Const64 <t> [c+d]))
   468  
   469  // ((x >> c1) << c2) >> c3
   470  (Rsh64Ux64 (Lsh64x64 (Rsh64Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   471    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   472    -> (Rsh64Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   473  (Rsh32Ux64 (Lsh32x64 (Rsh32Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   474    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   475    -> (Rsh32Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   476  (Rsh16Ux64 (Lsh16x64 (Rsh16Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   477    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   478    -> (Rsh16Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   479  (Rsh8Ux64 (Lsh8x64 (Rsh8Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   480    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   481    -> (Rsh8Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   482  
   483  // ((x << c1) >> c2) << c3
   484  (Lsh64x64 (Rsh64Ux64 (Lsh64x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   485    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   486    -> (Lsh64x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   487  (Lsh32x64 (Rsh32Ux64 (Lsh32x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   488    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   489    -> (Lsh32x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   490  (Lsh16x64 (Rsh16Ux64 (Lsh16x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   491    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   492    -> (Lsh16x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   493  (Lsh8x64 (Rsh8Ux64 (Lsh8x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   494    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   495    -> (Lsh8x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   496  
   497  // replace shifts with zero extensions
   498  (Rsh16Ux64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) -> (ZeroExt8to16  (Trunc16to8  <typ.UInt8>  x))
   499  (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (ZeroExt8to32  (Trunc32to8  <typ.UInt8>  x))
   500  (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (ZeroExt8to64  (Trunc64to8  <typ.UInt8>  x))
   501  (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x))
   502  (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x))
   503  (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x))
   504  
   505  // replace shifts with sign extensions
   506  (Rsh16x64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) -> (SignExt8to16  (Trunc16to8  <typ.Int8>  x))
   507  (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (SignExt8to32  (Trunc32to8  <typ.Int8>  x))
   508  (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (SignExt8to64  (Trunc64to8  <typ.Int8>  x))
   509  (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (SignExt16to32 (Trunc32to16 <typ.Int16> x))
   510  (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (SignExt16to64 (Trunc64to16 <typ.Int16> x))
   511  (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (SignExt32to64 (Trunc64to32 <typ.Int32> x))
   512  
   513  // constant comparisons
   514  (Eq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c == d)])
   515  (Eq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c == d)])
   516  (Eq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c == d)])
   517  (Eq8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c == d)])
   518  
   519  (Neq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c != d)])
   520  (Neq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c != d)])
   521  (Neq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c != d)])
   522  (Neq8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c != d)])
   523  
   524  (Greater64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c > d)])
   525  (Greater32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c > d)])
   526  (Greater16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c > d)])
   527  (Greater8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c > d)])
   528  
   529  (Greater64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) > uint64(d))])
   530  (Greater32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) > uint32(d))])
   531  (Greater16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) > uint16(d))])
   532  (Greater8U  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(uint8(c)  > uint8(d))])
   533  
   534  (Geq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c >= d)])
   535  (Geq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c >= d)])
   536  (Geq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c >= d)])
   537  (Geq8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c >= d)])
   538  
   539  (Geq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) >= uint64(d))])
   540  (Geq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) >= uint32(d))])
   541  (Geq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) >= uint16(d))])
   542  (Geq8U  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(uint8(c)  >= uint8(d))])
   543  
   544  (Less64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c < d)])
   545  (Less32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c < d)])
   546  (Less16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c < d)])
   547  (Less8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c < d)])
   548  
   549  (Less64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) < uint64(d))])
   550  (Less32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) < uint32(d))])
   551  (Less16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) < uint16(d))])
   552  (Less8U  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(uint8(c)  < uint8(d))])
   553  
   554  (Leq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c <= d)])
   555  (Leq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c <= d)])
   556  (Leq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c <= d)])
   557  (Leq8  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(c <= d)])
   558  
   559  (Leq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) <= uint64(d))])
   560  (Leq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) <= uint32(d))])
   561  (Leq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) <= uint16(d))])
   562  (Leq8U  (Const8  [c]) (Const8  [d])) -> (ConstBool [b2i(uint8(c)  <= uint8(d))])
   563  
   564  // simplifications
   565  (Or64 x x) -> x
   566  (Or32 x x) -> x
   567  (Or16 x x) -> x
   568  (Or8  x x) -> x
   569  (Or64 (Const64 [0]) x) -> x
   570  (Or32 (Const32 [0]) x) -> x
   571  (Or16 (Const16 [0]) x) -> x
