github.com/hlts2/go@v0.0.0-20170904000733-812b34efaed8/src/cmd/compile/internal/ssa/regalloc.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Register allocation.
     6  //
     7  // We use a version of a linear scan register allocator. We treat the
     8  // whole function as a single long basic block and run through
     9  // it using a greedy register allocator. Then all merge edges
    10  // (those targeting a block with len(Preds)>1) are processed to
    11  // shuffle data into the place that the target of the edge expects.
    12  //
    13  // The greedy allocator moves values into registers just before they
    14  // are used, spills registers only when necessary, and spills the
    15  // value whose next use is farthest in the future.
    16  //
    17  // The register allocator requires that a block is not scheduled until
    18  // at least one of its predecessors have been scheduled. The most recent
    19  // such predecessor provides the starting register state for a block.
    20  //
    21  // It also requires that there are no critical edges (critical =
    22  // comes from a block with >1 successor and goes to a block with >1
    23  // predecessor).  This makes it easy to add fixup code on merge edges -
    24  // the source of a merge edge has only one successor, so we can add
    25  // fixup code to the end of that block.
    26  
    27  // Spilling
    28  //
    29  // During the normal course of the allocator, we might throw a still-live
    30  // value out of all registers. When that value is subsequently used, we must
    31  // load it from a slot on the stack. We must also issue an instruction to
    32  // initialize that stack location with a copy of v.
    33  //
    34  // pre-regalloc:
    35  //   (1) v = Op ...
    36  //   (2) x = Op ...
    37  //   (3) ... = Op v ...
    38  //
    39  // post-regalloc:
    40  //   (1) v = Op ...    : AX // computes v, store result in AX
    41  //       s = StoreReg v     // spill v to a stack slot
    42  //   (2) x = Op ...    : AX // some other op uses AX
    43  //       c = LoadReg s : CX // restore v from stack slot
    44  //   (3) ... = Op c ...     // use the restored value
    45  //
    46  // Allocation occurs normally until we reach (3) and we realize we have
    47  // a use of v and it isn't in any register. At that point, we allocate
    48  // a spill (a StoreReg) for v. We can't determine the correct place for
    49  // the spill at this point, so we allocate the spill as blockless initially.
    50  // The restore is then generated to load v back into a register so it can
    51  // be used. Subsequent uses of v will use the restored value c instead.
    52  //
    53  // What remains is the question of where to schedule the spill.
    54  // During allocation, we keep track of the dominator of all restores of v.
    55  // The spill of v must dominate that block. The spill must also be issued at
    56  // a point where v is still in a register.
    57  //
    58  // To find the right place, start at b, the block which dominates all restores.
    59  //  - If b is v.Block, then issue the spill right after v.
    60  //    It is known to be in a register at that point, and dominates any restores.
    61  //  - Otherwise, if v is in a register at the start of b,
    62  //    put the spill of v at the start of b.
    63  //  - Otherwise, set b = immediate dominator of b, and repeat.
    64  //
    65  // Phi values are special, as always. We define two kinds of phis, those
    66  // where the merge happens in a register (a "register" phi) and those where
    67  // the merge happens in a stack location (a "stack" phi).
    68  //
    69  // A register phi must have the phi and all of its inputs allocated to the
    70  // same register. Register phis are spilled similarly to regular ops.
    71  //
    72  // A stack phi must have the phi and all of its inputs allocated to the same
    73  // stack location. Stack phis start out life already spilled - each phi
    74  // input must be a store (using StoreReg) at the end of the corresponding
    75  // predecessor block.
    76  //     b1: y = ... : AX        b2: z = ... : BX
    77  //         y2 = StoreReg y         z2 = StoreReg z
    78  //         goto b3                 goto b3
    79  //     b3: x = phi(y2, z2)
    80  // The stack allocator knows that StoreReg args of stack-allocated phis
    81  // must be allocated to the same stack slot as the phi that uses them.
    82  // x is now a spilled value and a restore must appear before its first use.
    83  
    84  // TODO
    85  
    86  // Use an affinity graph to mark two values which should use the
    87  // same register. This affinity graph will be used to prefer certain
    88  // registers for allocation. This affinity helps eliminate moves that
    89  // are required for phi implementations and helps generate allocations
    90  // for 2-register architectures.
    91  
    92  // Note: regalloc generates a not-quite-SSA output. If we have:
    93  //
    94  //             b1: x = ... : AX
    95  //                 x2 = StoreReg x
    96  //                 ... AX gets reused for something else ...
    97  //                 if ... goto b3 else b4
    98  //
    99  //   b3: x3 = LoadReg x2 : BX       b4: x4 = LoadReg x2 : CX
   100  //       ... use x3 ...                 ... use x4 ...
   101  //
   102  //             b2: ... use x3 ...
   103  //
   104  // If b3 is the primary predecessor of b2, then we use x3 in b2 and
   105  // add a x4:CX->BX copy at the end of b4.
   106  // But the definition of x3 doesn't dominate b2.  We should really
   107  // insert a dummy phi at the start of b2 (x5=phi(x3,x4):BX) to keep
   108  // SSA form. For now, we ignore this problem as remaining in strict
   109  // SSA form isn't needed after regalloc. We'll just leave the use
   110  // of x3 not dominated by the definition of x3, and the CX->BX copy
   111  // will have no use (so don't run deadcode after regalloc!).
   112  // TODO: maybe we should introduce these extra phis?
   113  
   114  package ssa
   115  
   116  import (
   117  	"cmd/compile/internal/types"
   118  	"cmd/internal/objabi"
   119  	"cmd/internal/src"
   120  	"fmt"
   121  	"unsafe"
   122  )
   123  
   124  const (
   125  	moveSpills = iota
   126  	logSpills
   127  	regDebug
   128  	stackDebug
   129  )
   130  
   131  // distance is a measure of how far into the future values are used.
   132  // distance is measured in units of instructions.
   133  const (
   134  	likelyDistance   = 1
   135  	normalDistance   = 10
   136  	unlikelyDistance = 100
   137  )
   138  
   139  // regalloc performs register allocation on f. It sets f.RegAlloc
   140  // to the resulting allocation.
   141  func regalloc(f *Func) {
   142  	var s regAllocState
   143  	s.init(f)
   144  	s.regalloc(f)
   145  }
   146  
   147  type register uint8
   148  
   149  const noRegister register = 255
   150  
   151  type regMask uint64
   152  
   153  func (m regMask) String() string {
   154  	s := ""
   155  	for r := register(0); m != 0; r++ {
   156  		if m>>r&1 == 0 {
   157  			continue
   158  		}
   159  		m &^= regMask(1) << r
   160  		if s != "" {
   161  			s += " "
   162  		}
   163  		s += fmt.Sprintf("r%d", r)
   164  	}
   165  	return s
   166  }
   167  
   168  // countRegs returns the number of set bits in the register mask.
   169  func countRegs(r regMask) int {
   170  	n := 0
   171  	for r != 0 {
   172  		n += int(r & 1)
   173  		r >>= 1
   174  	}
   175  	return n
   176  }
   177  
   178  // pickReg picks an arbitrary register from the register mask.
   179  func pickReg(r regMask) register {
   180  	// pick the lowest one
   181  	if r == 0 {
   182  		panic("can't pick a register from an empty set")
   183  	}
   184  	for i := register(0); ; i++ {
   185  		if r&1 != 0 {
   186  			return i
   187  		}
   188  		r >>= 1
   189  	}
   190  }
   191  
   192  type use struct {
   193  	dist int32    // distance from start of the block to a use of a value
   194  	pos  src.XPos // source position of the use
   195  	next *use     // linked list of uses of a value in nondecreasing dist order
   196  }
   197  
   198  // A valState records the register allocation state for a (pre-regalloc) value.
   199  type valState struct {
   200  	regs              regMask // the set of registers holding a Value (usually just one)
   201  	uses              *use    // list of uses in this block
   202  	spill             *Value  // spilled copy of the Value (if any)
   203  	restoreMin        int32   // minimum of all restores' blocks' sdom.entry
   204  	restoreMax        int32   // maximum of all restores' blocks' sdom.exit
   205  	needReg           bool    // cached value of !v.Type.IsMemory() && !v.Type.IsVoid() && !.v.Type.IsFlags()
   206  	rematerializeable bool    // cached value of v.rematerializeable()
   207  }
   208  
   209  type regState struct {
   210  	v *Value // Original (preregalloc) Value stored in this register.
   211  	c *Value // A Value equal to v which is currently in a register.  Might be v or a copy of it.
   212  	// If a register is unused, v==c==nil
   213  }
   214  
   215  type regAllocState struct {
   216  	f *Func
   217  
   218  	sdom        SparseTree
   219  	registers   []Register
   220  	numRegs     register
   221  	SPReg       register
   222  	SBReg       register
   223  	GReg        register
   224  	allocatable regMask
   225  
   226  	// for each block, its primary predecessor.
   227  	// A predecessor of b is primary if it is the closest
   228  	// predecessor that appears before b in the layout order.
   229  	// We record the index in the Preds list where the primary predecessor sits.
   230  	primary []int32
   231  
   232  	// live values at the end of each block.  live[b.ID] is a list of value IDs
   233  	// which are live at the end of b, together with a count of how many instructions
   234  	// forward to the next use.
   235  	live [][]liveInfo
   236  	// desired register assignments at the end of each block.
   237  	// Note that this is a static map computed before allocation occurs. Dynamic
   238  	// register desires (from partially completed allocations) will trump
   239  	// this information.
   240  	desired []desiredState
   241  
   242  	// current state of each (preregalloc) Value
   243  	values []valState
   244  
   245  	// names associated with each Value
   246  	valueNames [][]LocalSlot
   247  
   248  	// ID of SP, SB values
   249  	sp, sb ID
   250  
   251  	// For each Value, map from its value ID back to the
   252  	// preregalloc Value it was derived from.
   253  	orig []*Value
   254  
   255  	// current state of each register
   256  	regs []regState
   257  
   258  	// registers that contain values which can't be kicked out
   259  	nospill regMask
   260  
   261  	// mask of registers currently in use
   262  	used regMask
   263  
   264  	// mask of registers used in the current instruction
   265  	tmpused regMask
   266  
   267  	// current block we're working on
   268  	curBlock *Block
   269  
   270  	// cache of use records
   271  	freeUseRecords *use
   272  
   273  	// endRegs[blockid] is the register state at the end of each block.
   274  	// encoded as a set of endReg records.
   275  	endRegs [][]endReg
   276  
   277  	// startRegs[blockid] is the register state at the start of merge blocks.
   278  	// saved state does not include the state of phi ops in the block.
   279  	startRegs [][]startReg
   280  
   281  	// spillLive[blockid] is the set of live spills at the end of each block
   282  	spillLive [][]ID
   283  
   284  	// a set of copies we generated to move things around, and
   285  	// whether it is used in shuffle. Unused copies will be deleted.
   286  	copies map[*Value]bool
   287  
   288  	loopnest *loopnest
   289  }
   290  
   291  type endReg struct {
   292  	r register
   293  	v *Value // pre-regalloc value held in this register (TODO: can we use ID here?)
   294  	c *Value // cached version of the value
   295  }
   296  
   297  type startReg struct {
   298  	r   register
   299  	v   *Value   // pre-regalloc value needed in this register
   300  	c   *Value   // cached version of the value
   301  	pos src.XPos // source position of use of this register
   302  }
   303  
   304  // freeReg frees up register r. Any current user of r is kicked out.
   305  func (s *regAllocState) freeReg(r register) {
   306  	s.freeOrResetReg(r, false)
   307  }
   308  
   309  // freeOrResetReg frees up register r. Any current user of r is kicked out.
   310  // resetting indicates that the operation is only for bookkeeping,
   311  // e.g. when clearing out state upon entry to a new block.
   312  func (s *regAllocState) freeOrResetReg(r register, resetting bool) {
   313  	v := s.regs[r].v
   314  	if v == nil {
   315  		s.f.Fatalf("tried to free an already free register %d\n", r)
   316  	}
   317  
   318  	// Mark r as unused.
   319  	if s.f.pass.debug > regDebug {
   320  		fmt.Printf("freeReg %s (dump %s/%s)\n", &s.registers[r], v, s.regs[r].c)
   321  	}
   322  	if !resetting && s.f.Config.ctxt.Flag_locationlists && len(s.valueNames[v.ID]) != 0 {
   323  		kill := s.curBlock.NewValue0(src.NoXPos, OpRegKill, types.TypeVoid)
   324  		for int(kill.ID) >= len(s.orig) {
   325  			s.orig = append(s.orig, nil)
   326  		}
   327  		for _, name := range s.valueNames[v.ID] {
   328  			s.f.NamedValues[name] = append(s.f.NamedValues[name], kill)
   329  		}
   330  		s.f.setHome(kill, &s.registers[r])
   331  	}
   332  	s.regs[r] = regState{}
   333  	s.values[v.ID].regs &^= regMask(1) << r
   334  	s.used &^= regMask(1) << r
   335  }
   336  
   337  // freeRegs frees up all registers listed in m.
