github.com/hlts2/go@v0.0.0-20170904000733-812b34efaed8/src/runtime/trace.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Go execution tracer. 6 // The tracer captures a wide range of execution events like goroutine 7 // creation/blocking/unblocking, syscall enter/exit/block, GC-related events, 8 // changes of heap size, processor start/stop, etc and writes them to a buffer 9 // in a compact form. A precise nanosecond-precision timestamp and a stack 10 // trace is captured for most events. 11 // See https://golang.org/s/go15trace for more info. 12 13 package runtime 14 15 import ( 16 "runtime/internal/sys" 17 "unsafe" 18 ) 19 20 // Event types in the trace, args are given in square brackets. 21 const ( 22 traceEvNone = 0 // unused 23 traceEvBatch = 1 // start of per-P batch of events [pid, timestamp] 24 traceEvFrequency = 2 // contains tracer timer frequency [frequency (ticks per second)] 25 traceEvStack = 3 // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}] 26 traceEvGomaxprocs = 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id] 27 traceEvProcStart = 5 // start of P [timestamp, thread id] 28 traceEvProcStop = 6 // stop of P [timestamp] 29 traceEvGCStart = 7 // GC start [timestamp, seq, stack id] 30 traceEvGCDone = 8 // GC done [timestamp] 31 traceEvGCSTWStart = 9 // GC STW start [timestamp, kind] 32 traceEvGCSTWDone = 10 // GC STW done [timestamp] 33 traceEvGCSweepStart = 11 // GC sweep start [timestamp, stack id] 34 traceEvGCSweepDone = 12 // GC sweep done [timestamp, swept, reclaimed] 35 traceEvGoCreate = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id] 36 traceEvGoStart = 14 // goroutine starts running [timestamp, goroutine id, seq] 37 traceEvGoEnd = 15 // goroutine ends [timestamp] 38 traceEvGoStop = 16 // goroutine stops (like in select{}) [timestamp, stack] 39 traceEvGoSched = 17 // goroutine calls Gosched [timestamp, stack] 40 traceEvGoPreempt = 18 // goroutine is preempted [timestamp, stack] 41 traceEvGoSleep = 19 // goroutine calls Sleep [timestamp, stack] 42 traceEvGoBlock = 20 // goroutine blocks [timestamp, stack] 43 traceEvGoUnblock = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack] 44 traceEvGoBlockSend = 22 // goroutine blocks on chan send [timestamp, stack] 45 traceEvGoBlockRecv = 23 // goroutine blocks on chan recv [timestamp, stack] 46 traceEvGoBlockSelect = 24 // goroutine blocks on select [timestamp, stack] 47 traceEvGoBlockSync = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack] 48 traceEvGoBlockCond = 26 // goroutine blocks on Cond [timestamp, stack] 49 traceEvGoBlockNet = 27 // goroutine blocks on network [timestamp, stack] 50 traceEvGoSysCall = 28 // syscall enter [timestamp, stack] 51 traceEvGoSysExit = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp] 52 traceEvGoSysBlock = 30 // syscall blocks [timestamp] 53 traceEvGoWaiting = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id] 54 traceEvGoInSyscall = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id] 55 traceEvHeapAlloc = 33 // memstats.heap_live change [timestamp, heap_alloc] 56 traceEvNextGC = 34 // memstats.next_gc change [timestamp, next_gc] 57 traceEvTimerGoroutine = 35 // denotes timer goroutine [timer goroutine id] 58 traceEvFutileWakeup = 36 // denotes that the previous wakeup of this goroutine was futile [timestamp] 59 traceEvString = 37 // string dictionary entry [ID, length, string] 60 traceEvGoStartLocal = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id] 61 traceEvGoUnblockLocal = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack] 62 traceEvGoSysExitLocal = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp] 63 traceEvGoStartLabel = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id] 64 traceEvGoBlockGC = 42 // goroutine blocks on GC assist [timestamp, stack] 65 traceEvGCMarkAssistStart = 43 // GC mark assist start [timestamp, stack] 66 traceEvGCMarkAssistDone = 44 // GC mark assist done [timestamp] 67 traceEvCount = 45 68 ) 69 70 const ( 71 // Timestamps in trace are cputicks/traceTickDiv. 72 // This makes absolute values of timestamp diffs smaller, 73 // and so they are encoded in less number of bytes. 74 // 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine). 