   572  (Or8  (Const8  [0]) x) -> x
   573  (Or64 (Const64 [-1]) _) -> (Const64 [-1])
   574  (Or32 (Const32 [-1]) _) -> (Const32 [-1])
   575  (Or16 (Const16 [-1]) _) -> (Const16 [-1])
   576  (Or8  (Const8  [-1]) _) -> (Const8  [-1])
   577  (And64 x x) -> x
   578  (And32 x x) -> x
   579  (And16 x x) -> x
   580  (And8  x x) -> x
   581  (And64 (Const64 [-1]) x) -> x
   582  (And32 (Const32 [-1]) x) -> x
   583  (And16 (Const16 [-1]) x) -> x
   584  (And8  (Const8  [-1]) x) -> x
   585  (And64 (Const64 [0]) _) -> (Const64 [0])
   586  (And32 (Const32 [0]) _) -> (Const32 [0])
   587  (And16 (Const16 [0]) _) -> (Const16 [0])
   588  (And8  (Const8  [0]) _) -> (Const8  [0])
   589  (Xor64 x x) -> (Const64 [0])
   590  (Xor32 x x) -> (Const32 [0])
   591  (Xor16 x x) -> (Const16 [0])
   592  (Xor8  x x) -> (Const8  [0])
   593  (Xor64 (Const64 [0]) x) -> x
   594  (Xor32 (Const32 [0]) x) -> x
   595  (Xor16 (Const16 [0]) x) -> x
   596  (Xor8  (Const8  [0]) x) -> x
   597  (Add64 (Const64 [0]) x) -> x
   598  (Add32 (Const32 [0]) x) -> x
   599  (Add16 (Const16 [0]) x) -> x
   600  (Add8  (Const8  [0]) x) -> x
   601  (Sub64 x x) -> (Const64 [0])
   602  (Sub32 x x) -> (Const32 [0])
   603  (Sub16 x x) -> (Const16 [0])
   604  (Sub8  x x) -> (Const8  [0])
   605  (Mul64 (Const64 [0]) _) -> (Const64 [0])
   606  (Mul32 (Const32 [0]) _) -> (Const32 [0])
   607  (Mul16 (Const16 [0]) _) -> (Const16 [0])
   608  (Mul8  (Const8  [0]) _) -> (Const8  [0])
   609  (Com8  (Com8  x)) -> x
   610  (Com16 (Com16 x)) -> x
   611  (Com32 (Com32 x)) -> x
   612  (Com64 (Com64 x)) -> x
   613  (Com8  (Const8  [c])) -> (Const8  [^c])
   614  (Com16 (Const16 [c])) -> (Const16 [^c])
   615  (Com32 (Const32 [c])) -> (Const32 [^c])
   616  (Com64 (Const64 [c])) -> (Const64 [^c])
   617  (Neg8  (Sub8  x y)) -> (Sub8  y x)
   618  (Neg16 (Sub16 x y)) -> (Sub16 y x)
   619  (Neg32 (Sub32 x y)) -> (Sub32 y x)
   620  (Neg64 (Sub64 x y)) -> (Sub64 y x)
   621  (Add8  (Const8  [1]) (Com8  x)) -> (Neg8  x)
   622  (Add16 (Const16 [1]) (Com16 x)) -> (Neg16 x)
   623  (Add32 (Const32 [1]) (Com32 x)) -> (Neg32 x)
   624  (Add64 (Const64 [1]) (Com64 x)) -> (Neg64 x)
   625  
   626  (And64 x (And64 x y)) -> (And64 x y)
   627  (And32 x (And32 x y)) -> (And32 x y)
   628  (And16 x (And16 x y)) -> (And16 x y)
   629  (And8  x (And8  x y)) -> (And8  x y)
   630  (Or64 x (Or64 x y)) -> (Or64 x y)
   631  (Or32 x (Or32 x y)) -> (Or32 x y)
   632  (Or16 x (Or16 x y)) -> (Or16 x y)
   633  (Or8  x (Or8  x y)) -> (Or8  x y)
   634  (Xor64 x (Xor64 x y)) -> y
   635  (Xor32 x (Xor32 x y)) -> y
   636  (Xor16 x (Xor16 x y)) -> y
   637  (Xor8  x (Xor8  x y)) -> y
   638  
   639  // Ands clear bits. Ors set bits.
   640  // If a subsequent Or will set all the bits
   641  // that an And cleared, we can skip the And.
   642  // This happens in bitmasking code like:
   643  //   x &^= 3 << shift // clear two old bits
   644  //   x  |= v << shift // set two new bits
   645  // when shift is a small constant and v ends up a constant 3.
   646  (Or8  (And8  x (Const8  [c2])) (Const8  <t> [c1])) && ^(c1 | c2) == 0 -> (Or8  (Const8  <t> [c1]) x)
   647  (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 -> (Or16 (Const16 <t> [c1]) x)
   648  (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 -> (Or32 (Const32 <t> [c1]) x)
   649  (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 -> (Or64 (Const64 <t> [c1]) x)
   650  
   651  (Trunc64to8  (And64 (Const64 [y]) x)) && y&0xFF == 0xFF -> (Trunc64to8 x)
   652  (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc64to16 x)
   653  (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF -> (Trunc64to32 x)
   654  (Trunc32to8  (And32 (Const32 [y]) x)) && y&0xFF == 0xFF -> (Trunc32to8 x)
   655  (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc32to16 x)
   656  (Trunc16to8  (And16 (Const16 [y]) x)) && y&0xFF == 0xFF -> (Trunc16to8 x)
   657  
   658  (ZeroExt8to64  (Trunc64to8  x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 -> x
   659  (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 -> x
   660  (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 -> x
   661  (ZeroExt8to32  (Trunc32to8  x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 -> x
   662  (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 -> x
   663  (ZeroExt8to16  (Trunc16to8  x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 -> x
   664  
   665  (SignExt8to64  (Trunc64to8  x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 -> x
   666  (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 -> x
   667  (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 -> x
   668  (SignExt8to32  (Trunc32to8  x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 -> x
   669  (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 -> x
   670  (SignExt8to16  (Trunc16to8  x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 -> x
   671  
   672  (Slicemask (Const32 [x])) && x > 0 -> (Const32 [-1])
   673  (Slicemask (Const32 [0]))          -> (Const32 [0])
   674  (Slicemask (Const64 [x])) && x > 0 -> (Const64 [-1])
   675  (Slicemask (Const64 [0]))          -> (Const64 [0])
   676  
   677  // Rewrite AND of consts as shifts if possible, slightly faster for 64 bit operands
   678  // leading zeros can be shifted left, then right
   679  (And64 <t> (Const64 [y]) x) && nlz(y) + nto(y) == 64 && nto(y) >= 32
   680    -> (Rsh64Ux64 (Lsh64x64 <t> x (Const64 <t> [nlz(y)])) (Const64 <t> [nlz(y)]))
   681  // trailing zeros can be shifted right, then left
   682  (And64 <t> (Const64 [y]) x) && nlo(y) + ntz(y) == 64 && ntz(y) >= 32
   683    -> (Lsh64x64 (Rsh64Ux64 <t> x (Const64 <t> [ntz(y)])) (Const64 <t> [ntz(y)]))
   684  
   685  // simplifications often used for lengths.  e.g. len(s[i:i+5])==5
   686  (Sub64 (Add64 x y) x) -> y
   687  (Sub64 (Add64 x y) y) -> x
   688  (Sub32 (Add32 x y) x) -> y
   689  (Sub32 (Add32 x y) y) -> x
   690  (Sub16 (Add16 x y) x) -> y
   691  (Sub16 (Add16 x y) y) -> x
   692  (Sub8  (Add8  x y) x) -> y
   693  (Sub8  (Add8  x y) y) -> x
   694  
   695  // basic phi simplifications
   696  (Phi (Const8  [c]) (Const8  [c])) -> (Const8  [c])
   697  (Phi (Const16 [c]) (Const16 [c])) -> (Const16 [c])
   698  (Phi (Const32 [c]) (Const32 [c])) -> (Const32 [c])
   699  (Phi (Const64 [c]) (Const64 [c])) -> (Const64 [c])
   700  
   701  // user nil checks
   702  (NeqPtr p (ConstNil)) -> (IsNonNil p)
   703  (EqPtr p (ConstNil)) -> (Not (IsNonNil p))
   704  (IsNonNil (ConstNil)) -> (ConstBool [0])
   705  
   706  // slice and interface comparisons
   707  // The frontend ensures that we can only compare against nil,
   708  // so we need only compare the first word (interface type or slice ptr).