   338  func (s *regAllocState) freeRegs(m regMask) {
   339  	for m&s.used != 0 {
   340  		s.freeReg(pickReg(m & s.used))
   341  	}
   342  }
   343  
   344  // setOrig records that c's original value is the same as
   345  // v's original value.
   346  func (s *regAllocState) setOrig(c *Value, v *Value) {
   347  	for int(c.ID) >= len(s.orig) {
   348  		s.orig = append(s.orig, nil)
   349  	}
   350  	if s.orig[c.ID] != nil {
   351  		s.f.Fatalf("orig value set twice %s %s", c, v)
   352  	}
   353  	s.orig[c.ID] = s.orig[v.ID]
   354  }
   355  
   356  // assignReg assigns register r to hold c, a copy of v.
   357  // r must be unused.
   358  func (s *regAllocState) assignReg(r register, v *Value, c *Value) {
   359  	if s.f.pass.debug > regDebug {
   360  		fmt.Printf("assignReg %s %s/%s\n", &s.registers[r], v, c)
   361  	}
   362  	if s.regs[r].v != nil {
   363  		s.f.Fatalf("tried to assign register %d to %s/%s but it is already used by %s", r, v, c, s.regs[r].v)
   364  	}
   365  
   366  	// Update state.
   367  	s.regs[r] = regState{v, c}
   368  	s.values[v.ID].regs |= regMask(1) << r
   369  	s.used |= regMask(1) << r
   370  	s.f.setHome(c, &s.registers[r])
   371  }
   372  
   373  // allocReg chooses a register from the set of registers in mask.
   374  // If there is no unused register, a Value will be kicked out of
   375  // a register to make room.
   376  func (s *regAllocState) allocReg(mask regMask, v *Value) register {
   377  	mask &= s.allocatable
   378  	mask &^= s.nospill
   379  	if mask == 0 {
   380  		s.f.Fatalf("no register available for %s", v)
   381  	}
   382  
   383  	// Pick an unused register if one is available.
   384  	if mask&^s.used != 0 {
   385  		return pickReg(mask &^ s.used)
   386  	}
   387  
   388  	// Pick a value to spill. Spill the value with the
   389  	// farthest-in-the-future use.
   390  	// TODO: Prefer registers with already spilled Values?
   391  	// TODO: Modify preference using affinity graph.
   392  	// TODO: if a single value is in multiple registers, spill one of them
   393  	// before spilling a value in just a single register.
   394  
   395  	// Find a register to spill. We spill the register containing the value
   396  	// whose next use is as far in the future as possible.
   397  	// https://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm
   398  	var r register
   399  	maxuse := int32(-1)
   400  	for t := register(0); t < s.numRegs; t++ {
   401  		if mask>>t&1 == 0 {
   402  			continue
   403  		}
   404  		v := s.regs[t].v
   405  		if n := s.values[v.ID].uses.dist; n > maxuse {
   406  			// v's next use is farther in the future than any value
   407  			// we've seen so far. A new best spill candidate.
   408  			r = t
   409  			maxuse = n
   410  		}
   411  	}
   412  	if maxuse == -1 {
   413  		s.f.Fatalf("couldn't find register to spill")
   414  	}
   415  
   416  	// Try to move it around before kicking out, if there is a free register.
   417  	// We generate a Copy and record it. It will be deleted if never used.
   418  	v2 := s.regs[r].v
   419  	m := s.compatRegs(v2.Type) &^ s.used &^ s.tmpused &^ (regMask(1) << r)
   420  	if m != 0 && !s.values[v2.ID].rematerializeable && countRegs(s.values[v2.ID].regs) == 1 {
   421  		r2 := pickReg(m)
   422  		c := s.curBlock.NewValue1(v2.Pos, OpCopy, v2.Type, s.regs[r].c)
   423  		s.copies[c] = false
   424  		if s.f.pass.debug > regDebug {
   425  			fmt.Printf("copy %s to %s : %s\n", v2, c, &s.registers[r2])
   426  		}
   427  		s.setOrig(c, v2)
   428  		s.assignReg(r2, v2, c)
   429  	}
   430  	s.freeReg(r)
   431  	return r
   432  }
   433  
   434  // makeSpill returns a Value which represents the spilled value of v.
   435  // b is the block in which the spill is used.
   436  func (s *regAllocState) makeSpill(v *Value, b *Block) *Value {
   437  	vi := &s.values[v.ID]
   438  	if vi.spill != nil {
   439  		// Final block not known - keep track of subtree where restores reside.
   440  		vi.restoreMin = min32(vi.restoreMin, s.sdom[b.ID].entry)
   441  		vi.restoreMax = max32(vi.restoreMax, s.sdom[b.ID].exit)
   442  		return vi.spill
   443  	}
   444  	// Make a spill for v. We don't know where we want
   445  	// to put it yet, so we leave it blockless for now.
   446  	spill := s.f.newValueNoBlock(OpStoreReg, v.Type, v.Pos)
   447  	// We also don't know what the spill's arg will be.
   448  	// Leave it argless for now.
   449  	s.setOrig(spill, v)
   450  	vi.spill = spill
   451  	vi.restoreMin = s.sdom[b.ID].entry
   452  	vi.restoreMax = s.sdom[b.ID].exit
   453  	return spill
   454  }
   455  
   456  // allocValToReg allocates v to a register selected from regMask and
   457  // returns the register copy of v. Any previous user is kicked out and spilled
   458  // (if necessary). Load code is added at the current pc. If nospill is set the
   459  // allocated register is marked nospill so the assignment cannot be
   460  // undone until the caller allows it by clearing nospill. Returns a
   461  // *Value which is either v or a copy of v allocated to the chosen register.
   462  func (s *regAllocState) allocValToReg(v *Value, mask regMask, nospill bool, pos src.XPos) *Value {
   463  	vi := &s.values[v.ID]
   464  
   465  	// Check if v is already in a requested register.
   466  	if mask&vi.regs != 0 {
   467  		r := pickReg(mask & vi.regs)
   468  		if s.regs[r].v != v || s.regs[r].c == nil {
   469  			panic("bad register state")
   470  		}
   471  		if nospill {
   472  			s.nospill |= regMask(1) << r
   473  		}
   474  		return s.regs[r].c
   475  	}
   476  
   477  	// Allocate a register.
   478  	r := s.allocReg(mask, v)
   479  
   480  	// Allocate v to the new register.
   481  	var c *Value
   482  	if vi.regs != 0 {
   483  		// Copy from a register that v is already in.
   484  		r2 := pickReg(vi.regs)
   485  		if s.regs[r2].v != v {
   486  			panic("bad register state")
   487  		}
   488  		c = s.curBlock.NewValue1(pos, OpCopy, v.Type, s.regs[r2].c)
   489  	} else if v.rematerializeable() {
   490  		// Rematerialize instead of loading from the spill location.
   491  		c = v.copyIntoNoXPos(s.curBlock)
   492  	} else {
   493  		// Load v from its spill location.
   494  		spill := s.makeSpill(v, s.curBlock)
   495  		if s.f.pass.debug > logSpills {
   496  			s.f.Warnl(vi.spill.Pos, "load spill for %v from %v", v, spill)
   497  		}
   498  		c = s.curBlock.NewValue1(pos, OpLoadReg, v.Type, spill)
   499  	}
   500  	s.setOrig(c, v)
   501  	s.assignReg(r, v, c)
   502  	if nospill {
   503  		s.nospill |= regMask(1) << r
   504  	}
   505  	return c
   506  }
   507  
   508  // isLeaf reports whether f performs any calls.
   509  func isLeaf(f *Func) bool {
   510  	for _, b := range f.Blocks {
   511  		for _, v := range b.Values {
   512  			if opcodeTable[v.Op].call {
   513  				return false
   514  			}
   515  		}
   516  	}
   517  	return true
   518  }
   519  
   520  func (s *regAllocState) init(f *Func) {
   521  	s.f = f
   522  	s.f.RegAlloc = s.f.Cache.locs[:0]
   523  	s.registers = f.Config.registers
   524  	if nr := len(s.registers); nr == 0 || nr > int(noRegister) || nr > int(unsafe.Sizeof(regMask(0))*8) {
   525  		s.f.Fatalf("bad number of registers: %d", nr)
   526  	} else {
   527  		s.numRegs = register(nr)
   528  	}
   529  	// Locate SP, SB, and g registers.
   530  	s.SPReg = noRegister
   531  	s.SBReg = noRegister
   532  	s.GReg = noRegister
   533  	for r := register(0); r < s.numRegs; r++ {
   534  		switch s.registers[r].String() {
   535  		case "SP":
   536  			s.SPReg = r
   537  		case "SB":
   538  			s.SBReg = r
   539  		case "g":
   540  			s.GReg = r
   541  		}
   542  	}
   543  	// Make sure we found all required registers.
   544  	switch noRegister {
   545  	case s.SPReg:
   546  		s.f.Fatalf("no SP register found")
   547  	case s.SBReg:
   548  		s.f.Fatalf("no SB register found")
   549  	case s.GReg:
   550  		if f.Config.hasGReg {
   551  			s.f.Fatalf("no g register found")
   552  		}
   553  	}
   554  
   555  	// Figure out which registers we're allowed to use.
   556  	s.allocatable = s.f.Config.gpRegMask | s.f.Config.fpRegMask | s.f.Config.specialRegMask
   557  	s.allocatable &^= 1 << s.SPReg
   558  	s.allocatable &^= 1 << s.SBReg
   559  	if s.f.Config.hasGReg {
   560  		s.allocatable &^= 1 << s.GReg
   561  	}
   562  	if s.f.Config.ctxt.Framepointer_enabled && s.f.Config.FPReg >= 0 {
   563  		s.allocatable &^= 1 << uint(s.f.Config.FPReg)
   564  	}
   565  	if s.f.Config.ctxt.Flag_shared {
   566  		switch s.f.Config.arch {
   567  		case "ppc64le": // R2 already reserved.
   568  			s.allocatable &^= 1 << 12 // R12
   569  		}
   570  	}
   571  	if s.f.Config.LinkReg != -1 {
   572  		if isLeaf(f) {
   573  			// Leaf functions don't save/restore the link register.
   574  			s.allocatable &^= 1 << uint(s.f.Config.LinkReg)
   575  		}
   576  		if s.f.Config.arch == "arm" && objabi.GOARM == 5 {
   577  			// On ARMv5 we insert softfloat calls at each FP instruction.
   578  			// This clobbers LR almost everywhere. Disable allocating LR
   579  			// on ARMv5.
   580  			s.allocatable &^= 1 << uint(s.f.Config.LinkReg)
   581  		}
   582  	}
   583  	if s.f.Config.ctxt.Flag_dynlink {
   584  		switch s.f.Config.arch {
   585  		case "amd64":
   586  			s.allocatable &^= 1 << 15 // R15
   587  		case "arm":
   588  			s.allocatable &^= 1 << 9 // R9
   589  		case "ppc64le": // R2 already reserved.
   590  			s.allocatable &^= 1 << 12 // R12
   591  		case "arm64":
   592  			// nothing to do?
   593  		case "386":
   594  			// nothing to do.
   595  			// Note that for Flag_shared (position independent code)
   596  			// we do need to be careful, but that carefulness is hidden
   597  			// in the rewrite rules so we always have a free register
   598  			// available for global load/stores. See gen/386.rules (search for Flag_shared).
   599  		case "s390x":
   600  			// nothing to do, R10 & R11 already reserved
   601  		default:
   602  			s.f.fe.Fatalf(src.NoXPos, "arch %s not implemented", s.f.Config.arch)
   603  		}
   604  	}
   605  	if s.f.Config.nacl {
   606  		switch s.f.Config.arch {
   607  		case "arm":
   608  			s.allocatable &^= 1 << 9 // R9 is "thread pointer" on nacl/arm
   609  		case "amd64p32":
   610  			s.allocatable &^= 1 << 5  // BP - reserved for nacl
   611  			s.allocatable &^= 1 << 15 // R15 - reserved for nacl
   612  		}
   613  	}
   614  	if s.f.Config.use387 {
   615  		s.allocatable &^= 1 << 15 // X7 disallowed (one 387 register is used as scratch space during SSE->387 generation in ../x86/387.go)
   616  	}
   617  
   618  	s.regs = make([]regState, s.numRegs)
   619  	s.values = make([]valState, f.NumValues())
   620  	s.orig = make([]*Value, f.NumValues())
   621  	s.copies = make(map[*Value]bool)
   622  	if s.f.Config.ctxt.Flag_locationlists {
   623  		s.valueNames = make([][]LocalSlot, f.NumValues())
   624  		for slot, values := range f.NamedValues {
   625  			if isSynthetic(&slot) {
   626  				continue
   627  			}
   628  			for _, value := range values {
   629  				s.valueNames[value.ID] = append(s.valueNames[value.ID], slot)
   630  			}
   631  		}
   632  	}
   633  	for _, b := range f.Blocks {
   634  		for _, v := range b.Values {
   635  			if !v.Type.IsMemory() && !v.Type.IsVoid() && !v.Type.IsFlags() && !v.Type.IsTuple() {
   636  				s.values[v.ID].needReg = true
   637  				s.values[v.ID].rematerializeable = v.rematerializeable()
   638  				s.orig[v.ID] = v
   639  			}
   640  			// Note: needReg is false for values returning Tuple types.
