github.com/hlts2/go@v0.0.0-20170904000733-812b34efaed8/src/cmd/compile/internal/ssa/value.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "cmd/compile/internal/types" 9 "cmd/internal/obj" 10 "cmd/internal/src" 11 "fmt" 12 "math" 13 "strings" 14 ) 15 16 // A Value represents a value in the SSA representation of the program. 17 // The ID and Type fields must not be modified. The remainder may be modified 18 // if they preserve the value of the Value (e.g. changing a (mul 2 x) to an (add x x)). 19 type Value struct { 20 // A unique identifier for the value. For performance we allocate these IDs 21 // densely starting at 1. There is no guarantee that there won't be occasional holes, though. 22 ID ID 23 24 // The operation that computes this value. See op.go. 25 Op Op 26 27 // The type of this value. Normally this will be a Go type, but there 28 // are a few other pseudo-types, see type.go. 29 Type *types.Type 30 31 // Auxiliary info for this value. The type of this information depends on the opcode and type. 32 // AuxInt is used for integer values, Aux is used for other values. 33 // Floats are stored in AuxInt using math.Float64bits(f). 34 AuxInt int64 35 Aux interface{} 36 37 // Arguments of this value 38 Args []*Value 39 40 // Containing basic block 41 Block *Block 42 43 // Source position 44 Pos src.XPos 45 46 // Use count. Each appearance in Value.Args and Block.Control counts once. 47 Uses int32 48 49 // Storage for the first three args 50 argstorage [3]*Value 51 } 52 53 // Examples: 54 // Opcode aux args 55 // OpAdd nil 2 56 // OpConst string 0 string constant 57 // OpConst int64 0 int64 constant 58 // OpAddcq int64 1 amd64 op: v = arg[0] + constant 59 60 // short form print. Just v#. 61 func (v *Value) String() string { 62 if v == nil { 63 return "nil" // should never happen, but not panicking helps with debugging 64 } 65 return fmt.Sprintf("v%d", v.ID) 66 } 67 68 func (v *Value) AuxInt8() int8 { 69 if opcodeTable[v.Op].auxType != auxInt8 { 70 v.Fatalf("op %s doesn't have an int8 aux field", v.Op) 71 } 72 return int8(v.AuxInt) 73 } 74 75 func (v *Value) AuxInt16() int16 { 76 if opcodeTable[v.Op].auxType != auxInt16 { 77 v.Fatalf("op %s doesn't have an int16 aux field", v.Op) 78 } 79 return int16(v.AuxInt) 80 } 81 82 func (v *Value) AuxInt32() int32 { 83 if opcodeTable[v.Op].auxType != auxInt32 { 84 v.Fatalf("op %s doesn't have an int32 aux field", v.Op) 85 } 86 return int32(v.AuxInt) 87 } 88 89 func (v *Value) AuxFloat() float64 { 90 if opcodeTable[v.Op].auxType != auxFloat32 && opcodeTable[v.Op].auxType != auxFloat64 { 91 v.Fatalf("op %s doesn't have a float aux field", v.Op) 92 } 93 return math.Float64frombits(uint64(v.AuxInt)) 94 } 95 func (v *Value) AuxValAndOff() ValAndOff { 96 if opcodeTable[v.Op].auxType != auxSymValAndOff { 97 v.Fatalf("op %s doesn't have a ValAndOff aux field", v.Op) 98 } 99 return ValAndOff(v.AuxInt) 100 } 101 102 // long form print. v# = opcode <type> [aux] args [: reg] (names) 103 func (v *Value) LongString() string { 104 s := fmt.Sprintf("v%d = %s", v.ID, v.Op) 105 s += " <" + v.Type.String() + ">" 106 s += v.auxString() 107 for _, a := range v.Args { 108 s += fmt.Sprintf(" %v", a) 109 } 110 r := v.Block.Func.RegAlloc 111 if int(v.ID) < len(r) && r[v.ID] != nil { 112 s += " : " + r[v.ID].String() 113 } 114 var names []string 115 for name, values := range v.Block.Func.NamedValues { 116 for _, value := range values { 117 if value == v { 118 names = append(names, name.String()) 119 break // drop duplicates. 