   709  (EqInter x y)  -> (EqPtr  (ITab x) (ITab y))
   710  (NeqInter x y) -> (NeqPtr (ITab x) (ITab y))
   711  (EqSlice x y)  -> (EqPtr  (SlicePtr x) (SlicePtr y))
   712  (NeqSlice x y) -> (NeqPtr (SlicePtr x) (SlicePtr y))
   713  
   714  // Load of store of same address, with compatibly typed value and same size
   715  (Load <t1> p1 (Store {t2} p2 x _)) && isSamePtr(p1,p2) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.(*types.Type).Size() -> x
   716  
   717  // Eliminate stores of values that have just been loaded from the same location.
   718  // We also handle the common case where there are some intermediate stores to non-overlapping struct fields.
   719  (Store {t1} p1 (Load <t2> p2 mem) mem) &&
   720  	isSamePtr(p1, p2) &&
   721  	t2.Size() == t1.(*types.Type).Size() -> mem
   722  (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ oldmem)) &&
   723  	isSamePtr(p1, p2) &&
   724  	isSamePtr(p1, p3) &&
   725  	t2.Size() == t1.(*types.Type).Size() &&
   726  	!overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) -> mem
   727  (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ oldmem))) &&
   728  	isSamePtr(p1, p2) &&
   729  	isSamePtr(p1, p3) &&
   730  	isSamePtr(p1, p4) &&
   731  	t2.Size() == t1.(*types.Type).Size() &&
   732  	!overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) &&
   733  	!overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) -> mem
   734  (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ (Store {t5} (OffPtr [o5] p5) _ oldmem)))) &&
   735  	isSamePtr(p1, p2) &&
   736  	isSamePtr(p1, p3) &&
   737  	isSamePtr(p1, p4) &&
   738  	isSamePtr(p1, p5) &&
   739  	t2.Size() == t1.(*types.Type).Size() &&
   740  	!overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) &&
   741  	!overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) &&
   742  	!overlap(o1, t2.Size(), o5, t5.(*types.Type).Size()) -> mem
   743  
   744  // Collapse OffPtr
   745  (OffPtr (OffPtr p [b]) [a]) -> (OffPtr p [a+b])
   746  (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq -> p
   747  
   748  // indexing operations
   749  // Note: bounds check has already been done
   750  (PtrIndex <t> ptr idx) && config.PtrSize == 4 -> (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [t.ElemType().Size()])))
   751  (PtrIndex <t> ptr idx) && config.PtrSize == 8 -> (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.ElemType().Size()])))
   752  
   753  // struct operations
   754  (StructSelect (StructMake1 x)) -> x
   755  (StructSelect [0] (StructMake2 x _)) -> x
   756  (StructSelect [1] (StructMake2 _ x)) -> x
   757  (StructSelect [0] (StructMake3 x _ _)) -> x
   758  (StructSelect [1] (StructMake3 _ x _)) -> x
   759  (StructSelect [2] (StructMake3 _ _ x)) -> x
   760  (StructSelect [0] (StructMake4 x _ _ _)) -> x
   761  (StructSelect [1] (StructMake4 _ x _ _)) -> x
   762  (StructSelect [2] (StructMake4 _ _ x _)) -> x
   763  (StructSelect [3] (StructMake4 _ _ _ x)) -> x
   764  
   765  (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) ->
   766    (StructMake0)
   767  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) ->
   768    (StructMake1
   769      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem))
   770  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) ->
   771    (StructMake2
   772      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   773      (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem))
   774  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) ->
   775    (StructMake3
   776      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   777      (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
   778      (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem))
   779  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) ->
   780    (StructMake4
   781      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   782      (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
   783      (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)
   784      (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem))
   785  
   786  (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) ->
   787    @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem)
   788  
   789  (Store _ (StructMake0) mem) -> mem
   790  (Store dst (StructMake1 <t> f0) mem) ->
   791    (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem)
   792  (Store dst (StructMake2 <t> f0 f1) mem) ->
   793    (Store {t.FieldType(1)}
   794      (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   795      f1
   796      (Store {t.FieldType(0)}
   797        (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   798          f0 mem))
   799  (Store dst (StructMake3 <t> f0 f1 f2) mem) ->
   800    (Store {t.FieldType(2)}
   801      (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
   802      f2
   803      (Store {t.FieldType(1)}
   804        (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   805        f1
   806        (Store {t.FieldType(0)}
   807          (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   808            f0 mem)))
   809  (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) ->
   810    (Store {t.FieldType(3)}
   811      (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst)
   812      f3
   813      (Store {t.FieldType(2)}
   814        (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
   815        f2
   816        (Store {t.FieldType(1)}
   817          (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   818          f1
   819          (Store {t.FieldType(0)}
   820            (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   821              f0 mem))))
   822  
   823  // Putting struct{*byte} and similar into direct interfaces.
   824  (IMake typ (StructMake1 val)) -> (IMake typ val)
   825  (StructSelect [0] x:(IData _)) -> x
   826  
   827  // un-SSAable values use mem->mem copies
   828  (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t.(*types.Type)) ->
   829  	(Move {t} [t.(*types.Type).Size()] dst src mem)
   830  (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t.(*types.Type)) ->
   831  	(Move {t} [t.(*types.Type).Size()] dst src (VarDef {x} mem))
   832  
   833  // array ops
   834  (ArraySelect (ArrayMake1 x)) -> x
   835  
   836  (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 ->
   837    (ArrayMake0)
   838  
   839  (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) ->
   840    (ArrayMake1 (Load <t.ElemType()> ptr mem))
   841  
   842  (Store _ (ArrayMake0) mem) -> mem
   843  (Store dst (ArrayMake1 e) mem) -> (Store {e.Type} dst e mem)
   844  
   845  (ArraySelect [0] (Load ptr mem)) -> (Load ptr mem)
   846  
   847  // Putting [1]{*byte} and similar into direct interfaces.