   641  			// Instead, we mark the corresponding Selects as needReg.
   642  		}
   643  	}
   644  	s.computeLive()
   645  
   646  	// Compute block order. This array allows us to distinguish forward edges
   647  	// from backward edges and compute how far they go.
   648  	blockOrder := make([]int32, f.NumBlocks())
   649  	for i, b := range f.Blocks {
   650  		blockOrder[b.ID] = int32(i)
   651  	}
   652  
   653  	// Compute primary predecessors.
   654  	s.primary = make([]int32, f.NumBlocks())
   655  	for _, b := range f.Blocks {
   656  		best := -1
   657  		for i, e := range b.Preds {
   658  			p := e.b
   659  			if blockOrder[p.ID] >= blockOrder[b.ID] {
   660  				continue // backward edge
   661  			}
   662  			if best == -1 || blockOrder[p.ID] > blockOrder[b.Preds[best].b.ID] {
   663  				best = i
   664  			}
   665  		}
   666  		s.primary[b.ID] = int32(best)
   667  	}
   668  
   669  	s.endRegs = make([][]endReg, f.NumBlocks())
   670  	s.startRegs = make([][]startReg, f.NumBlocks())
   671  	s.spillLive = make([][]ID, f.NumBlocks())
   672  	s.sdom = f.sdom()
   673  }
   674  
   675  // Adds a use record for id at distance dist from the start of the block.
   676  // All calls to addUse must happen with nonincreasing dist.
   677  func (s *regAllocState) addUse(id ID, dist int32, pos src.XPos) {
   678  	r := s.freeUseRecords
   679  	if r != nil {
   680  		s.freeUseRecords = r.next
   681  	} else {
   682  		r = &use{}
   683  	}
   684  	r.dist = dist
   685  	r.pos = pos
   686  	r.next = s.values[id].uses
   687  	s.values[id].uses = r
   688  	if r.next != nil && dist > r.next.dist {
   689  		s.f.Fatalf("uses added in wrong order")
   690  	}
   691  }
   692  
   693  // advanceUses advances the uses of v's args from the state before v to the state after v.
   694  // Any values which have no more uses are deallocated from registers.
   695  func (s *regAllocState) advanceUses(v *Value) {
   696  	for _, a := range v.Args {
   697  		if !s.values[a.ID].needReg {
   698  			continue
   699  		}
   700  		ai := &s.values[a.ID]
   701  		r := ai.uses
   702  		ai.uses = r.next
   703  		if r.next == nil {
   704  			// Value is dead, free all registers that hold it.
   705  			s.freeRegs(ai.regs)
   706  		}
   707  		r.next = s.freeUseRecords
   708  		s.freeUseRecords = r
   709  	}
   710  }
   711  
   712  // liveAfterCurrentInstruction reports whether v is live after
   713  // the current instruction is completed.  v must be used by the
   714  // current instruction.
   715  func (s *regAllocState) liveAfterCurrentInstruction(v *Value) bool {
   716  	u := s.values[v.ID].uses
   717  	d := u.dist
   718  	for u != nil && u.dist == d {
   719  		u = u.next
   720  	}
   721  	return u != nil && u.dist > d
   722  }
   723  
   724  // Sets the state of the registers to that encoded in regs.
   725  func (s *regAllocState) setState(regs []endReg) {
   726  	for s.used != 0 {
   727  		s.freeOrResetReg(pickReg(s.used), true)
   728  	}
   729  	for _, x := range regs {
   730  		s.assignReg(x.r, x.v, x.c)
   731  	}
   732  }
   733  
   734  // compatRegs returns the set of registers which can store a type t.
   735  func (s *regAllocState) compatRegs(t *types.Type) regMask {
   736  	var m regMask
   737  	if t.IsTuple() || t.IsFlags() {
   738  		return 0
   739  	}
   740  	if t.IsFloat() || t == types.TypeInt128 {
   741  		m = s.f.Config.fpRegMask
   742  	} else {
   743  		m = s.f.Config.gpRegMask
   744  	}
   745  	return m & s.allocatable
   746  }
   747  
   748  func (s *regAllocState) regalloc(f *Func) {
   749  	regValLiveSet := f.newSparseSet(f.NumValues()) // set of values that may be live in register
   750  	defer f.retSparseSet(regValLiveSet)
   751  	var oldSched []*Value
   752  	var phis []*Value
   753  	var phiRegs []register
   754  	var args []*Value
   755  
   756  	// Data structure used for computing desired registers.
   757  	var desired desiredState
   758  
   759  	// Desired registers for inputs & outputs for each instruction in the block.
   760  	type dentry struct {
   761  		out [4]register    // desired output registers
   762  		in  [3][4]register // desired input registers (for inputs 0,1, and 2)
   763  	}
   764  	var dinfo []dentry
   765  
   766  	if f.Entry != f.Blocks[0] {
   767  		f.Fatalf("entry block must be first")
   768  	}
   769  
   770  	for _, b := range f.Blocks {
   771  		if s.f.pass.debug > regDebug {
   772  			fmt.Printf("Begin processing block %v\n", b)
   773  		}
   774  		s.curBlock = b
   775  
   776  		// Initialize regValLiveSet and uses fields for this block.
   777  		// Walk backwards through the block doing liveness analysis.
   778  		regValLiveSet.clear()
   779  		for _, e := range s.live[b.ID] {
   780  			s.addUse(e.ID, int32(len(b.Values))+e.dist, e.pos) // pseudo-uses from beyond end of block
   781  			regValLiveSet.add(e.ID)
   782  		}
   783  		if v := b.Control; v != nil && s.values[v.ID].needReg {
   784  			s.addUse(v.ID, int32(len(b.Values)), b.Pos) // pseudo-use by control value
   785  			regValLiveSet.add(v.ID)
   786  		}
   787  		for i := len(b.Values) - 1; i >= 0; i-- {
   788  			v := b.Values[i]
   789  			regValLiveSet.remove(v.ID)
   790  			if v.Op == OpPhi {
   791  				// Remove v from the live set, but don't add
   792  				// any inputs. This is the state the len(b.Preds)>1
   793  				// case below desires; it wants to process phis specially.
   794  				continue
   795  			}
   796  			if opcodeTable[v.Op].call {
   797  				// Function call clobbers all the registers but SP and SB.
   798  				regValLiveSet.clear()
   799  				if s.sp != 0 && s.values[s.sp].uses != nil {
   800  					regValLiveSet.add(s.sp)
   801  				}
   802  				if s.sb != 0 && s.values[s.sb].uses != nil {
   803  					regValLiveSet.add(s.sb)
   804  				}
   805  			}
   806  			for _, a := range v.Args {
   807  				if !s.values[a.ID].needReg {
   808  					continue
   809  				}
   810  				s.addUse(a.ID, int32(i), v.Pos)
   811  				regValLiveSet.add(a.ID)
   812  			}
   813  		}
   814  		if s.f.pass.debug > regDebug {
   815  			fmt.Printf("uses for %s:%s\n", s.f.Name, b)
   816  			for i := range s.values {
   817  				vi := &s.values[i]
   818  				u := vi.uses
   819  				if u == nil {
   820  					continue
   821  				}
   822  				fmt.Printf("  v%d:", i)
   823  				for u != nil {
   824  					fmt.Printf(" %d", u.dist)
   825  					u = u.next
   826  				}
   827  				fmt.Println()
   828  			}
   829  		}
   830  
   831  		// Make a copy of the block schedule so we can generate a new one in place.
   832  		// We make a separate copy for phis and regular values.
   833  		nphi := 0
   834  		for _, v := range b.Values {
   835  			if v.Op != OpPhi {
   836  				break
   837  			}
   838  			nphi++
   839  		}
   840  		phis = append(phis[:0], b.Values[:nphi]...)
   841  		oldSched = append(oldSched[:0], b.Values[nphi:]...)
   842  		b.Values = b.Values[:0]
   843  
   844  		// Initialize start state of block.
   845  		if b == f.Entry {
   846  			// Regalloc state is empty to start.
   847  			if nphi > 0 {
   848  				f.Fatalf("phis in entry block")
   849  			}
   850  		} else if len(b.Preds) == 1 {
   851  			// Start regalloc state with the end state of the previous block.
   852  			s.setState(s.endRegs[b.Preds[0].b.ID])
   853  			if nphi > 0 {
   854  				f.Fatalf("phis in single-predecessor block")
   855  			}
   856  			// Drop any values which are no longer live.
   857  			// This may happen because at the end of p, a value may be
   858  			// live but only used by some other successor of p.
   859  			for r := register(0); r < s.numRegs; r++ {
   860  				v := s.regs[r].v
   861  				if v != nil && !regValLiveSet.contains(v.ID) {
   862  					s.freeReg(r)
   863  				}
   864  			}
   865  		} else {
   866  			// This is the complicated case. We have more than one predecessor,
   867  			// which means we may have Phi ops.
   868  
   869  			// Start with the final register state of the primary predecessor
   870  			idx := s.primary[b.ID]
   871  			if idx < 0 {
   872  				f.Fatalf("block with no primary predecessor %s", b)
   873  			}
   874  			p := b.Preds[idx].b
   875  			s.setState(s.endRegs[p.ID])
   876  
   877  			if s.f.pass.debug > regDebug {
   878  				fmt.Printf("starting merge block %s with end state of %s:\n", b, p)
   879  				for _, x := range s.endRegs[p.ID] {
   880  					fmt.Printf("  %s: orig:%s cache:%s\n", &s.registers[x.r], x.v, x.c)
   881  				}
   882  			}
   883  
   884  			// Decide on registers for phi ops. Use the registers determined
   885  			// by the primary predecessor if we can.
   886  			// TODO: pick best of (already processed) predecessors?
   887  			// Majority vote? Deepest nesting level?
   888  			phiRegs = phiRegs[:0]
   889  			var phiUsed regMask
   890  			for _, v := range phis {
   891  				if !s.values[v.ID].needReg {
   892  					phiRegs = append(phiRegs, noRegister)
   893  					continue
   894  				}
   895  				a := v.Args[idx]
   896  				// Some instructions target not-allocatable registers.
   897  				// They're not suitable for further (phi-function) allocation.
   898  				m := s.values[a.ID].regs &^ phiUsed & s.allocatable
   899  				if m != 0 {
   900  					r := pickReg(m)
   901  					phiUsed |= regMask(1) << r
   902  					phiRegs = append(phiRegs, r)
   903  				} else {
   904  					phiRegs = append(phiRegs, noRegister)
   905  				}
   906  			}
   907  
   908  			// Second pass - deallocate any phi inputs which are now dead.
   909  			for i, v := range phis {
   910  				if !s.values[v.ID].needReg {
   911  					continue
   912  				}
   913  				a := v.Args[idx]
   914  				if !regValLiveSet.contains(a.ID) {
   915  					// Input is dead beyond the phi, deallocate
   916  					// anywhere else it might live.
   917  					s.freeRegs(s.values[a.ID].regs)
   918  				} else {
   919  					// Input is still live.
   920  					// Try to move it around before kicking out, if there is a free register.
   921  					// We generate a Copy in the predecessor block and record it. It will be
   922  					// deleted if never used.
   923  					r := phiRegs[i]
   924  					if r == noRegister {
   925  						continue
   926  					}
   927  					// Pick a free register. At this point some registers used in the predecessor
   928  					// block may have been deallocated. Those are the ones used for Phis. Exclude
   929  					// them (and they are not going to be helpful anyway).
   930  					m := s.compatRegs(a.Type) &^ s.used &^ phiUsed
   931  					if m != 0 && !s.values[a.ID].rematerializeable && countRegs(s.values[a.ID].regs) == 1 {
   932  						r2 := pickReg(m)
   933  						c := p.NewValue1(a.Pos, OpCopy, a.Type, s.regs[r].c)
   934  						s.copies[c] = false
   935  						if s.f.pass.debug > regDebug {
   936  							fmt.Printf("copy %s to %s : %s\n", a, c, &s.registers[r2])
   937  						}
   938  						s.setOrig(c, a)
   939  						s.assignReg(r2, a, c)
   940  						s.endRegs[p.ID] = append(s.endRegs[p.ID], endReg{r2, a, c})
   941  					}
   942  					s.freeReg(r)
   943  				}
   944  			}
   945  
   946  			// Copy phi ops into new schedule.
   947  			b.Values = append(b.Values, phis...)
   948  
   949  			// Third pass - pick registers for phis whose inputs
   950  			// were not in a register.