75 // The suggested increment frequency for PowerPC's time base register is 76 // 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64 77 // and ppc64le. 78 // Tracing won't work reliably for architectures where cputicks is emulated 79 // by nanotime, so the value doesn't matter for those architectures. 80 traceTickDiv = 16 + 48*(sys.Goarch386|sys.GoarchAmd64|sys.GoarchAmd64p32) 81 // Maximum number of PCs in a single stack trace. 82 // Since events contain only stack id rather than whole stack trace, 83 // we can allow quite large values here. 84 traceStackSize = 128 85 // Identifier of a fake P that is used when we trace without a real P. 86 traceGlobProc = -1 87 // Maximum number of bytes to encode uint64 in base-128. 88 traceBytesPerNumber = 10 89 // Shift of the number of arguments in the first event byte. 90 traceArgCountShift = 6 91 // Flag passed to traceGoPark to denote that the previous wakeup of this 92 // goroutine was futile. For example, a goroutine was unblocked on a mutex, 93 // but another goroutine got ahead and acquired the mutex before the first 94 // goroutine is scheduled, so the first goroutine has to block again. 95 // Such wakeups happen on buffered channels and sync.Mutex, 96 // but are generally not interesting for end user. 97 traceFutileWakeup byte = 128 98 ) 99 100 // trace is global tracing context. 101 var trace struct { 102 lock mutex // protects the following members 103 lockOwner *g // to avoid deadlocks during recursive lock locks 104 enabled bool // when set runtime traces events 105 shutdown bool // set when we are waiting for trace reader to finish after setting enabled to false 106 headerWritten bool // whether ReadTrace has emitted trace header 107 footerWritten bool // whether ReadTrace has emitted trace footer 108 shutdownSema uint32 // used to wait for ReadTrace completion 109 seqStart uint64 // sequence number when tracing was started 110 ticksStart int64 // cputicks when tracing was started 111 ticksEnd int64 // cputicks when tracing was stopped 112 timeStart int64 // nanotime when tracing was started 113 timeEnd int64 // nanotime when tracing was stopped 114 seqGC uint64 // GC start/done sequencer 115 reading traceBufPtr // buffer currently handed off to user 116 empty traceBufPtr // stack of empty buffers 117 fullHead traceBufPtr // queue of full buffers 118 fullTail traceBufPtr 119 reader guintptr // goroutine that called ReadTrace, or nil 120 stackTab traceStackTable // maps stack traces to unique ids 121 122 // Dictionary for traceEvString. 123 // 124 // Currently this is used only at trace setup and for 125 // func/file:line info after tracing session, so we assume 126 // single-threaded access. 127 strings map[string]uint64 128 stringSeq uint64 129 130 // markWorkerLabels maps gcMarkWorkerMode to string ID. 131 markWorkerLabels [len(gcMarkWorkerModeStrings)]uint64 132 133 bufLock mutex // protects buf 134 buf traceBufPtr // global trace buffer, used when running without a p 135 } 136 137 // traceBufHeader is per-P tracing buffer. 138 type traceBufHeader struct { 139 link traceBufPtr // in trace.empty/full 140 lastTicks uint64 // when we wrote the last event 141 pos int // next write offset in arr 142 stk [traceStackSize]uintptr // scratch buffer for traceback 143 } 144 145 // traceBuf is per-P tracing buffer. 146 // 147 //go:notinheap 148 type traceBuf struct { 149 traceBufHeader 150 arr [64<<10 - unsafe.Sizeof(traceBufHeader{})]byte // underlying buffer for traceBufHeader.buf 151 } 152 153 // traceBufPtr is a *traceBuf that is not traced by the garbage 154 // collector and doesn't have write barriers. traceBufs are not 155 // allocated from the GC'd heap, so this is safe, and are often 156 // manipulated in contexts where write barriers are not allowed, so 157 // this is necessary. 158 // 159 // TODO: Since traceBuf is now go:notinheap, this isn't necessary. 160 type traceBufPtr uintptr 161 162 func (tp traceBufPtr) ptr() *traceBuf { return (*traceBuf)(unsafe.Pointer(tp)) } 163 func (tp *traceBufPtr) set(b *traceBuf) { *tp = traceBufPtr(unsafe.Pointer(b)) } 164 func traceBufPtrOf(b *traceBuf) traceBufPtr { 165 return traceBufPtr(unsafe.Pointer(b)) 166 } 167 168 // StartTrace enables tracing for the current process. 