   848  (IMake typ (ArrayMake1 val)) -> (IMake typ val)
   849  (ArraySelect [0] x:(IData _)) -> x
   850  
   851  // string ops
   852  // Decomposing StringMake and lowering of StringPtr and StringLen
   853  // happens in a later pass, dec, so that these operations are available
   854  // to other passes for optimizations.
   855  (StringPtr (StringMake (Const64 <t> [c]) _)) -> (Const64 <t> [c])
   856  (StringLen (StringMake _ (Const64 <t> [c]))) -> (Const64 <t> [c])
   857  (ConstString {s}) && config.PtrSize == 4 && s.(string) == "" ->
   858    (StringMake (ConstNil) (Const32 <typ.Int> [0]))
   859  (ConstString {s}) && config.PtrSize == 8 && s.(string) == "" ->
   860    (StringMake (ConstNil) (Const64 <typ.Int> [0]))
   861  (ConstString {s}) && config.PtrSize == 4 && s.(string) != "" ->
   862    (StringMake
   863      (Addr <typ.BytePtr> {fe.StringData(s.(string))}
   864        (SB))
   865      (Const32 <typ.Int> [int64(len(s.(string)))]))
   866  (ConstString {s}) && config.PtrSize == 8 && s.(string) != "" ->
   867    (StringMake
   868      (Addr <typ.BytePtr> {fe.StringData(s.(string))}
   869        (SB))
   870      (Const64 <typ.Int> [int64(len(s.(string)))]))
   871  
   872  // slice ops
   873  // Only a few slice rules are provided here.  See dec.rules for
   874  // a more comprehensive set.
   875  (SliceLen (SliceMake _ (Const64 <t> [c]) _)) -> (Const64 <t> [c])
   876  (SliceCap (SliceMake _ _ (Const64 <t> [c]))) -> (Const64 <t> [c])
   877  (SliceLen (SliceMake _ (Const32 <t> [c]) _)) -> (Const32 <t> [c])
   878  (SliceCap (SliceMake _ _ (Const32 <t> [c]))) -> (Const32 <t> [c])
   879  (SlicePtr (SliceMake (SlicePtr x) _ _)) -> (SlicePtr x)
   880  (SliceLen (SliceMake _ (SliceLen x) _)) -> (SliceLen x)
   881  (SliceCap (SliceMake _ _ (SliceCap x))) -> (SliceCap x)
   882  (SliceCap (SliceMake _ _ (SliceLen x))) -> (SliceLen x)
   883  (ConstSlice) && config.PtrSize == 4 ->
   884    (SliceMake
   885      (ConstNil <v.Type.ElemType().PtrTo()>)
   886      (Const32 <typ.Int> [0])
   887      (Const32 <typ.Int> [0]))
   888  (ConstSlice) && config.PtrSize == 8 ->
   889    (SliceMake
   890      (ConstNil <v.Type.ElemType().PtrTo()>)
   891      (Const64 <typ.Int> [0])
   892      (Const64 <typ.Int> [0]))
   893  
   894  // interface ops
   895  (ConstInterface) ->
   896    (IMake
   897      (ConstNil <typ.BytePtr>)
   898      (ConstNil <typ.BytePtr>))
   899  
   900  (NilCheck (GetG mem) mem) -> mem
   901  
   902  (If (Not cond) yes no) -> (If cond no yes)
   903  (If (ConstBool [c]) yes no) && c == 1 -> (First nil yes no)
   904  (If (ConstBool [c]) yes no) && c == 0 -> (First nil no yes)
   905  
   906  // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer.
   907  (Convert (Add64 (Convert ptr mem) off) mem) -> (Add64 ptr off)
   908  (Convert (Convert ptr mem) mem) -> ptr
   909  
   910  // Decompose compound argument values
   911  (Arg {n} [off]) && v.Type.IsString() ->
   912    (StringMake
   913      (Arg <typ.BytePtr> {n} [off])
   914      (Arg <typ.Int> {n} [off+config.PtrSize]))
   915  
   916  (Arg {n} [off]) && v.Type.IsSlice() ->
   917    (SliceMake
   918      (Arg <v.Type.ElemType().PtrTo()> {n} [off])
   919      (Arg <typ.Int> {n} [off+config.PtrSize])
   920      (Arg <typ.Int> {n} [off+2*config.PtrSize]))
   921  
   922  (Arg {n} [off]) && v.Type.IsInterface() ->
   923    (IMake
   924      (Arg <typ.BytePtr> {n} [off])
   925      (Arg <typ.BytePtr> {n} [off+config.PtrSize]))
   926  
   927  (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 16 ->
   928    (ComplexMake
   929      (Arg <typ.Float64> {n} [off])
   930      (Arg <typ.Float64> {n} [off+8]))
   931  
   932  (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 8 ->
   933    (ComplexMake
   934      (Arg <typ.Float32> {n} [off])
   935      (Arg <typ.Float32> {n} [off+4]))
   936  
   937  (Arg <t>) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) ->
   938    (StructMake0)
   939  (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) ->
   940    (StructMake1
   941      (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]))
   942  (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) ->
   943    (StructMake2
   944      (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])
   945      (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]))
   946  (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) ->
   947    (StructMake3
   948      (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])
   949      (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])
   950      (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)]))
   951  (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) ->
   952    (StructMake4
   953      (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])
   954      (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])
   955      (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)])
   956      (Arg <t.FieldType(3)> {n} [off+t.FieldOff(3)]))
   957  
   958  (Arg <t>) && t.IsArray() && t.NumElem() == 0 ->
   959    (ArrayMake0)
   960  (Arg <t> {n} [off]) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) ->
   961    (ArrayMake1 (Arg <t.ElemType()> {n} [off]))
   962  
   963  // strength reduction of divide by a constant.
   964  // See ../magic.go for a detailed description of these algorithms.