   951  			for i, v := range phis {
   952  				if !s.values[v.ID].needReg {
   953  					continue
   954  				}
   955  				if phiRegs[i] != noRegister {
   956  					continue
   957  				}
   958  				if s.f.Config.use387 && v.Type.IsFloat() {
   959  					continue // 387 can't handle floats in registers between blocks
   960  				}
   961  				m := s.compatRegs(v.Type) &^ phiUsed &^ s.used
   962  				if m != 0 {
   963  					r := pickReg(m)
   964  					phiRegs[i] = r
   965  					phiUsed |= regMask(1) << r
   966  				}
   967  			}
   968  
   969  			// Set registers for phis. Add phi spill code.
   970  			for i, v := range phis {
   971  				if !s.values[v.ID].needReg {
   972  					continue
   973  				}
   974  				r := phiRegs[i]
   975  				if r == noRegister {
   976  					// stack-based phi
   977  					// Spills will be inserted in all the predecessors below.
   978  					s.values[v.ID].spill = v // v starts life spilled
   979  					continue
   980  				}
   981  				// register-based phi
   982  				s.assignReg(r, v, v)
   983  			}
   984  
   985  			// Deallocate any values which are no longer live. Phis are excluded.
   986  			for r := register(0); r < s.numRegs; r++ {
   987  				if phiUsed>>r&1 != 0 {
   988  					continue
   989  				}
   990  				v := s.regs[r].v
   991  				if v != nil && !regValLiveSet.contains(v.ID) {
   992  					s.freeReg(r)
   993  				}
   994  			}
   995  
   996  			// Save the starting state for use by merge edges.
   997  			var regList []startReg
   998  			for r := register(0); r < s.numRegs; r++ {
   999  				v := s.regs[r].v
  1000  				if v == nil {
  1001  					continue
  1002  				}
  1003  				if phiUsed>>r&1 != 0 {
  1004  					// Skip registers that phis used, we'll handle those
  1005  					// specially during merge edge processing.
  1006  					continue
  1007  				}
  1008  				regList = append(regList, startReg{r, v, s.regs[r].c, s.values[v.ID].uses.pos})
  1009  			}
  1010  			s.startRegs[b.ID] = regList
  1011  
  1012  			if s.f.pass.debug > regDebug {
  1013  				fmt.Printf("after phis\n")
  1014  				for _, x := range s.startRegs[b.ID] {
  1015  					fmt.Printf("  %s: v%d\n", &s.registers[x.r], x.v.ID)
  1016  				}
  1017  			}
  1018  		}
  1019  
  1020  		// Allocate space to record the desired registers for each value.
  1021  		dinfo = dinfo[:0]
  1022  		for i := 0; i < len(oldSched); i++ {
  1023  			dinfo = append(dinfo, dentry{})
  1024  		}
  1025  
  1026  		// Load static desired register info at the end of the block.
  1027  		desired.copy(&s.desired[b.ID])
  1028  
  1029  		// Check actual assigned registers at the start of the next block(s).
  1030  		// Dynamically assigned registers will trump the static
  1031  		// desired registers computed during liveness analysis.
  1032  		// Note that we do this phase after startRegs is set above, so that
  1033  		// we get the right behavior for a block which branches to itself.
  1034  		for _, e := range b.Succs {
  1035  			succ := e.b
  1036  			// TODO: prioritize likely successor?
  1037  			for _, x := range s.startRegs[succ.ID] {
  1038  				desired.add(x.v.ID, x.r)
  1039  			}
  1040  			// Process phi ops in succ.
  1041  			pidx := e.i
  1042  			for _, v := range succ.Values {
  1043  				if v.Op != OpPhi {
  1044  					continue
  1045  				}
  1046  				if !s.values[v.ID].needReg {
  1047  					continue
  1048  				}
  1049  				rp, ok := s.f.getHome(v.ID).(*Register)
  1050  				if !ok {
  1051  					continue
  1052  				}
  1053  				desired.add(v.Args[pidx].ID, register(rp.num))
  1054  			}
  1055  		}
  1056  		// Walk values backwards computing desired register info.
  1057  		// See computeLive for more comments.
  1058  		for i := len(oldSched) - 1; i >= 0; i-- {
  1059  			v := oldSched[i]
  1060  			prefs := desired.remove(v.ID)
  1061  			desired.clobber(opcodeTable[v.Op].reg.clobbers)
  1062  			for _, j := range opcodeTable[v.Op].reg.inputs {
  1063  				if countRegs(j.regs) != 1 {
  1064  					continue
  1065  				}
  1066  				desired.clobber(j.regs)
  1067  				desired.add(v.Args[j.idx].ID, pickReg(j.regs))
  1068  			}
  1069  			if opcodeTable[v.Op].resultInArg0 {
  1070  				if opcodeTable[v.Op].commutative {
  1071  					desired.addList(v.Args[1].ID, prefs)
  1072  				}
  1073  				desired.addList(v.Args[0].ID, prefs)
  1074  			}
  1075  			// Save desired registers for this value.
  1076  			dinfo[i].out = prefs
  1077  			for j, a := range v.Args {
  1078  				if j >= len(dinfo[i].in) {
  1079  					break
  1080  				}
  1081  				dinfo[i].in[j] = desired.get(a.ID)
  1082  			}
  1083  		}
  1084  
  1085  		// Process all the non-phi values.
  1086  		for idx, v := range oldSched {
  1087  			if s.f.pass.debug > regDebug {
  1088  				fmt.Printf("  processing %s\n", v.LongString())
  1089  			}
  1090  			regspec := opcodeTable[v.Op].reg
  1091  			if v.Op == OpPhi {
  1092  				f.Fatalf("phi %s not at start of block", v)
  1093  			}
  1094  			if v.Op == OpSP {
  1095  				s.assignReg(s.SPReg, v, v)
  1096  				b.Values = append(b.Values, v)
  1097  				s.advanceUses(v)
  1098  				s.sp = v.ID
  1099  				continue
  1100  			}
  1101  			if v.Op == OpSB {
  1102  				s.assignReg(s.SBReg, v, v)
  1103  				b.Values = append(b.Values, v)
  1104  				s.advanceUses(v)
  1105  				s.sb = v.ID
  1106  				continue
  1107  			}
  1108  			if v.Op == OpSelect0 || v.Op == OpSelect1 {
  1109  				if s.values[v.ID].needReg {
  1110  					var i = 0
  1111  					if v.Op == OpSelect1 {
  1112  						i = 1
  1113  					}
  1114  					s.assignReg(register(s.f.getHome(v.Args[0].ID).(LocPair)[i].(*Register).num), v, v)
  1115  				}
  1116  				b.Values = append(b.Values, v)
  1117  				s.advanceUses(v)
  1118  				goto issueSpill
  1119  			}
  1120  			if v.Op == OpGetG && s.f.Config.hasGReg {
  1121  				// use hardware g register
  1122  				if s.regs[s.GReg].v != nil {
  1123  					s.freeReg(s.GReg) // kick out the old value
  1124  				}
  1125  				s.assignReg(s.GReg, v, v)
  1126  				b.Values = append(b.Values, v)
  1127  				s.advanceUses(v)
  1128  				goto issueSpill
  1129  			}
  1130  			if v.Op == OpArg {
  1131  				// Args are "pre-spilled" values. We don't allocate
  1132  				// any register here. We just set up the spill pointer to
  1133  				// point at itself and any later user will restore it to use it.
  1134  				s.values[v.ID].spill = v
  1135  				b.Values = append(b.Values, v)
  1136  				s.advanceUses(v)
  1137  				continue
  1138  			}
  1139  			if v.Op == OpKeepAlive {
  1140  				// Make sure the argument to v is still live here.
  1141  				s.advanceUses(v)
  1142  				vi := &s.values[v.Args[0].ID]
  1143  				if vi.spill != nil {
  1144  					// Use the spill location.
  1145  					v.SetArg(0, vi.spill)
  1146  				} else {
  1147  					// No need to keep unspilled values live.
  1148  					// These are typically rematerializeable constants like nil,
  1149  					// or values of a variable that were modified since the last call.
  1150  					v.Op = OpCopy
  1151  					v.SetArgs1(v.Args[1])
  1152  				}
  1153  				b.Values = append(b.Values, v)
  1154  				continue
  1155  			}
  1156  			if len(regspec.inputs) == 0 && len(regspec.outputs) == 0 {
  1157  				// No register allocation required (or none specified yet)
  1158  				s.freeRegs(regspec.clobbers)
  1159  				b.Values = append(b.Values, v)
  1160  				s.advanceUses(v)
  1161  				continue
  1162  			}
  1163  
  1164  			if s.values[v.ID].rematerializeable {
  1165  				// Value is rematerializeable, don't issue it here.
  1166  				// It will get issued just before each use (see
  1167  				// allocValueToReg).
  1168  				for _, a := range v.Args {
  1169  					a.Uses--
  1170  				}
  1171  				s.advanceUses(v)
  1172  				continue
  1173  			}
  1174  
  1175  			if s.f.pass.debug > regDebug {
  1176  				fmt.Printf("value %s\n", v.LongString())
  1177  				fmt.Printf("  out:")
  1178  				for _, r := range dinfo[idx].out {
  1179  					if r != noRegister {
  1180  						fmt.Printf(" %s", &s.registers[r])
  1181  					}
  1182  				}
  1183  				fmt.Println()
  1184  				for i := 0; i < len(v.Args) && i < 3; i++ {
  1185  					fmt.Printf("  in%d:", i)
  1186  					for _, r := range dinfo[idx].in[i] {
  1187  						if r != noRegister {
  1188  							fmt.Printf(" %s", &s.registers[r])
  1189  						}
  1190  					}
  1191  					fmt.Println()
  1192  				}
  1193  			}
  1194  
  1195  			// Move arguments to registers. Process in an ordering defined
  1196  			// by the register specification (most constrained first).
  1197  			args = append(args[:0], v.Args...)
  1198  			for _, i := range regspec.inputs {
  1199  				mask := i.regs
  1200  				if mask&s.values[args[i.idx].ID].regs == 0 {
  1201  					// Need a new register for the input.
  1202  					mask &= s.allocatable
  1203  					mask &^= s.nospill
  1204  					// Used desired register if available.
  1205  					if i.idx < 3 {
  1206  						for _, r := range dinfo[idx].in[i.idx] {
  1207  							if r != noRegister && (mask&^s.used)>>r&1 != 0 {
  1208  								// Desired register is allowed and unused.
  1209  								mask = regMask(1) << r
  1210  								break
  1211  							}
  1212  						}
  1213  					}
  1214  					// Avoid registers we're saving for other values.
  1215  					if mask&^desired.avoid != 0 {
  1216  						mask &^= desired.avoid
  1217  					}
  1218  				}
  1219  				args[i.idx] = s.allocValToReg(args[i.idx], mask, true, v.Pos)
  1220  			}
  1221  
  1222  			// If the output clobbers the input register, make sure we have
  1223  			// at least two copies of the input register so we don't
  1224  			// have to reload the value from the spill location.
  1225  			if opcodeTable[v.Op].resultInArg0 {
  1226  				var m regMask
  1227  				if !s.liveAfterCurrentInstruction(v.Args[0]) {
  1228  					// arg0 is dead.  We can clobber its register.
  1229  					goto ok
  1230  				}
  1231  				if s.values[v.Args[0].ID].rematerializeable {
  1232  					// We can rematerialize the input, don't worry about clobbering it.
  1233  					goto ok
  1234  				}
  1235  				if countRegs(s.values[v.Args[0].ID].regs) >= 2 {
  1236  					// we have at least 2 copies of arg0.  We can afford to clobber one.
  1237  					goto ok
  1238  				}
  1239  				if opcodeTable[v.Op].commutative {
  1240  					if !s.liveAfterCurrentInstruction(v.Args[1]) {
  1241  						args[0], args[1] = args[1], args[0]
  1242  						goto ok
  1243  					}
  1244  					if s.values[v.Args[1].ID].rematerializeable {
  1245  						args[0], args[1] = args[1], args[0]
  1246  						goto ok
  1247  					}
  1248  					if countRegs(s.values[v.Args[1].ID].regs) >= 2 {
  1249  						args[0], args[1] = args[1], args[0]
  1250  						goto ok
  1251  					}
  1252  				}
  1253  
  1254  				// We can't overwrite arg0 (or arg1, if commutative).  So we
  1255  				// need to make a copy of an input so we have a register we can modify.
  1256  
  1257  				// Possible new registers to copy into.
  1258  				m = s.compatRegs(v.Args[0].Type) &^ s.used
  1259  				if m == 0 {
  1260  					// No free registers.  In this case we'll just clobber
  1261  					// an input and future uses of that input must use a restore.
  1262  					// TODO(khr): We should really do this like allocReg does it,
  1263  					// spilling the value with the most distant next use.
  1264  					goto ok
  1265  				}
  1266  
  1267  				// Try to move an input to the desired output.
  1268  				for _, r := range dinfo[idx].out {
  1269  					if r != noRegister && m>>r&1 != 0 {
  1270  						m = regMask(1) << r
  1271  						args[0] = s.allocValToReg(v.Args[0], m, true, v.Pos)
  1272  						// Note: we update args[0] so the instruction will
  1273  						// use the register copy we just made.