169 // While tracing, the data will be buffered and available via ReadTrace. 170 // StartTrace returns an error if tracing is already enabled. 171 // Most clients should use the runtime/trace package or the testing package's 172 // -test.trace flag instead of calling StartTrace directly. 173 func StartTrace() error { 174 // Stop the world, so that we can take a consistent snapshot 175 // of all goroutines at the beginning of the trace. 176 stopTheWorld("start tracing") 177 178 // We are in stop-the-world, but syscalls can finish and write to trace concurrently. 179 // Exitsyscall could check trace.enabled long before and then suddenly wake up 180 // and decide to write to trace at a random point in time. 181 // However, such syscall will use the global trace.buf buffer, because we've 182 // acquired all p's by doing stop-the-world. So this protects us from such races. 183 lock(&trace.bufLock) 184 185 if trace.enabled || trace.shutdown { 186 unlock(&trace.bufLock) 187 startTheWorld() 188 return errorString("tracing is already enabled") 189 } 190 191 // Can't set trace.enabled yet. While the world is stopped, exitsyscall could 192 // already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here. 193 // That would lead to an inconsistent trace: 194 // - either GoSysExit appears before EvGoInSyscall, 195 // - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below. 196 // To instruct traceEvent that it must not ignore events below, we set startingtrace. 197 // trace.enabled is set afterwards once we have emitted all preliminary events. 198 _g_ := getg() 199 _g_.m.startingtrace = true 200 201 // Obtain current stack ID to use in all traceEvGoCreate events below. 202 mp := acquirem() 203 stkBuf := make([]uintptr, traceStackSize) 204 stackID := traceStackID(mp, stkBuf, 2) 205 releasem(mp) 206 207 for _, gp := range allgs { 208 status := readgstatus(gp) 209 if status != _Gdead { 210 gp.traceseq = 0 211 gp.tracelastp = getg().m.p 212 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum. 213 id := trace.stackTab.put([]uintptr{gp.startpc + sys.PCQuantum}) 214 traceEvent(traceEvGoCreate, -1, uint64(gp.goid), uint64(id), stackID) 215 } 216 if status == _Gwaiting { 217 // traceEvGoWaiting is implied to have seq=1. 218 gp.traceseq++ 219 traceEvent(traceEvGoWaiting, -1, uint64(gp.goid)) 220 } 221 if status == _Gsyscall { 222 gp.traceseq++ 223 traceEvent(traceEvGoInSyscall, -1, uint64(gp.goid)) 224 } else { 225 gp.sysblocktraced = false 226 } 227 } 228 traceProcStart() 229 traceGoStart() 230 // Note: ticksStart needs to be set after we emit traceEvGoInSyscall events. 231 // If we do it the other way around, it is possible that exitsyscall will 232 // query sysexitticks after ticksStart but before traceEvGoInSyscall timestamp. 233 // It will lead to a false conclusion that cputicks is broken. 234 trace.ticksStart = cputicks() 235 trace.timeStart = nanotime() 236 trace.headerWritten = false 237 trace.footerWritten = false 238 trace.strings = make(map[string]uint64) 239 trace.stringSeq = 0 240 trace.seqGC = 0 241 _g_.m.startingtrace = false 242 trace.enabled = true 243 244 // Register runtime goroutine labels. 245 _, pid, bufp := traceAcquireBuffer() 246 buf := (*bufp).ptr() 247 if buf == nil { 248 buf = traceFlush(0).ptr() 249 (*bufp).set(buf) 250 } 251 for i, label := range gcMarkWorkerModeStrings[:] { 252 trace.markWorkerLabels[i], buf = traceString(buf, label) 253 } 254 traceReleaseBuffer(pid) 255 256 unlock(&trace.bufLock) 257 258 startTheWorld() 259 return nil 260 } 261 262 // StopTrace stops tracing, if it was previously enabled. 263 // StopTrace only returns after all the reads for the trace have completed. 264 func StopTrace() { 265 // Stop the world so that we can collect the trace buffers from all p's below, 266 // and also to avoid races with traceEvent. 267 stopTheWorld("stop tracing") 268 269 // See the comment in StartTrace. 