   965  
   966  // Unsigned divide by power of 2.  Strength reduce to a shift.
   967  (Div8u  n (Const8  [c])) && isPowerOfTwo(c&0xff)       -> (Rsh8Ux64 n  (Const64 <typ.UInt64> [log2(c&0xff)]))
   968  (Div16u n (Const16 [c])) && isPowerOfTwo(c&0xffff)     -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)]))
   969  (Div32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)]))
   970  (Div64u n (Const64 [c])) && isPowerOfTwo(c)            -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)]))
   971  (Div64u n (Const64 [-1<<63]))                          -> (Rsh64Ux64 n (Const64 <typ.UInt64> [63]))
   972  
   973  // Unsigned divide, not a power of 2.  Strength reduce to a multiply.
   974  // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply.
   975  (Div8u x (Const8 [c])) && umagicOK(8, c) ->
   976    (Trunc32to8
   977      (Rsh32Ux64 <typ.UInt32>
   978        (Mul32 <typ.UInt32>
   979          (Const32 <typ.UInt32> [int64(1<<8+umagic(8,c).m)])
   980          (ZeroExt8to32 x))
   981        (Const64 <typ.UInt64> [8+umagic(8,c).s])))
   982  
   983  // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply.
   984  (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 8 ->
   985    (Trunc64to16
   986      (Rsh64Ux64 <typ.UInt64>
   987        (Mul64 <typ.UInt64>
   988          (Const64 <typ.UInt64> [int64(1<<16+umagic(16,c).m)])
   989          (ZeroExt16to64 x))
   990        (Const64 <typ.UInt64> [16+umagic(16,c).s])))
   991  
   992  // For 16-bit divides on 32-bit machines
   993  (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && umagic(16,c).m&1 == 0 ->
   994    (Trunc32to16
   995      (Rsh32Ux64 <typ.UInt32>
   996        (Mul32 <typ.UInt32>
   997          (Const32 <typ.UInt32> [int64(1<<15+umagic(16,c).m/2)])
   998          (ZeroExt16to32 x))
   999        (Const64 <typ.UInt64> [16+umagic(16,c).s-1])))
  1000  (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && c&1 == 0 ->
  1001    (Trunc32to16
  1002      (Rsh32Ux64 <typ.UInt32>
  1003        (Mul32 <typ.UInt32>
  1004          (Const32 <typ.UInt32> [int64(1<<15+(umagic(16,c).m+1)/2)])
  1005          (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1])))
  1006        (Const64 <typ.UInt64> [16+umagic(16,c).s-2])))
  1007  (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 ->
  1008    (Trunc32to16
  1009      (Rsh32Ux64 <typ.UInt32>
  1010        (Avg32u
  1011          (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16]))
  1012          (Mul32 <typ.UInt32>
  1013            (Const32 <typ.UInt32> [int64(umagic(16,c).m)])
  1014            (ZeroExt16to32 x)))
  1015        (Const64 <typ.UInt64> [16+umagic(16,c).s-1])))
  1016  
  1017  // For 32-bit divides on 32-bit machines
  1018  (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && umagic(32,c).m&1 == 0 ->
  1019    (Rsh32Ux64 <typ.UInt32>
  1020      (Hmul32u <typ.UInt32>
  1021        (Const32 <typ.UInt32> [int64(int32(1<<31+umagic(32,c).m/2))])
  1022        x)
  1023      (Const64 <typ.UInt64> [umagic(32,c).s-1]))
  1024  (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && c&1 == 0 ->
  1025    (Rsh32Ux64 <typ.UInt32>
  1026      (Hmul32u <typ.UInt32>
  1027        (Const32 <typ.UInt32> [int64(int32(1<<31+(umagic(32,c).m+1)/2))])
  1028        (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1])))
  1029      (Const64 <typ.UInt64> [umagic(32,c).s-2]))
  1030  (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 ->
  1031    (Rsh32Ux64 <typ.UInt32>
  1032      (Avg32u
  1033        x
  1034        (Hmul32u <typ.UInt32>
  1035          (Const32 <typ.UInt32> [int64(int32(umagic(32,c).m))])
  1036          x))
  1037      (Const64 <typ.UInt64> [umagic(32,c).s-1]))
  1038  
  1039  // For 32-bit divides on 64-bit machines
  1040  // We'll use a regular (non-hi) multiply for this case.
  1041  (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && umagic(32,c).m&1 == 0 ->
  1042    (Trunc64to32
  1043      (Rsh64Ux64 <typ.UInt64>
  1044        (Mul64 <typ.UInt64>
  1045          (Const64 <typ.UInt64> [int64(1<<31+umagic(32,c).m/2)])
  1046          (ZeroExt32to64 x))
  1047        (Const64 <typ.UInt64> [32+umagic(32,c).s-1])))
  1048  (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && c&1 == 0 ->
  1049    (Trunc64to32
  1050      (Rsh64Ux64 <typ.UInt64>
  1051        (Mul64 <typ.UInt64>
  1052          (Const64 <typ.UInt64> [int64(1<<31+(umagic(32,c).m+1)/2)])
  1053          (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1])))
  1054        (Const64 <typ.UInt64> [32+umagic(32,c).s-2])))
  1055  (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 ->
  1056    (Trunc64to32
  1057      (Rsh64Ux64 <typ.UInt64>
  1058        (Avg64u
  1059          (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32]))
  1060          (Mul64 <typ.UInt64>
  1061            (Const64 <typ.UInt32> [int64(umagic(32,c).m)])
  1062            (ZeroExt32to64 x)))
  1063        (Const64 <typ.UInt64> [32+umagic(32,c).s-1])))
  1064  
  1065  // For 64-bit divides on 64-bit machines
  1066  // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.)