  1274  						goto ok
  1275  					}
  1276  				}
  1277  				// Try to copy input to its desired location & use its old
  1278  				// location as the result register.
  1279  				for _, r := range dinfo[idx].in[0] {
  1280  					if r != noRegister && m>>r&1 != 0 {
  1281  						m = regMask(1) << r
  1282  						c := s.allocValToReg(v.Args[0], m, true, v.Pos)
  1283  						s.copies[c] = false
  1284  						// Note: no update to args[0] so the instruction will
  1285  						// use the original copy.
  1286  						goto ok
  1287  					}
  1288  				}
  1289  				if opcodeTable[v.Op].commutative {
  1290  					for _, r := range dinfo[idx].in[1] {
  1291  						if r != noRegister && m>>r&1 != 0 {
  1292  							m = regMask(1) << r
  1293  							c := s.allocValToReg(v.Args[1], m, true, v.Pos)
  1294  							s.copies[c] = false
  1295  							args[0], args[1] = args[1], args[0]
  1296  							goto ok
  1297  						}
  1298  					}
  1299  				}
  1300  				// Avoid future fixed uses if we can.
  1301  				if m&^desired.avoid != 0 {
  1302  					m &^= desired.avoid
  1303  				}
  1304  				// Save input 0 to a new register so we can clobber it.
  1305  				c := s.allocValToReg(v.Args[0], m, true, v.Pos)
  1306  				s.copies[c] = false
  1307  			}
  1308  
  1309  		ok:
  1310  			// Now that all args are in regs, we're ready to issue the value itself.
  1311  			// Before we pick a register for the output value, allow input registers
  1312  			// to be deallocated. We do this here so that the output can use the
  1313  			// same register as a dying input.
  1314  			if !opcodeTable[v.Op].resultNotInArgs {
  1315  				s.tmpused = s.nospill
  1316  				s.nospill = 0
  1317  				s.advanceUses(v) // frees any registers holding args that are no longer live
  1318  			}
  1319  
  1320  			// Dump any registers which will be clobbered
  1321  			s.freeRegs(regspec.clobbers)
  1322  			s.tmpused |= regspec.clobbers
  1323  
  1324  			// Pick registers for outputs.
  1325  			{
  1326  				outRegs := [2]register{noRegister, noRegister}
  1327  				var used regMask
  1328  				for _, out := range regspec.outputs {
  1329  					mask := out.regs & s.allocatable &^ used
  1330  					if mask == 0 {
  1331  						continue
  1332  					}
  1333  					if opcodeTable[v.Op].resultInArg0 && out.idx == 0 {
  1334  						if !opcodeTable[v.Op].commutative {
  1335  							// Output must use the same register as input 0.
  1336  							r := register(s.f.getHome(args[0].ID).(*Register).num)
  1337  							mask = regMask(1) << r
  1338  						} else {
  1339  							// Output must use the same register as input 0 or 1.
  1340  							r0 := register(s.f.getHome(args[0].ID).(*Register).num)
  1341  							r1 := register(s.f.getHome(args[1].ID).(*Register).num)
  1342  							// Check r0 and r1 for desired output register.
  1343  							found := false
  1344  							for _, r := range dinfo[idx].out {
  1345  								if (r == r0 || r == r1) && (mask&^s.used)>>r&1 != 0 {
  1346  									mask = regMask(1) << r
  1347  									found = true
  1348  									if r == r1 {
  1349  										args[0], args[1] = args[1], args[0]
  1350  									}
  1351  									break
  1352  								}
  1353  							}
  1354  							if !found {
  1355  								// Neither are desired, pick r0.
  1356  								mask = regMask(1) << r0
  1357  							}
  1358  						}
  1359  					}
  1360  					for _, r := range dinfo[idx].out {
  1361  						if r != noRegister && (mask&^s.used)>>r&1 != 0 {
  1362  							// Desired register is allowed and unused.
  1363  							mask = regMask(1) << r
  1364  							break
  1365  						}
  1366  					}
  1367  					// Avoid registers we're saving for other values.
  1368  					if mask&^desired.avoid != 0 {
  1369  						mask &^= desired.avoid
  1370  					}
  1371  					r := s.allocReg(mask, v)
  1372  					outRegs[out.idx] = r
  1373  					used |= regMask(1) << r
  1374  					s.tmpused |= regMask(1) << r
  1375  				}
  1376  				// Record register choices
  1377  				if v.Type.IsTuple() {
  1378  					var outLocs LocPair
  1379  					if r := outRegs[0]; r != noRegister {
  1380  						outLocs[0] = &s.registers[r]
  1381  					}
  1382  					if r := outRegs[1]; r != noRegister {
  1383  						outLocs[1] = &s.registers[r]
  1384  					}
  1385  					s.f.setHome(v, outLocs)
  1386  					// Note that subsequent SelectX instructions will do the assignReg calls.
  1387  				} else {
  1388  					if r := outRegs[0]; r != noRegister {
  1389  						s.assignReg(r, v, v)
  1390  					}
  1391  				}
  1392  			}
  1393  
  1394  			// deallocate dead args, if we have not done so
  1395  			if opcodeTable[v.Op].resultNotInArgs {
  1396  				s.nospill = 0
  1397  				s.advanceUses(v) // frees any registers holding args that are no longer live
  1398  			}
  1399  			s.tmpused = 0
  1400  
  1401  			// Issue the Value itself.
  1402  			for i, a := range args {
  1403  				v.SetArg(i, a) // use register version of arguments
  1404  			}
  1405  			b.Values = append(b.Values, v)
  1406  
  1407  		issueSpill:
  1408  		}
  1409  
  1410  		// Load control value into reg.
  1411  		if v := b.Control; v != nil && s.values[v.ID].needReg {
  1412  			if s.f.pass.debug > regDebug {
  1413  				fmt.Printf("  processing control %s\n", v.LongString())
  1414  			}
  1415  			// We assume that a control input can be passed in any
  1416  			// type-compatible register. If this turns out not to be true,
  1417  			// we'll need to introduce a regspec for a block's control value.
  1418  			b.Control = s.allocValToReg(v, s.compatRegs(v.Type), false, b.Pos)
  1419  			if b.Control != v {
  1420  				v.Uses--
  1421  				b.Control.Uses++
  1422  			}
  1423  			// Remove this use from the uses list.
  1424  			vi := &s.values[v.ID]
  1425  			u := vi.uses
  1426  			vi.uses = u.next
  1427  			if u.next == nil {
  1428  				s.freeRegs(vi.regs) // value is dead
  1429  			}
  1430  			u.next = s.freeUseRecords
  1431  			s.freeUseRecords = u
  1432  		}
  1433  
  1434  		// Spill any values that can't live across basic block boundaries.
  1435  		if s.f.Config.use387 {
  1436  			s.freeRegs(s.f.Config.fpRegMask)
  1437  		}
  1438  
  1439  		// If we are approaching a merge point and we are the primary
  1440  		// predecessor of it, find live values that we use soon after
  1441  		// the merge point and promote them to registers now.
  1442  		if len(b.Succs) == 1 {
  1443  			// For this to be worthwhile, the loop must have no calls in it.
  1444  			top := b.Succs[0].b
  1445  			loop := s.loopnest.b2l[top.ID]
  1446  			if loop == nil || loop.header != top || loop.containsCall {
  1447  				goto badloop
  1448  			}
  1449  
  1450  			// TODO: sort by distance, pick the closest ones?
  1451  			for _, live := range s.live[b.ID] {
  1452  				if live.dist >= unlikelyDistance {
  1453  					// Don't preload anything live after the loop.
  1454  					continue
  1455  				}
  1456  				vid := live.ID
  1457  				vi := &s.values[vid]
  1458  				if vi.regs != 0 {
  1459  					continue
  1460  				}
  1461  				if vi.rematerializeable {
  1462  					continue
  1463  				}
  1464  				v := s.orig[vid]
  1465  				if s.f.Config.use387 && v.Type.IsFloat() {
  1466  					continue // 387 can't handle floats in registers between blocks
  1467  				}
  1468  				m := s.compatRegs(v.Type) &^ s.used
  1469  				if m&^desired.avoid != 0 {
  1470  					m &^= desired.avoid
  1471  				}
  1472  				if m != 0 {
  1473  					s.allocValToReg(v, m, false, b.Pos)
  1474  				}
  1475  			}
  1476  		}
  1477  	badloop:
  1478  		;
  1479  
  1480  		// Save end-of-block register state.
  1481  		// First count how many, this cuts allocations in half.
  1482  		k := 0
  1483  		for r := register(0); r < s.numRegs; r++ {
  1484  			v := s.regs[r].v
  1485  			if v == nil {
  1486  				continue
  1487  			}
  1488  			k++
  1489  		}
  1490  		regList := make([]endReg, 0, k)
  1491  		for r := register(0); r < s.numRegs; r++ {
  1492  			v := s.regs[r].v
  1493  			if v == nil {
  1494  				continue
  1495  			}
  1496  			regList = append(regList, endReg{r, v, s.regs[r].c})
  1497  		}
  1498  		s.endRegs[b.ID] = regList
  1499  
  1500  		if checkEnabled {
  1501  			regValLiveSet.clear()
  1502  			for _, x := range s.live[b.ID] {
  1503  				regValLiveSet.add(x.ID)
  1504  			}
  1505  			for r := register(0); r < s.numRegs; r++ {
  1506  				v := s.regs[r].v
  1507  				if v == nil {
  1508  					continue
  1509  				}
  1510  				if !regValLiveSet.contains(v.ID) {
  1511  					s.f.Fatalf("val %s is in reg but not live at end of %s", v, b)
  1512  				}
  1513  			}
  1514  		}
  1515  
  1516  		// If a value is live at the end of the block and
  1517  		// isn't in a register, generate a use for the spill location.
  1518  		// We need to remember this information so that
  1519  		// the liveness analysis in stackalloc is correct.
  1520  		for _, e := range s.live[b.ID] {
  1521  			vi := &s.values[e.ID]
  1522  			if vi.regs != 0 {
  1523  				// in a register, we'll use that source for the merge.
  1524  				continue
  1525  			}
  1526  			if vi.rematerializeable {
  1527  				// we'll rematerialize during the merge.
  1528  				continue
  1529  			}
  1530  			//fmt.Printf("live-at-end spill for %s at %s\n", s.orig[e.ID], b)
  1531  			spill := s.makeSpill(s.orig[e.ID], b)
  1532  			s.spillLive[b.ID] = append(s.spillLive[b.ID], spill.ID)
  1533  		}
  1534  
  1535  		// Clear any final uses.
  1536  		// All that is left should be the pseudo-uses added for values which
  1537  		// are live at the end of b.
  1538  		for _, e := range s.live[b.ID] {
  1539  			u := s.values[e.ID].uses
  1540  			if u == nil {
  1541  				f.Fatalf("live at end, no uses v%d", e.ID)
  1542  			}
  1543  			if u.next != nil {
  1544  				f.Fatalf("live at end, too many uses v%d", e.ID)
  1545  			}
  1546  			s.values[e.ID].uses = nil
  1547  			u.next = s.freeUseRecords
  1548  			s.freeUseRecords = u
  1549  		}
  1550  	}
  1551  
  1552  	// Decide where the spills we generated will go.
  1553  	s.placeSpills()
  1554  
  1555  	// Anything that didn't get a register gets a stack location here.
  1556  	// (StoreReg, stack-based phis, inputs, ...)
  1557  	stacklive := stackalloc(s.f, s.spillLive)
  1558  
  1559  	// Fix up all merge edges.
  1560  	s.shuffle(stacklive)
  1561  
  1562  	// Erase any copies we never used.
  1563  	// Also, an unused copy might be the only use of another copy,
  1564  	// so continue erasing until we reach a fixed point.
  1565  	for {
  1566  		progress := false
  1567  		for c, used := range s.copies {
  1568  			if !used && c.Uses == 0 {
  1569  				if s.f.pass.debug > regDebug {
  1570  					fmt.Printf("delete copied value %s\n", c.LongString())
  1571  				}
  1572  				c.RemoveArg(0)
  1573  				f.freeValue(c)
  1574  				delete(s.copies, c)
  1575  				progress = true
  1576  			}
  1577  		}
  1578  		if !progress {
  1579  			break
  1580  		}
  1581  	}
  1582  
  1583  	for _, b := range f.Blocks {
  1584  		i := 0
  1585  		for _, v := range b.Values {
  1586  			if v.Op == OpInvalid {
  1587  				continue
  1588  			}
  1589  			b.Values[i] = v
  1590  			i++
  1591  		}
  1592  		b.Values = b.Values[:i]
  1593  	}
  1594  }
  1595  
  1596  func (s *regAllocState) placeSpills() {
  1597  	f := s.f
  1598  
  1599  	// Precompute some useful info.