120 } 121 } 122 } 123 if len(names) != 0 { 124 s += " (" + strings.Join(names, ", ") + ")" 125 } 126 return s 127 } 128 129 func (v *Value) auxString() string { 130 switch opcodeTable[v.Op].auxType { 131 case auxBool: 132 if v.AuxInt == 0 { 133 return " [false]" 134 } else { 135 return " [true]" 136 } 137 case auxInt8: 138 return fmt.Sprintf(" [%d]", v.AuxInt8()) 139 case auxInt16: 140 return fmt.Sprintf(" [%d]", v.AuxInt16()) 141 case auxInt32: 142 return fmt.Sprintf(" [%d]", v.AuxInt32()) 143 case auxInt64, auxInt128: 144 return fmt.Sprintf(" [%d]", v.AuxInt) 145 case auxFloat32, auxFloat64: 146 return fmt.Sprintf(" [%g]", v.AuxFloat()) 147 case auxString: 148 return fmt.Sprintf(" {%q}", v.Aux) 149 case auxSym, auxTyp: 150 if v.Aux != nil { 151 return fmt.Sprintf(" {%v}", v.Aux) 152 } 153 case auxSymOff, auxSymInt32, auxTypSize: 154 s := "" 155 if v.Aux != nil { 156 s = fmt.Sprintf(" {%v}", v.Aux) 157 } 158 if v.AuxInt != 0 { 159 s += fmt.Sprintf(" [%v]", v.AuxInt) 160 } 161 return s 162 case auxSymValAndOff: 163 s := "" 164 if v.Aux != nil { 165 s = fmt.Sprintf(" {%v}", v.Aux) 166 } 167 return s + fmt.Sprintf(" [%s]", v.AuxValAndOff()) 168 } 169 return "" 170 } 171 172 func (v *Value) AddArg(w *Value) { 173 if v.Args == nil { 174 v.resetArgs() // use argstorage 175 } 176 v.Args = append(v.Args, w) 177 w.Uses++ 178 } 179 func (v *Value) AddArgs(a ...*Value) { 180 if v.Args == nil { 181 v.resetArgs() // use argstorage 182 } 183 v.Args = append(v.Args, a...) 184 for _, x := range a { 185 x.Uses++ 186 } 187 } 188 func (v *Value) SetArg(i int, w *Value) { 189 v.Args[i].Uses-- 190 v.Args[i] = w 191 w.Uses++ 192 } 193 func (v *Value) RemoveArg(i int) { 194 v.Args[i].Uses-- 195 copy(v.Args[i:], v.Args[i+1:]) 196 v.Args[len(v.Args)-1] = nil // aid GC 197 v.Args = v.Args[:len(v.Args)-1] 198 } 199 func (v *Value) SetArgs1(a *Value) { 200 v.resetArgs() 201 v.AddArg(a) 202 } 203 func (v *Value) SetArgs2(a *Value, b *Value) { 204 v.resetArgs() 205 v.AddArg(a) 206 v.AddArg(b) 207 } 208 209 func (v *Value) resetArgs() { 210 for _, a := range v.Args { 211 a.Uses-- 212 } 213 v.argstorage[0] = nil 214 v.argstorage[1] = nil 215 v.argstorage[2] = nil 216 v.Args = v.argstorage[:0] 217 } 218 219 func (v *Value) reset(op Op) { 220 v.Op = op 221 v.resetArgs() 222 v.AuxInt = 0 223 v.Aux = nil 224 } 225 226 // copyInto makes a new value identical to v and adds it to the end of b. 227 func (v *Value) copyInto(b *Block) *Value { 228 c := b.NewValue0(v.Pos, v.Op, v.Type) // Lose the position, this causes line number churn otherwise. 229 c.Aux = v.Aux 230 c.AuxInt = v.AuxInt 231 c.AddArgs(v.Args...) 232 for _, a := range v.Args { 233 if a.Type.IsMemory() { 234 v.Fatalf("can't move a value with a memory arg %s", v.LongString()) 235 } 236 } 237 return c 238 } 239 240 // copyIntoNoXPos makes a new value identical to v and adds it to the end of b. 241 // The copied value receives no source code position to avoid confusing changes 242 // in debugger information (the intended user is the register allocator). 243 func (v *Value) copyIntoNoXPos(b *Block) *Value { 244 c := b.NewValue0(src.NoXPos, v.Op, v.Type) // Lose the position, this causes line number churn otherwise. 