  1067  (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && umagic(64,c).m&1 == 0 ->
  1068    (Rsh64Ux64 <typ.UInt64>
  1069      (Hmul64u <typ.UInt64>
  1070        (Const64 <typ.UInt64> [int64(1<<63+umagic(64,c).m/2)])
  1071        x)
  1072      (Const64 <typ.UInt64> [umagic(64,c).s-1]))
  1073  (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && c&1 == 0 ->
  1074    (Rsh64Ux64 <typ.UInt64>
  1075      (Hmul64u <typ.UInt64>
  1076        (Const64 <typ.UInt64> [int64(1<<63+(umagic(64,c).m+1)/2)])
  1077        (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1])))
  1078      (Const64 <typ.UInt64> [umagic(64,c).s-2]))
  1079  (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 ->
  1080    (Rsh64Ux64 <typ.UInt64>
  1081      (Avg64u
  1082        x
  1083        (Hmul64u <typ.UInt64>
  1084          (Const64 <typ.UInt64> [int64(umagic(64,c).m)])
  1085          x))
  1086      (Const64 <typ.UInt64> [umagic(64,c).s-1]))
  1087  
  1088  // Signed divide by a negative constant.  Rewrite to divide by a positive constant.
  1089  (Div8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  -> (Neg8  (Div8  <t> n (Const8  <t> [-c])))
  1090  (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Neg16 (Div16 <t> n (Const16 <t> [-c])))
  1091  (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Neg32 (Div32 <t> n (Const32 <t> [-c])))
  1092  (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Neg64 (Div64 <t> n (Const64 <t> [-c])))
  1093  
  1094  // Dividing by the most-negative number.  Result is always 0 except
  1095  // if the input is also the most-negative number.
  1096  // We can detect that using the sign bit of x & -x.
  1097  (Div8  <t> x (Const8  [-1<<7 ])) -> (Rsh8Ux64  (And8  <t> x (Neg8  <t> x)) (Const64 <typ.UInt64> [7 ]))
  1098  (Div16 <t> x (Const16 [-1<<15])) -> (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15]))
  1099  (Div32 <t> x (Const32 [-1<<31])) -> (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31]))
  1100  (Div64 <t> x (Const64 [-1<<63])) -> (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63]))
  1101  
  1102  // Signed divide by power of 2.
  1103  // n / c =       n >> log(c) if n >= 0
  1104  //       = (n+c-1) >> log(c) if n < 0
  1105  // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned).
  1106  (Div8  <t> n (Const8  [c])) && isPowerOfTwo(c) ->
  1107    (Rsh8x64
  1108      (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [ 8-log2(c)])))
  1109      (Const64 <typ.UInt64> [log2(c)]))
  1110  (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) ->
  1111    (Rsh16x64
  1112      (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [16-log2(c)])))
  1113      (Const64 <typ.UInt64> [log2(c)]))
  1114  (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) ->
  1115    (Rsh32x64
  1116      (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [32-log2(c)])))
  1117      (Const64 <typ.UInt64> [log2(c)]))
  1118  (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) ->
  1119    (Rsh64x64
  1120      (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [64-log2(c)])))
  1121      (Const64 <typ.UInt64> [log2(c)]))
  1122  
  1123  // Signed divide, not a power of 2.  Strength reduce to a multiply.
  1124  (Div8 <t> x (Const8 [c])) && smagicOK(8,c) ->
  1125    (Sub8 <t>
  1126      (Rsh32x64 <t>
  1127        (Mul32 <typ.UInt32>
  1128          (Const32 <typ.UInt32> [int64(smagic(8,c).m)])
  1129          (SignExt8to32 x))
  1130        (Const64 <typ.UInt64> [8+smagic(8,c).s]))
  1131      (Rsh32x64 <t>
  1132        (SignExt8to32 x)
  1133        (Const64 <typ.UInt64> [31])))
  1134  (Div16 <t> x (Const16 [c])) && smagicOK(16,c) ->
  1135    (Sub16 <t>
  1136      (Rsh32x64 <t>
  1137        (Mul32 <typ.UInt32>
  1138          (Const32 <typ.UInt32> [int64(smagic(16,c).m)])
  1139          (SignExt16to32 x))
  1140        (Const64 <typ.UInt64> [16+smagic(16,c).s]))
  1141      (Rsh32x64 <t>
  1142        (SignExt16to32 x)
  1143        (Const64 <typ.UInt64> [31])))
  1144  (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 8 ->
  1145    (Sub32 <t>
  1146      (Rsh64x64 <t>
  1147        (Mul64 <typ.UInt64>
  1148          (Const64 <typ.UInt64> [int64(smagic(32,c).m)])
  1149          (SignExt32to64 x))
  1150        (Const64 <typ.UInt64> [32+smagic(32,c).s]))
  1151      (Rsh64x64 <t>
  1152        (SignExt32to64 x)
  1153        (Const64 <typ.UInt64> [63])))
  1154  (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 == 0 ->
  1155    (Sub32 <t>
  1156      (Rsh32x64 <t>
  1157        (Hmul32 <t>
  1158          (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m/2))])
  1159          x)
  1160        (Const64 <typ.UInt64> [smagic(32,c).s-1]))
  1161      (Rsh32x64 <t>
  1162        x
  1163        (Const64 <typ.UInt64> [31])))
  1164  (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 != 0 ->
  1165    (Sub32 <t>
  1166      (Rsh32x64 <t>
  1167        (Add32 <t>
  1168          (Hmul32 <t>
  1169            (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m))])
  1170            x)
  1171          x)
  1172        (Const64 <typ.UInt64> [smagic(32,c).s]))
  1173      (Rsh32x64 <t>
  1174        x
  1175        (Const64 <typ.UInt64> [31])))
  1176  (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 == 0 ->
  1177    (Sub64 <t>
  1178      (Rsh64x64 <t>
  1179        (Hmul64 <t>
  1180          (Const64 <typ.UInt64> [int64(smagic(64,c).m/2)])
  1181          x)
  1182        (Const64 <typ.UInt64> [smagic(64,c).s-1]))
  1183      (Rsh64x64 <t>
  1184        x
  1185        (Const64 <typ.UInt64> [63])))
  1186  (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 != 0 ->
  1187    (Sub64 <t>
  1188      (Rsh64x64 <t>
  1189        (Add64 <t>
  1190          (Hmul64 <t>
  1191            (Const64 <typ.UInt64> [int64(smagic(64,c).m)])
  1192            x)
  1193          x)
  1194        (Const64 <typ.UInt64> [smagic(64,c).s]))
  1195      (Rsh64x64 <t>
  1196        x
  1197        (Const64 <typ.UInt64> [63])))
  1198  
  1199  // Unsigned mod by power of 2 constant.