  1600  	phiRegs := make([]regMask, f.NumBlocks())
  1601  	for _, b := range f.Blocks {
  1602  		var m regMask
  1603  		for _, v := range b.Values {
  1604  			if v.Op == OpRegKill {
  1605  				continue
  1606  			}
  1607  			if v.Op != OpPhi {
  1608  				break
  1609  			}
  1610  			if r, ok := f.getHome(v.ID).(*Register); ok {
  1611  				m |= regMask(1) << uint(r.num)
  1612  			}
  1613  		}
  1614  		phiRegs[b.ID] = m
  1615  	}
  1616  
  1617  	// Start maps block IDs to the list of spills
  1618  	// that go at the start of the block (but after any phis).
  1619  	start := map[ID][]*Value{}
  1620  	// After maps value IDs to the list of spills
  1621  	// that go immediately after that value ID.
  1622  	after := map[ID][]*Value{}
  1623  
  1624  	for i := range s.values {
  1625  		vi := s.values[i]
  1626  		spill := vi.spill
  1627  		if spill == nil {
  1628  			continue
  1629  		}
  1630  		if spill.Block != nil {
  1631  			// Some spills are already fully set up,
  1632  			// like OpArgs and stack-based phis.
  1633  			continue
  1634  		}
  1635  		v := s.orig[i]
  1636  
  1637  		// Walk down the dominator tree looking for a good place to
  1638  		// put the spill of v.  At the start "best" is the best place
  1639  		// we have found so far.
  1640  		// TODO: find a way to make this O(1) without arbitrary cutoffs.
  1641  		best := v.Block
  1642  		bestArg := v
  1643  		var bestDepth int16
  1644  		if l := s.loopnest.b2l[best.ID]; l != nil {
  1645  			bestDepth = l.depth
  1646  		}
  1647  		b := best
  1648  		const maxSpillSearch = 100
  1649  		for i := 0; i < maxSpillSearch; i++ {
  1650  			// Find the child of b in the dominator tree which
  1651  			// dominates all restores.
  1652  			p := b
  1653  			b = nil
  1654  			for c := s.sdom.Child(p); c != nil && i < maxSpillSearch; c, i = s.sdom.Sibling(c), i+1 {
  1655  				if s.sdom[c.ID].entry <= vi.restoreMin && s.sdom[c.ID].exit >= vi.restoreMax {
  1656  					// c also dominates all restores.  Walk down into c.
  1657  					b = c
  1658  					break
  1659  				}
  1660  			}
  1661  			if b == nil {
  1662  				// Ran out of blocks which dominate all restores.
  1663  				break
  1664  			}
  1665  
  1666  			var depth int16
  1667  			if l := s.loopnest.b2l[b.ID]; l != nil {
  1668  				depth = l.depth
  1669  			}
  1670  			if depth > bestDepth {
  1671  				// Don't push the spill into a deeper loop.
  1672  				continue
  1673  			}
  1674  
  1675  			// If v is in a register at the start of b, we can
  1676  			// place the spill here (after the phis).
  1677  			if len(b.Preds) == 1 {
  1678  				for _, e := range s.endRegs[b.Preds[0].b.ID] {
  1679  					if e.v == v {
  1680  						// Found a better spot for the spill.
  1681  						best = b
  1682  						bestArg = e.c
  1683  						bestDepth = depth
  1684  						break
  1685  					}
  1686  				}
  1687  			} else {
  1688  				for _, e := range s.startRegs[b.ID] {
  1689  					if e.v == v {
  1690  						// Found a better spot for the spill.
  1691  						best = b
  1692  						bestArg = e.c
  1693  						bestDepth = depth
  1694  						break
  1695  					}
  1696  				}
  1697  			}
  1698  		}
  1699  
  1700  		// Put the spill in the best block we found.
  1701  		spill.Block = best
  1702  		spill.AddArg(bestArg)
  1703  		if best == v.Block && v.Op != OpPhi {
  1704  			// Place immediately after v.
  1705  			after[v.ID] = append(after[v.ID], spill)
  1706  		} else {
  1707  			// Place at the start of best block.
  1708  			start[best.ID] = append(start[best.ID], spill)
  1709  		}
  1710  	}
  1711  
  1712  	// Insert spill instructions into the block schedules.
  1713  	var oldSched []*Value
  1714  	for _, b := range f.Blocks {
  1715  		nphi := 0
  1716  		for _, v := range b.Values {
  1717  			if v.Op != OpRegKill && v.Op != OpPhi {
  1718  				break
  1719  			}
  1720  			nphi++
  1721  		}
  1722  		oldSched = append(oldSched[:0], b.Values[nphi:]...)
  1723  		b.Values = b.Values[:nphi]
  1724  		for _, v := range start[b.ID] {
  1725  			b.Values = append(b.Values, v)
  1726  		}
  1727  		for _, v := range oldSched {
  1728  			b.Values = append(b.Values, v)
  1729  			for _, w := range after[v.ID] {
  1730  				b.Values = append(b.Values, w)
  1731  			}
  1732  		}
  1733  	}
  1734  }
  1735  
  1736  // shuffle fixes up all the merge edges (those going into blocks of indegree > 1).
  1737  func (s *regAllocState) shuffle(stacklive [][]ID) {
  1738  	var e edgeState
  1739  	e.s = s
  1740  	e.cache = map[ID][]*Value{}
  1741  	e.contents = map[Location]contentRecord{}
  1742  	if s.f.pass.debug > regDebug {
  1743  		fmt.Printf("shuffle %s\n", s.f.Name)
  1744  		fmt.Println(s.f.String())
  1745  	}
  1746  
  1747  	for _, b := range s.f.Blocks {
  1748  		if len(b.Preds) <= 1 {
  1749  			continue
  1750  		}
  1751  		e.b = b
  1752  		for i, edge := range b.Preds {
  1753  			p := edge.b
  1754  			e.p = p
  1755  			e.setup(i, s.endRegs[p.ID], s.startRegs[b.ID], stacklive[p.ID])
  1756  			e.process()
  1757  		}
  1758  	}
  1759  }
  1760  
  1761  type edgeState struct {
  1762  	s    *regAllocState
  1763  	p, b *Block // edge goes from p->b.
  1764  
  1765  	// for each pre-regalloc value, a list of equivalent cached values
  1766  	cache      map[ID][]*Value
  1767  	cachedVals []ID // (superset of) keys of the above map, for deterministic iteration
  1768  
  1769  	// map from location to the value it contains
  1770  	contents map[Location]contentRecord
  1771  
  1772  	// desired destination locations
  1773  	destinations []dstRecord
  1774  	extra        []dstRecord
  1775  
  1776  	usedRegs   regMask // registers currently holding something
  1777  	uniqueRegs regMask // registers holding the only copy of a value
  1778  	finalRegs  regMask // registers holding final target
  1779  }
  1780  
  1781  type contentRecord struct {
  1782  	vid   ID       // pre-regalloc value
  1783  	c     *Value   // cached value
  1784  	final bool     // this is a satisfied destination
  1785  	pos   src.XPos // source position of use of the value
  1786  }
  1787  
  1788  type dstRecord struct {
  1789  	loc    Location // register or stack slot
  1790  	vid    ID       // pre-regalloc value it should contain
  1791  	splice **Value  // place to store reference to the generating instruction
  1792  	pos    src.XPos // source position of use of this location
  1793  }
  1794  
  1795  // setup initializes the edge state for shuffling.
  1796  func (e *edgeState) setup(idx int, srcReg []endReg, dstReg []startReg, stacklive []ID) {
  1797  	if e.s.f.pass.debug > regDebug {
  1798  		fmt.Printf("edge %s->%s\n", e.p, e.b)
  1799  	}
  1800  
  1801  	// Clear state.
  1802  	for _, vid := range e.cachedVals {
  1803  		delete(e.cache, vid)
  1804  	}
  1805  	e.cachedVals = e.cachedVals[:0]
  1806  	for k := range e.contents {
  1807  		delete(e.contents, k)
  1808  	}
  1809  	e.usedRegs = 0
  1810  	e.uniqueRegs = 0
  1811  	e.finalRegs = 0
  1812  
  1813  	// Live registers can be sources.
  1814  	for _, x := range srcReg {
  1815  		e.set(&e.s.registers[x.r], x.v.ID, x.c, false, src.NoXPos) // don't care the position of the source
  1816  	}
  1817  	// So can all of the spill locations.
  1818  	for _, spillID := range stacklive {
  1819  		v := e.s.orig[spillID]
  1820  		spill := e.s.values[v.ID].spill
  1821  		if !e.s.sdom.isAncestorEq(spill.Block, e.p) {
  1822  			// Spills were placed that only dominate the uses found
  1823  			// during the first regalloc pass. The edge fixup code
  1824  			// can't use a spill location if the spill doesn't dominate
  1825  			// the edge.
  1826  			// We are guaranteed that if the spill doesn't dominate this edge,
  1827  			// then the value is available in a register (because we called
  1828  			// makeSpill for every value not in a register at the start
  1829  			// of an edge).
  1830  			continue
  1831  		}
  1832  		e.set(e.s.f.getHome(spillID), v.ID, spill, false, src.NoXPos) // don't care the position of the source
  1833  	}
  1834  
  1835  	// Figure out all the destinations we need.
  1836  	dsts := e.destinations[:0]
  1837  	for _, x := range dstReg {
  1838  		dsts = append(dsts, dstRecord{&e.s.registers[x.r], x.v.ID, nil, x.pos})
  1839  	}
  1840  	// Phis need their args to end up in a specific location.
  1841  	for _, v := range e.b.Values {
  1842  		if v.Op == OpRegKill {
  1843  			continue
  1844  		}
  1845  		if v.Op != OpPhi {
  1846  			break
  1847  		}
  1848  		loc := e.s.f.getHome(v.ID)
  1849  		if loc == nil {
  1850  			continue
  1851  		}
  1852  		dsts = append(dsts, dstRecord{loc, v.Args[idx].ID, &v.Args[idx], v.Pos})
  1853  	}
  1854  	e.destinations = dsts
  1855  
  1856  	if e.s.f.pass.debug > regDebug {
  1857  		for _, vid := range e.cachedVals {
  1858  			a := e.cache[vid]
  1859  			for _, c := range a {
  1860  				fmt.Printf("src %s: v%d cache=%s\n", e.s.f.getHome(c.ID), vid, c)
  1861  			}
  1862  		}
  1863  		for _, d := range e.destinations {
  1864  			fmt.Printf("dst %s: v%d\n", d.loc, d.vid)
  1865  		}
  1866  	}
  1867  }
  1868  
  1869  // process generates code to move all the values to the right destination locations.
  1870  func (e *edgeState) process() {
  1871  	dsts := e.destinations
  1872  
  1873  	// Process the destinations until they are all satisfied.
  1874  	for len(dsts) > 0 {
  1875  		i := 0
  1876  		for _, d := range dsts {
  1877  			if !e.processDest(d.loc, d.vid, d.splice, d.pos) {
  1878  				// Failed - save for next iteration.
  1879  				dsts[i] = d
  1880  				i++
  1881  			}
  1882  		}
  1883  		if i < len(dsts) {
  1884  			// Made some progress. Go around again.
  1885  			dsts = dsts[:i]
  1886  
  1887  			// Append any extras destinations we generated.
  1888  			dsts = append(dsts, e.extra...)
  1889  			e.extra = e.extra[:0]
  1890  			continue
  1891  		}
  1892  
  1893  		// We made no progress. That means that any
  1894  		// remaining unsatisfied moves are in simple cycles.
  1895  		// For example, A -> B -> C -> D -> A.
  1896  		//   A ----> B
  1897  		//   ^       |
  1898  		//   |       |
  1899  		//   |       v
  1900  		//   D <---- C
  1901  
  1902  		// To break the cycle, we pick an unused register, say R,
  1903  		// and put a copy of B there.
  1904  		//   A ----> B
  1905  		//   ^       |
  1906  		//   |       |
  1907  		//   |       v
  1908  		//   D <---- C <---- R=copyofB
  1909  		// When we resume the outer loop, the A->B move can now proceed,
  1910  		// and eventually the whole cycle completes.
  1911  
  1912  		// Copy any cycle location to a temp register. This duplicates
  1913  		// one of the cycle entries, allowing the just duplicated value
  1914  		// to be overwritten and the cycle to proceed.
  1915  		d := dsts[0]
  1916  		loc := d.loc
  1917  		vid := e.contents[loc].vid
  1918  		c := e.contents[loc].c
  1919  		r := e.findRegFor(c.Type)
  1920  		if e.s.f.pass.debug > regDebug {
  1921  			fmt.Printf("breaking cycle with v%d in %s:%s\n", vid, loc, c)
  1922  		}
  1923  		e.erase(r)
  1924  		if _, isReg := loc.(*Register); isReg {
  1925  			c = e.p.NewValue1(d.pos, OpCopy, c.Type, c)
  1926  		} else {
  1927  			c = e.p.NewValue1(d.pos, OpLoadReg, c.Type, c)
  1928  		}
  1929  		e.set(r, vid, c, false, d.pos)
  1930  	}
  1931  }
  1932  
  1933  // processDest generates code to put value vid into location loc. Returns true
  1934  // if progress was made.