245 c.Aux = v.Aux 246 c.AuxInt = v.AuxInt 247 c.AddArgs(v.Args...) 248 for _, a := range v.Args { 249 if a.Type.IsMemory() { 250 v.Fatalf("can't move a value with a memory arg %s", v.LongString()) 251 } 252 } 253 return c 254 } 255 256 func (v *Value) Logf(msg string, args ...interface{}) { v.Block.Logf(msg, args...) } 257 func (v *Value) Log() bool { return v.Block.Log() } 258 func (v *Value) Fatalf(msg string, args ...interface{}) { 259 v.Block.Func.fe.Fatalf(v.Pos, msg, args...) 260 } 261 262 // isGenericIntConst returns whether v is a generic integer constant. 263 func (v *Value) isGenericIntConst() bool { 264 return v != nil && (v.Op == OpConst64 || v.Op == OpConst32 || v.Op == OpConst16 || v.Op == OpConst8) 265 } 266 267 // ExternSymbol is an aux value that encodes a variable's 268 // constant offset from the static base pointer. 269 type ExternSymbol struct { 270 Sym *obj.LSym 271 // Note: the offset for an external symbol is not 272 // calculated until link time. 273 } 274 275 // ArgSymbol is an aux value that encodes an argument or result 276 // variable's constant offset from FP (FP = SP + framesize). 277 type ArgSymbol struct { 278 Node GCNode // A *gc.Node referring to the argument/result variable. 279 } 280 281 // AutoSymbol is an aux value that encodes a local variable's 282 // constant offset from SP. 283 type AutoSymbol struct { 284 Node GCNode // A *gc.Node referring to a local (auto) variable. 285 } 286 287 func (s *ExternSymbol) String() string { 288 return s.Sym.String() 289 } 290 291 func (s *ArgSymbol) String() string { 292 return s.Node.String() 293 } 294 295 func (s *AutoSymbol) String() string { 296 return s.Node.String() 297 } 298 299 // Reg returns the register assigned to v, in cmd/internal/obj/$ARCH numbering. 300 func (v *Value) Reg() int16 { 301 reg := v.Block.Func.RegAlloc[v.ID] 302 if reg == nil { 303 v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func) 304 } 305 return reg.(*Register).objNum 306 } 307 308 // Reg0 returns the register assigned to the first output of v, in cmd/internal/obj/$ARCH numbering. 309 func (v *Value) Reg0() int16 { 310 reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[0] 311 if reg == nil { 312 v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func) 313 } 314 return reg.(*Register).objNum 315 } 316 317 // Reg1 returns the register assigned to the second output of v, in cmd/internal/obj/$ARCH numbering. 318 func (v *Value) Reg1() int16 { 319 reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[1] 320 if reg == nil { 321 v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func) 322 } 323 return reg.(*Register).objNum 324 } 325 326 func (v *Value) RegName() string { 327 reg := v.Block.Func.RegAlloc[v.ID] 328 if reg == nil { 329 v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func) 330 } 331 return reg.(*Register).name 332 } 333 334 // MemoryArg returns the memory argument for the Value. 335 // The returned value, if non-nil, will be memory-typed (or a tuple with a memory-typed second part). 336 // Otherwise, nil is returned. 337 func (v *Value) MemoryArg() *Value { 338 if v.Op == OpPhi { 339 v.Fatalf("MemoryArg on Phi") 340 } 341 na := len(v.Args) 342 if na == 0 { 343 return nil 344 } 345 if m := v.Args[na-1]; m.Type.IsMemory() { 346 return m 347 } 348 return nil 349 }