  1200  (Mod8u  <t> n (Const8  [c])) && isPowerOfTwo(c&0xff)       -> (And8 n (Const8 <t> [(c&0xff)-1]))
  1201  (Mod16u <t> n (Const16 [c])) && isPowerOfTwo(c&0xffff)     -> (And16 n (Const16 <t> [(c&0xffff)-1]))
  1202  (Mod32u <t> n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1]))
  1203  (Mod64u <t> n (Const64 [c])) && isPowerOfTwo(c)            -> (And64 n (Const64 <t> [c-1]))
  1204  (Mod64u <t> n (Const64 [-1<<63]))                          -> (And64 n (Const64 <t> [1<<63-1]))
  1205  
  1206  // Signed mod by negative constant.
  1207  (Mod8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  -> (Mod8  <t> n (Const8  <t> [-c]))
  1208  (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Mod16 <t> n (Const16 <t> [-c]))
  1209  (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 <t> n (Const32 <t> [-c]))
  1210  (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 <t> n (Const64 <t> [-c]))
  1211  
  1212  // All other mods by constants, do A%B = A-(A/B*B).
  1213  // This implements % with two * and a bunch of ancillary ops.
  1214  // One of the * is free if the user's code also computes A/B.
  1215  (Mod8   <t> x (Const8  [c])) && x.Op != OpConst8  && (c > 0 || c == -1<<7)
  1216    -> (Sub8  x (Mul8  <t> (Div8   <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1217  (Mod16  <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15)
  1218    -> (Sub16 x (Mul16 <t> (Div16  <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1219  (Mod32  <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31)
  1220    -> (Sub32 x (Mul32 <t> (Div32  <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1221  (Mod64  <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63)
  1222    -> (Sub64 x (Mul64 <t> (Div64  <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1223  (Mod8u  <t> x (Const8  [c])) && x.Op != OpConst8  && c > 0 && umagicOK(8 ,c)
  1224    -> (Sub8  x (Mul8  <t> (Div8u  <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1225  (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK(16,c)
  1226    -> (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1227  (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK(32,c)
  1228    -> (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1229  (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK(64,c)
  1230    -> (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1231  
  1232  // Reassociate expressions involving
  1233  // constants such that constants come first,
  1234  // exposing obvious constant-folding opportunities.
  1235  // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C
  1236  // is constant, which pushes constants to the outside
  1237  // of the expression. At that point, any constant-folding
  1238  // opportunities should be obvious.
  1239  
  1240  // x + (C + z) -> C + (x + z)
  1241  (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Add64 <t> z x))
  1242  (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Add32 <t> z x))
  1243  (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Add16 <t> z x))
  1244  (Add8  (Add8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Add8  i (Add8  <t> z x))
  1245  
  1246  // x + (C - z) -> C + (x - z)
  1247  (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z))
  1248  (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z))
  1249  (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z))
  1250  (Add8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Add8  i (Sub8  <t> x z))
  1251  (Add64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z))
  1252  (Add32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z))
  1253  (Add16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z))
  1254  (Add8  x (Sub8  i:(Const8  <t>) z)) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Add8  i (Sub8  <t> x z))
  1255  
  1256  // x + (z - C) -> (x + z) - C
  1257  (Add64 (Sub64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i)
  1258  (Add32 (Sub32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i)
  1259  (Add16 (Sub16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i)
  1260  (Add8  (Sub8  z i:(Const8  <t>)) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Sub8  (Add8  <t> x z) i)
  1261  (Add64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i)
  1262  (Add32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i)
  1263  (Add16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i)
  1264  (Add8  x (Sub8  z i:(Const8  <t>))) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Sub8  (Add8  <t> x z) i)
  1265  
  1266  // x - (C - z) -> x + (z - C) -> (x + z) - C
  1267  (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i)
  1268  (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i)
  1269  (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i)
  1270  (Sub8  x (Sub8  i:(Const8  <t>) z)) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Sub8  (Add8  <t> x z) i)
  1271  
  1272  // x - (z - C) -> x + (C - z) -> (x - z) + C
  1273  (Sub64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z))
  1274  (Sub32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z))
  1275  (Sub16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z))
  1276  (Sub8  x (Sub8  z i:(Const8  <t>))) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Add8  i (Sub8  <t> x z))
  1277  
  1278  // x & (C & z) -> C & (x & z)
  1279  (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (And64 i (And64 <t> z x))
  1280  (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (And32 i (And32 <t> z x))
  1281  (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (And16 i (And16 <t> z x))
  1282  (And8  (And8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (And8  i (And8  <t> z x))
  1283  
  1284  // x | (C | z) -> C | (x | z)
  1285  (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Or64 i (Or64 <t> z x))
  1286  (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Or32 i (Or32 <t> z x))
  1287  (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Or16 i (Or16 <t> z x))
  1288  (Or8  (Or8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Or8  i (Or8  <t> z x))
  1289  
  1290  // x ^ (C ^ z) -> C ^ (x ^ z)
  1291  (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Xor64 i (Xor64 <t> z x))
  1292  (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Xor32 i (Xor32 <t> z x))
  1293  (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Xor16 i (Xor16 <t> z x))
  1294  (Xor8  (Xor8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  -> (Xor8  i (Xor8  <t> z x))
  1295  
  1296  // C + (D + x) -> (C + D) + x