  1935  func (e *edgeState) processDest(loc Location, vid ID, splice **Value, pos src.XPos) bool {
  1936  	occupant := e.contents[loc]
  1937  	if occupant.vid == vid {
  1938  		// Value is already in the correct place.
  1939  		e.contents[loc] = contentRecord{vid, occupant.c, true, pos}
  1940  		if splice != nil {
  1941  			(*splice).Uses--
  1942  			*splice = occupant.c
  1943  			occupant.c.Uses++
  1944  		}
  1945  		// Note: if splice==nil then c will appear dead. This is
  1946  		// non-SSA formed code, so be careful after this pass not to run
  1947  		// deadcode elimination.
  1948  		if _, ok := e.s.copies[occupant.c]; ok {
  1949  			// The copy at occupant.c was used to avoid spill.
  1950  			e.s.copies[occupant.c] = true
  1951  		}
  1952  		return true
  1953  	}
  1954  
  1955  	// Check if we're allowed to clobber the destination location.
  1956  	if len(e.cache[occupant.vid]) == 1 && !e.s.values[occupant.vid].rematerializeable {
  1957  		// We can't overwrite the last copy
  1958  		// of a value that needs to survive.
  1959  		return false
  1960  	}
  1961  
  1962  	// Copy from a source of v, register preferred.
  1963  	v := e.s.orig[vid]
  1964  	var c *Value
  1965  	var src Location
  1966  	if e.s.f.pass.debug > regDebug {
  1967  		fmt.Printf("moving v%d to %s\n", vid, loc)
  1968  		fmt.Printf("sources of v%d:", vid)
  1969  	}
  1970  	for _, w := range e.cache[vid] {
  1971  		h := e.s.f.getHome(w.ID)
  1972  		if e.s.f.pass.debug > regDebug {
  1973  			fmt.Printf(" %s:%s", h, w)
  1974  		}
  1975  		_, isreg := h.(*Register)
  1976  		if src == nil || isreg {
  1977  			c = w
  1978  			src = h
  1979  		}
  1980  	}
  1981  	if e.s.f.pass.debug > regDebug {
  1982  		if src != nil {
  1983  			fmt.Printf(" [use %s]\n", src)
  1984  		} else {
  1985  			fmt.Printf(" [no source]\n")
  1986  		}
  1987  	}
  1988  	_, dstReg := loc.(*Register)
  1989  
  1990  	// Pre-clobber destination. This avoids the
  1991  	// following situation:
  1992  	//   - v is currently held in R0 and stacktmp0.
  1993  	//   - We want to copy stacktmp1 to stacktmp0.
  1994  	//   - We choose R0 as the temporary register.
  1995  	// During the copy, both R0 and stacktmp0 are
  1996  	// clobbered, losing both copies of v. Oops!
  1997  	// Erasing the destination early means R0 will not
  1998  	// be chosen as the temp register, as it will then
  1999  	// be the last copy of v.
  2000  	e.erase(loc)
  2001  	var x *Value
  2002  	if c == nil {
  2003  		if !e.s.values[vid].rematerializeable {
  2004  			e.s.f.Fatalf("can't find source for %s->%s: %s\n", e.p, e.b, v.LongString())
  2005  		}
  2006  		if dstReg {
  2007  			x = v.copyIntoNoXPos(e.p)
  2008  		} else {
  2009  			// Rematerialize into stack slot. Need a free
  2010  			// register to accomplish this.
  2011  			r := e.findRegFor(v.Type)
  2012  			e.erase(r)
  2013  			x = v.copyIntoNoXPos(e.p)
  2014  			e.set(r, vid, x, false, pos)
  2015  			// Make sure we spill with the size of the slot, not the
  2016  			// size of x (which might be wider due to our dropping
  2017  			// of narrowing conversions).
  2018  			x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, x)
  2019  		}
  2020  	} else {
  2021  		// Emit move from src to dst.
  2022  		_, srcReg := src.(*Register)
  2023  		if srcReg {
  2024  			if dstReg {
  2025  				x = e.p.NewValue1(pos, OpCopy, c.Type, c)
  2026  			} else {
  2027  				x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, c)
  2028  			}
  2029  		} else {
  2030  			if dstReg {
  2031  				x = e.p.NewValue1(pos, OpLoadReg, c.Type, c)
  2032  			} else {
  2033  				// mem->mem. Use temp register.
  2034  				r := e.findRegFor(c.Type)
  2035  				e.erase(r)
  2036  				t := e.p.NewValue1(pos, OpLoadReg, c.Type, c)
  2037  				e.set(r, vid, t, false, pos)
  2038  				x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, t)
  2039  			}
  2040  		}
  2041  	}
  2042  	e.set(loc, vid, x, true, pos)
  2043  	if splice != nil {
  2044  		(*splice).Uses--
  2045  		*splice = x
  2046  		x.Uses++
  2047  	}
  2048  	return true
  2049  }
  2050  
  2051  // set changes the contents of location loc to hold the given value and its cached representative.
  2052  func (e *edgeState) set(loc Location, vid ID, c *Value, final bool, pos src.XPos) {
  2053  	e.s.f.setHome(c, loc)
  2054  	e.contents[loc] = contentRecord{vid, c, final, pos}
  2055  	a := e.cache[vid]
  2056  	if len(a) == 0 {
  2057  		e.cachedVals = append(e.cachedVals, vid)
  2058  	}
  2059  	a = append(a, c)
  2060  	e.cache[vid] = a
  2061  	if r, ok := loc.(*Register); ok {
  2062  		e.usedRegs |= regMask(1) << uint(r.num)
  2063  		if final {
  2064  			e.finalRegs |= regMask(1) << uint(r.num)
  2065  		}
  2066  		if len(a) == 1 {
  2067  			e.uniqueRegs |= regMask(1) << uint(r.num)
  2068  		}
  2069  		if len(a) == 2 {
  2070  			if t, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
  2071  				e.uniqueRegs &^= regMask(1) << uint(t.num)
  2072  			}
  2073  		}
  2074  	}
  2075  	if e.s.f.pass.debug > regDebug {
  2076  		fmt.Printf("%s\n", c.LongString())
  2077  		fmt.Printf("v%d now available in %s:%s\n", vid, loc, c)
  2078  	}
  2079  }
  2080  
  2081  // erase removes any user of loc.
  2082  func (e *edgeState) erase(loc Location) {
  2083  	cr := e.contents[loc]
  2084  	if cr.c == nil {
  2085  		return
  2086  	}
  2087  	vid := cr.vid
  2088  
  2089  	if cr.final {
  2090  		// Add a destination to move this value back into place.
  2091  		// Make sure it gets added to the tail of the destination queue
  2092  		// so we make progress on other moves first.
  2093  		e.extra = append(e.extra, dstRecord{loc, cr.vid, nil, cr.pos})
  2094  	}
  2095  
  2096  	// Remove c from the list of cached values.
  2097  	a := e.cache[vid]
  2098  	for i, c := range a {
  2099  		if e.s.f.getHome(c.ID) == loc {
  2100  			if e.s.f.pass.debug > regDebug {
  2101  				fmt.Printf("v%d no longer available in %s:%s\n", vid, loc, c)
  2102  			}
  2103  			a[i], a = a[len(a)-1], a[:len(a)-1]
  2104  			if e.s.f.Config.ctxt.Flag_locationlists {
  2105  				if _, isReg := loc.(*Register); isReg && int(c.ID) < len(e.s.valueNames) && len(e.s.valueNames[c.ID]) != 0 {
  2106  					kill := e.p.NewValue0(src.NoXPos, OpRegKill, types.TypeVoid)
  2107  					e.s.f.setHome(kill, loc)
  2108  					for _, name := range e.s.valueNames[c.ID] {
  2109  						e.s.f.NamedValues[name] = append(e.s.f.NamedValues[name], kill)
  2110  					}
  2111  				}
  2112  			}
  2113  
  2114  			break
  2115  		}
  2116  	}
  2117  	e.cache[vid] = a
  2118  
  2119  	// Update register masks.
  2120  	if r, ok := loc.(*Register); ok {
  2121  		e.usedRegs &^= regMask(1) << uint(r.num)
  2122  		if cr.final {
  2123  			e.finalRegs &^= regMask(1) << uint(r.num)
  2124  		}
  2125  	}
  2126  	if len(a) == 1 {
  2127  		if r, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
  2128  			e.uniqueRegs |= regMask(1) << uint(r.num)
  2129  		}
  2130  	}
  2131  }
  2132  
  2133  // findRegFor finds a register we can use to make a temp copy of type typ.
  2134  func (e *edgeState) findRegFor(typ *types.Type) Location {
  2135  	// Which registers are possibilities.
  2136  	var m regMask
  2137  	types := &e.s.f.Config.Types
  2138  	if typ.IsFloat() {
  2139  		m = e.s.compatRegs(types.Float64)
  2140  	} else {
  2141  		m = e.s.compatRegs(types.Int64)
  2142  	}
  2143  
  2144  	// Pick a register. In priority order:
  2145  	// 1) an unused register
  2146  	// 2) a non-unique register not holding a final value
  2147  	// 3) a non-unique register
  2148  	// 4) TODO: a register holding a rematerializeable value
  2149  	x := m &^ e.usedRegs
  2150  	if x != 0 {
  2151  		return &e.s.registers[pickReg(x)]
  2152  	}
  2153  	x = m &^ e.uniqueRegs &^ e.finalRegs
  2154  	if x != 0 {
  2155  		return &e.s.registers[pickReg(x)]
  2156  	}
  2157  	x = m &^ e.uniqueRegs
  2158  	if x != 0 {
  2159  		return &e.s.registers[pickReg(x)]
  2160  	}
  2161  
  2162  	// No register is available.
  2163  	// Pick a register to spill.
  2164  	for _, vid := range e.cachedVals {
  2165  		a := e.cache[vid]
  2166  		for _, c := range a {
  2167  			if r, ok := e.s.f.getHome(c.ID).(*Register); ok && m>>uint(r.num)&1 != 0 {
  2168  				if !c.rematerializeable() {
  2169  					x := e.p.NewValue1(c.Pos, OpStoreReg, c.Type, c)
  2170  					// Allocate a temp location to spill a register to.
  2171  					// The type of the slot is immaterial - it will not be live across
  2172  					// any safepoint. Just use a type big enough to hold any register.
  2173  					t := LocalSlot{N: e.s.f.fe.Auto(c.Pos, types.Int64), Type: types.Int64}
  2174  					// TODO: reuse these slots. They'll need to be erased first.
  2175  					e.set(t, vid, x, false, c.Pos)
  2176  					if e.s.f.pass.debug > regDebug {
  2177  						fmt.Printf("  SPILL %s->%s %s\n", r, t, x.LongString())
  2178  					}
  2179  				}
  2180  				// r will now be overwritten by the caller. At some point
  2181  				// later, the newly saved value will be moved back to its
  2182  				// final destination in processDest.
  2183  				return r
  2184  			}
  2185  		}
  2186  	}
  2187  
  2188  	fmt.Printf("m:%d unique:%d final:%d\n", m, e.uniqueRegs, e.finalRegs)
  2189  	for _, vid := range e.cachedVals {
  2190  		a := e.cache[vid]
  2191  		for _, c := range a {
  2192  			fmt.Printf("v%d: %s %s\n", vid, c, e.s.f.getHome(c.ID))
  2193  		}
  2194  	}
  2195  	e.s.f.Fatalf("can't find empty register on edge %s->%s", e.p, e.b)
  2196  	return nil
  2197  }
  2198  
  2199  // rematerializeable reports whether the register allocator should recompute
  2200  // a value instead of spilling/restoring it.
  2201  func (v *Value) rematerializeable() bool {
  2202  	if !opcodeTable[v.Op].rematerializeable {
  2203  		return false
  2204  	}
  2205  	for _, a := range v.Args {
  2206  		// SP and SB (generated by OpSP and OpSB) are always available.
  2207  		if a.Op != OpSP && a.Op != OpSB {
  2208  			return false
  2209  		}
  2210  	}
  2211  	return true
  2212  }
  2213  
  2214  type liveInfo struct {
  2215  	ID   ID       // ID of value
  2216  	dist int32    // # of instructions before next use
  2217  	pos  src.XPos // source position of next use
  2218  }
  2219  
  2220  // dblock contains information about desired & avoid registers at the end of a block.
  2221  type dblock struct {
  2222  	prefers []desiredStateEntry
  2223  	avoid   regMask
  2224  }
  2225  
  2226  // computeLive computes a map from block ID to a list of value IDs live at the end
  2227  // of that block. Together with the value ID is a count of how many instructions
  2228  // to the next use of that value. The resulting map is stored in s.live.
  2229  // computeLive also computes the desired register information at the end of each block.
  2230  // This desired register information is stored in s.desired.
  2231  // TODO: this could be quadratic if lots of variables are live across lots of
  2232  // basic blocks. Figure out a way to make this function (or, more precisely, the user
  2233  // of this function) require only linear size & time.
  2234  func (s *regAllocState) computeLive() {
  2235  	f := s.f
  2236  	s.live = make([][]liveInfo, f.NumBlocks())
  2237  	s.desired = make([]desiredState, f.NumBlocks())
  2238  	var phis []*Value
  2239  
  2240  	live := newSparseMap(f.NumValues())
  2241  	t := newSparseMap(f.NumValues())
  2242  
  2243  	// Keep track of which value we want in each register.
  2244  	var desired desiredState
  2245  
  2246  	// Instead of iterating over f.Blocks, iterate over their postordering.
  2247  	// Liveness information flows backward, so starting at the end
  2248  	// increases the probability that we will stabilize quickly.
  2249  	// TODO: Do a better job yet. Here's one possibility:
  2250  	// Calculate the dominator tree and locate all strongly connected components.
  2251  	// If a value is live in one block of an SCC, it is live in all.
  2252  	// Walk the dominator tree from end to beginning, just once, treating SCC
  2253  	// components as single blocks, duplicated calculated liveness information
  2254  	// out to all of them.
  2255  	po := f.postorder()
  2256  	s.loopnest = f.loopnest()
  2257  	s.loopnest.calculateDepths()
  2258  	for {
  2259  		changed := false
  2260  
  2261  		for _, b := range po {
  2262  			// Start with known live values at the end of the block.
  2263  			// Add len(b.Values) to adjust from end-of-block distance
  2264  			// to beginning-of-block distance.
  2265  			live.clear()
  2266  			for _, e := range s.live[b.ID] {
  2267  				live.set(e.ID, e.dist+int32(len(b.Values)), e.pos)
  2268  			}
  2269  
  2270  			// Mark control value as live
  2271  			if b.Control != nil && s.values[b.Control.ID].needReg {
  2272  				live.set(b.Control.ID, int32(len(b.Values)), b.Pos)
  2273  			}
  2274  
  2275  			// Propagate backwards to the start of the block
  2276  			// Assumes Values have been scheduled.
  2277  			phis = phis[:0]
  2278  			for i := len(b.Values) - 1; i >= 0; i-- {
  2279  				v := b.Values[i]
  2280  				live.remove(v.ID)
  2281  				if v.Op == OpPhi {
  2282  					// save phi ops for later
  2283  					phis = append(phis, v)
  2284  					continue
  2285  				}
  2286  				if opcodeTable[v.Op].call {
  2287  					c := live.contents()
  2288  					for i := range c {
  2289  						c[i].val += unlikelyDistance
  2290  					}
  2291  				}
  2292  				for _, a := range v.Args {
  2293  					if s.values[a.ID].needReg {
  2294  						live.set(a.ID, int32(i), v.Pos)
  2295  					}
  2296  				}
  2297  			}
  2298  			// Propagate desired registers backwards.
  2299  			desired.copy(&s.desired[b.ID])
  2300  			for i := len(b.Values) - 1; i >= 0; i-- {
  2301  				v := b.Values[i]
  2302  				prefs := desired.remove(v.ID)
  2303  				if v.Op == OpPhi {
  2304  					// TODO: if v is a phi, save desired register for phi inputs.
  2305  					// For now, we just drop it and don't propagate
  2306  					// desired registers back though phi nodes.
  2307  					continue
  2308  				}
  2309  				// Cancel desired registers if they get clobbered.
  2310  				desired.clobber(opcodeTable[v.Op].reg.clobbers)
  2311  				// Update desired registers if there are any fixed register inputs.
  2312  				for _, j := range opcodeTable[v.Op].reg.inputs {
  2313  					if countRegs(j.regs) != 1 {
  2314  						continue
  2315  					}
  2316  					desired.clobber(j.regs)
  2317  					desired.add(v.Args[j.idx].ID, pickReg(j.regs))
  2318  				}
  2319  				// Set desired register of input 0 if this is a 2-operand instruction.
  2320  				if opcodeTable[v.Op].resultInArg0 {
  2321  					if opcodeTable[v.Op].commutative {
  2322  						desired.addList(v.Args[1].ID, prefs)
  2323  					}
  2324  					desired.addList(v.Args[0].ID, prefs)
  2325  				}
  2326  			}
  2327  
  2328  			// For each predecessor of b, expand its list of live-at-end values.
  2329  			// invariant: live contains the values live at the start of b (excluding phi inputs)
  2330  			for i, e := range b.Preds {
  2331  				p := e.b
  2332  				// Compute additional distance for the edge.
  2333  				// Note: delta must be at least 1 to distinguish the control
  2334  				// value use from the first user in a successor block.
  2335  				delta := int32(normalDistance)
  2336  				if len(p.Succs) == 2 {
  2337  					if p.Succs[0].b == b && p.Likely == BranchLikely ||
  2338  						p.Succs[1].b == b && p.Likely == BranchUnlikely {
  2339  						delta = likelyDistance
  2340  					}
  2341  					if p.Succs[0].b == b && p.Likely == BranchUnlikely ||
  2342  						p.Succs[1].b == b && p.Likely == BranchLikely {
  2343  						delta = unlikelyDistance
  2344  					}
  2345  				}
  2346  
  2347  				// Update any desired registers at the end of p.
  2348  				s.desired[p.ID].merge(&desired)
  2349  
  2350  				// Start t off with the previously known live values at the end of p.
  2351  				t.clear()
  2352  				for _, e := range s.live[p.ID] {
  2353  					t.set(e.ID, e.dist, e.pos)
  2354  				}
  2355  				update := false
  2356  
  2357  				// Add new live values from scanning this block.
  2358  				for _, e := range live.contents() {
  2359  					d := e.val + delta
  2360  					if !t.contains(e.key) || d < t.get(e.key) {
  2361  						update = true
  2362  						t.set(e.key, d, e.aux)
  2363  					}
  2364  				}
  2365  				// Also add the correct arg from the saved phi values.
  2366  				// All phis are at distance delta (we consider them
  2367  				// simultaneously happening at the start of the block).
  2368  				for _, v := range phis {
  2369  					id := v.Args[i].ID
  2370  					if s.values[id].needReg && (!t.contains(id) || delta < t.get(id)) {
  2371  						update = true
  2372  						t.set(id, delta, v.Pos)
  2373  					}
  2374  				}
  2375  
  2376  				if !update {
  2377  					continue
  2378  				}
  2379  				// The live set has changed, update it.
  2380  				l := s.live[p.ID][:0]
  2381  				if cap(l) < t.size() {
  2382  					l = make([]liveInfo, 0, t.size())
  2383  				}
  2384  				for _, e := range t.contents() {
  2385  					l = append(l, liveInfo{e.key, e.val, e.aux})
  2386  				}
  2387  				s.live[p.ID] = l
  2388  				changed = true
  2389  			}
  2390  		}
  2391  
  2392  		if !changed {
  2393  			break
  2394  		}
  2395  	}
  2396  	if f.pass.debug > regDebug {
  2397  		fmt.Println("live values at end of each block")
  2398  		for _, b := range f.Blocks {
  2399  			fmt.Printf("  %s:", b)
  2400  			for _, x := range s.live[b.ID] {
  2401  				fmt.Printf(" v%d", x.ID)
  2402  				for _, e := range s.desired[b.ID].entries {
  2403  					if e.ID != x.ID {
  2404  						continue
  2405  					}
  2406  					fmt.Printf("[")
  2407  					first := true
  2408  					for _, r := range e.regs {
  2409  						if r == noRegister {
  2410  							continue
  2411  						}
  2412  						if !first {
  2413  							fmt.Printf(",")
  2414  						}
  2415  						fmt.Print(&s.registers[r])
  2416  						first = false
  2417  					}
  2418  					fmt.Printf("]")
  2419  				}
  2420  			}
  2421  			fmt.Printf(" avoid=%x", int64(s.desired[b.ID].avoid))
  2422  			fmt.Println()
  2423  		}
  2424  	}
  2425  }
  2426  
  2427  // A desiredState represents desired register assignments.
  2428  type desiredState struct {
  2429  	// Desired assignments will be small, so we just use a list
  2430  	// of valueID+registers entries.
  2431  	entries []desiredStateEntry
  2432  	// Registers that other values want to be in.  This value will
  2433  	// contain at least the union of the regs fields of entries, but
  2434  	// may contain additional entries for values that were once in
  2435  	// this data structure but are no longer.
  2436  	avoid regMask
  2437  }
  2438  type desiredStateEntry struct {
  2439  	// (pre-regalloc) value
  2440  	ID ID
  2441  	// Registers it would like to be in, in priority order.
  2442  	// Unused slots are filled with noRegister.
  2443  	regs [4]register
  2444  }
  2445  
  2446  func (d *desiredState) clear() {
  2447  	d.entries = d.entries[:0]
  2448  	d.avoid = 0
  2449  }
  2450  
  2451  // get returns a list of desired registers for value vid.
  2452  func (d *desiredState) get(vid ID) [4]register {
  2453  	for _, e := range d.entries {
  2454  		if e.ID == vid {
  2455  			return e.regs
  2456  		}
  2457  	}
  2458  	return [4]register{noRegister, noRegister, noRegister, noRegister}
  2459  }
  2460  
  2461  // add records that we'd like value vid to be in register r.
  2462  func (d *desiredState) add(vid ID, r register) {
  2463  	d.avoid |= regMask(1) << r
  2464  	for i := range d.entries {
  2465  		e := &d.entries[i]
  2466  		if e.ID != vid {
  2467  			continue
  2468  		}
  2469  		if e.regs[0] == r {
  2470  			// Already known and highest priority
  2471  			return
  2472  		}
  2473  		for j := 1; j < len(e.regs); j++ {
  2474  			if e.regs[j] == r {
  2475  				// Move from lower priority to top priority
  2476  				copy(e.regs[1:], e.regs[:j])
  2477  				e.regs[0] = r
  2478  				return
  2479  			}
  2480  		}
  2481  		copy(e.regs[1:], e.regs[:])
  2482  		e.regs[0] = r
  2483  		return
  2484  	}
  2485  	d.entries = append(d.entries, desiredStateEntry{vid, [4]register{r, noRegister, noRegister, noRegister}})
  2486  }
  2487  
  2488  func (d *desiredState) addList(vid ID, regs [4]register) {
  2489  	// regs is in priority order, so iterate in reverse order.
  2490  	for i := len(regs) - 1; i >= 0; i-- {
  2491  		r := regs[i]
  2492  		if r != noRegister {
  2493  			d.add(vid, r)
  2494  		}
  2495  	}
  2496  }
  2497  
  2498  // clobber erases any desired registers in the set m.
  2499  func (d *desiredState) clobber(m regMask) {
  2500  	for i := 0; i < len(d.entries); {
  2501  		e := &d.entries[i]
  2502  		j := 0
  2503  		for _, r := range e.regs {
  2504  			if r != noRegister && m>>r&1 == 0 {
  2505  				e.regs[j] = r
  2506  				j++
  2507  			}
  2508  		}
  2509  		if j == 0 {
  2510  			// No more desired registers for this value.
  2511  			d.entries[i] = d.entries[len(d.entries)-1]
  2512  			d.entries = d.entries[:len(d.entries)-1]
  2513  			continue
  2514  		}
  2515  		for ; j < len(e.regs); j++ {
  2516  			e.regs[j] = noRegister
  2517  		}
  2518  		i++
  2519  	}
  2520  	d.avoid &^= m
  2521  }
  2522  
  2523  // copy copies a desired state from another desiredState x.
  2524  func (d *desiredState) copy(x *desiredState) {
  2525  	d.entries = append(d.entries[:0], x.entries...)
  2526  	d.avoid = x.avoid
  2527  }
  2528  
  2529  // remove removes the desired registers for vid and returns them.
  2530  func (d *desiredState) remove(vid ID) [4]register {
  2531  	for i := range d.entries {
  2532  		if d.entries[i].ID == vid {
  2533  			regs := d.entries[i].regs
  2534  			d.entries[i] = d.entries[len(d.entries)-1]
  2535  			d.entries = d.entries[:len(d.entries)-1]
  2536  			return regs
  2537  		}
  2538  	}
  2539  	return [4]register{noRegister, noRegister, noRegister, noRegister}
  2540  }
  2541  
  2542  // merge merges another desired state x into d.
  2543  func (d *desiredState) merge(x *desiredState) {
  2544  	d.avoid |= x.avoid
  2545  	// There should only be a few desired registers, so
  2546  	// linear insert is ok.
  2547  	for _, e := range x.entries {
  2548  		d.addList(e.ID, e.regs)
  2549  	}
  2550  }
  2551  
  2552  func min32(x, y int32) int32 {
  2553  	if x < y {
  2554  		return x
  2555  	}
  2556  	return y
  2557  }
  2558  func max32(x, y int32) int32 {
  2559  	if x > y {
  2560  		return x
  2561  	}
  2562  	return y
  2563  }