  1297  (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c+d]) x)
  1298  (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c+d))]) x)
  1299  (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c+d))]) x)
  1300  (Add8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) -> (Add8  (Const8  <t> [int64(int8(c+d))]) x)
  1301  
  1302  // C + (D - x) -> (C + D) - x
  1303  (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Sub64 (Const64 <t> [c+d]) x)
  1304  (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x)
  1305  (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x)
  1306  (Add8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) -> (Sub8  (Const8  <t> [int64(int8(c+d))]) x)
  1307  
  1308  // C + (x - D) -> (C - D) + x
  1309  (Add64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Add64 (Const64 <t> [c-d]) x)
  1310  (Add32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x)
  1311  (Add16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x)
  1312  (Add8  (Const8  <t> [c]) (Sub8  x (Const8  <t> [d]))) -> (Add8  (Const8  <t> [int64(int8(c-d))]) x)
  1313  
  1314  // C - (x - D) -> (C + D) - x
  1315  (Sub64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Sub64 (Const64 <t> [c+d]) x)
  1316  (Sub32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x)
  1317  (Sub16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x)
  1318  (Sub8  (Const8  <t> [c]) (Sub8  x (Const8  <t> [d]))) -> (Sub8  (Const8  <t> [int64(int8(c+d))]) x)
  1319  
  1320  // C - (D - x) -> (C - D) + x
  1321  (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c-d]) x)
  1322  (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x)
  1323  (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x)
  1324  (Sub8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) -> (Add8  (Const8  <t> [int64(int8(c-d))]) x)
  1325  
  1326  // C & (D & x) -> (C & D) & x
  1327  (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) -> (And64 (Const64 <t> [c&d]) x)
  1328  (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) -> (And32 (Const32 <t> [int64(int32(c&d))]) x)
  1329  (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) -> (And16 (Const16 <t> [int64(int16(c&d))]) x)
  1330  (And8  (Const8  <t> [c]) (And8  (Const8  <t> [d]) x)) -> (And8  (Const8  <t> [int64(int8(c&d))]) x)
  1331  
  1332  // C | (D | x) -> (C | D) | x
  1333  (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) -> (Or64 (Const64 <t> [c|d]) x)
  1334  (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) -> (Or32 (Const32 <t> [int64(int32(c|d))]) x)
  1335  (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) -> (Or16 (Const16 <t> [int64(int16(c|d))]) x)
  1336  (Or8  (Const8  <t> [c]) (Or8  (Const8  <t> [d]) x)) -> (Or8  (Const8  <t> [int64(int8(c|d))]) x)
  1337  
  1338  // C ^ (D ^ x) -> (C ^ D) ^ x
  1339  (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) -> (Xor64 (Const64 <t> [c^d]) x)
  1340  (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) -> (Xor32 (Const32 <t> [int64(int32(c^d))]) x)
  1341  (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) -> (Xor16 (Const16 <t> [int64(int16(c^d))]) x)
  1342  (Xor8  (Const8  <t> [c]) (Xor8  (Const8  <t> [d]) x)) -> (Xor8  (Const8  <t> [int64(int8(c^d))]) x)
  1343  
  1344  // C * (D * x) = (C * D) * x
  1345  (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) -> (Mul64 (Const64 <t> [c*d]) x)
  1346  (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) -> (Mul32 (Const32 <t> [int64(int32(c*d))]) x)
  1347  (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) -> (Mul16 (Const16 <t> [int64(int16(c*d))]) x)
  1348  (Mul8  (Const8  <t> [c]) (Mul8  (Const8  <t> [d]) x)) -> (Mul8  (Const8  <t> [int64(int8(c*d))]) x)
  1349  
  1350  // floating point optimizations
  1351  (Add32F x (Const32F [0])) -> x
  1352  (Add64F x (Const64F [0])) -> x
  1353  (Sub32F x (Const32F [0])) -> x
  1354  (Sub64F x (Const64F [0])) -> x
  1355  (Mul32F x (Const32F [f2i(1)])) -> x
  1356  (Mul64F x (Const64F [f2i(1)])) -> x
  1357  (Mul32F x (Const32F [f2i(-1)])) -> (Neg32F x)
  1358  (Mul64F x (Const64F [f2i(-1)])) -> (Neg64F x)
  1359  (Mul32F x (Const32F [f2i(2)])) -> (Add32F x x)
  1360  (Mul64F x (Const64F [f2i(2)])) -> (Add64F x x)
  1361  (Div32F x (Const32F <t> [c])) && reciprocalExact32(float32(i2f(c))) -> (Mul32F x (Const32F <t> [f2i(1/i2f(c))]))
  1362  (Div64F x (Const64F <t> [c])) && reciprocalExact64(i2f(c))          -> (Mul64F x (Const64F <t> [f2i(1/i2f(c))]))
  1363  
  1364  (Sqrt (Const64F [c])) -> (Const64F [f2i(math.Sqrt(i2f(c)))])
  1365  
  1366  // recognize runtime.newobject and don't Zero/Nilcheck it
  1367  (Zero (Load (OffPtr [c] (SP)) mem) mem)
  1368  	&& mem.Op == OpStaticCall
  1369  	&& isSameSym(mem.Aux, "runtime.newobject")
  1370  	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
  1371  	-> mem
  1372  (Store (Load (OffPtr [c] (SP)) mem) x mem)
  1373  	&& isConstZero(x)
  1374  	&& mem.Op == OpStaticCall
  1375  	&& isSameSym(mem.Aux, "runtime.newobject")
  1376  	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
  1377  	-> mem
  1378  (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem)
  1379  	&& isConstZero(x)
  1380  	&& mem.Op == OpStaticCall
  1381  	&& isSameSym(mem.Aux, "runtime.newobject")
  1382  	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
  1383  	-> mem
  1384  // nil checks just need to rewrite to something useless.
  1385  // they will be deadcode eliminated soon afterwards.
  1386  (NilCheck (Load (OffPtr [c] (SP)) (StaticCall {sym} _)) _)
  1387  	&& isSameSym(sym, "runtime.newobject")
  1388  	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
  1389  	&& warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check")
  1390  	-> (Invalid)
  1391  (NilCheck (OffPtr (Load (OffPtr [c] (SP)) (StaticCall {sym} _))) _)
  1392  	&& isSameSym(sym, "runtime.newobject")
  1393  	&& c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value
  1394  	&& warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check")
  1395  	-> (Invalid)
  1396  
  1397  // Address comparison shows up in type assertions.
  1398  (EqPtr x x) -> (ConstBool [1])
  1399  (EqPtr (Addr {a} x) (Addr {b} x)) -> (ConstBool [b2i(a == b)])
  1400  
  1401  // De-virtualize interface calls into static calls.
  1402  // Note that (ITab (IMake)) doesn't get
  1403  // rewritten until after the first opt pass,
  1404  // so this rule should trigger reliably.
  1405  (InterCall [argsize] (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, itab, off) != nil ->
  1406  	(StaticCall [argsize] {devirt(v, itab, off)} mem)