270 lock(&trace.bufLock) 271 272 if !trace.enabled { 273 unlock(&trace.bufLock) 274 startTheWorld() 275 return 276 } 277 278 traceGoSched() 279 280 for _, p := range &allp { 281 if p == nil { 282 break 283 } 284 buf := p.tracebuf 285 if buf != 0 { 286 traceFullQueue(buf) 287 p.tracebuf = 0 288 } 289 } 290 if trace.buf != 0 { 291 buf := trace.buf 292 trace.buf = 0 293 if buf.ptr().pos != 0 { 294 traceFullQueue(buf) 295 } 296 } 297 298 for { 299 trace.ticksEnd = cputicks() 300 trace.timeEnd = nanotime() 301 // Windows time can tick only every 15ms, wait for at least one tick. 302 if trace.timeEnd != trace.timeStart { 303 break 304 } 305 osyield() 306 } 307 308 trace.enabled = false 309 trace.shutdown = true 310 unlock(&trace.bufLock) 311 312 startTheWorld() 313 314 // The world is started but we've set trace.shutdown, so new tracing can't start. 315 // Wait for the trace reader to flush pending buffers and stop. 316 semacquire(&trace.shutdownSema) 317 if raceenabled { 318 raceacquire(unsafe.Pointer(&trace.shutdownSema)) 319 } 320 321 // The lock protects us from races with StartTrace/StopTrace because they do stop-the-world. 322 lock(&trace.lock) 323 for _, p := range &allp { 324 if p == nil { 325 break 326 } 327 if p.tracebuf != 0 { 328 throw("trace: non-empty trace buffer in proc") 329 } 330 } 331 if trace.buf != 0 { 332 throw("trace: non-empty global trace buffer") 333 } 334 if trace.fullHead != 0 || trace.fullTail != 0 { 335 throw("trace: non-empty full trace buffer") 336 } 337 if trace.reading != 0 || trace.reader != 0 { 338 throw("trace: reading after shutdown") 339 } 340 for trace.empty != 0 { 341 buf := trace.empty 342 trace.empty = buf.ptr().link 343 sysFree(unsafe.Pointer(buf), unsafe.Sizeof(*buf.ptr()), &memstats.other_sys) 344 } 345 trace.strings = nil 346 trace.shutdown = false 347 unlock(&trace.lock) 348 } 349 350 // ReadTrace returns the next chunk of binary tracing data, blocking until data 351 // is available. If tracing is turned off and all the data accumulated while it 352 // was on has been returned, ReadTrace returns nil. The caller must copy the 353 // returned data before calling ReadTrace again. 354 // ReadTrace must be called from one goroutine at a time. 355 func ReadTrace() []byte { 356 // This function may need to lock trace.lock recursively 357 // (goparkunlock -> traceGoPark -> traceEvent -> traceFlush). 358 // To allow this we use trace.lockOwner. 359 // Also this function must not allocate while holding trace.lock: 360 // allocation can call heap allocate, which will try to emit a trace 361 // event while holding heap lock. 362 lock(&trace.lock) 363 trace.lockOwner = getg() 364 365 if trace.reader != 0 { 366 // More than one goroutine reads trace. This is bad. 367 // But we rather do not crash the program because of tracing, 368 // because tracing can be enabled at runtime on prod servers. 369 trace.lockOwner = nil 370 unlock(&trace.lock) 371 println("runtime: ReadTrace called from multiple goroutines simultaneously") 372 return nil 373 } 374 // Recycle the old buffer. 375 if buf := trace.reading; buf != 0 { 376 buf.ptr().link = trace.empty 377 trace.empty = buf 378 trace.reading = 0 379 } 380 // Write trace header. 381 if !trace.headerWritten { 382 trace.headerWritten = true 383 trace.lockOwner = nil 384 unlock(&trace.lock) 385 return []byte("go 1.10 trace\x00\x00\x00") 386 } 387 // Wait for new data. 388 if trace.fullHead == 0 && !trace.shutdown { 389 trace.reader.set(getg()) 390 goparkunlock(&trace.lock, "trace reader (blocked)", traceEvGoBlock, 2) 391 lock(&trace.lock) 392 } 393 // Write a buffer. 394 if trace.fullHead != 0 { 395 buf := traceFullDequeue() 396 trace.reading = buf 397 trace.lockOwner = nil 398 unlock(&trace.lock) 399 return buf.ptr().arr[:buf.ptr().pos] 400 } 401 // Write footer with timer frequency. 402 if !trace.footerWritten { 403 trace.footerWritten = true 404 // Use float64 because (trace.ticksEnd - trace.ticksStart) * 1e9 can overflow int64. 405 freq := float64(trace.ticksEnd-trace.ticksStart) * 1e9 / float64(trace.timeEnd-trace.timeStart) / traceTickDiv 406 trace.lockOwner = nil 407 unlock(&trace.lock) 408 var data []byte 409 data = append(data, traceEvFrequency|0<<traceArgCountShift) 410 data = traceAppend(data, uint64(freq)) 411 if timers.gp != nil { 412 data = append(data, traceEvTimerGoroutine|0<<traceArgCountShift) 413 data = traceAppend(data, uint64(timers.gp.goid)) 414 } 415 // This will emit a bunch of full buffers, we will pick them up 416 // on the next iteration. 417 trace.stackTab.dump() 418 return data 419 } 420 // Done. 421 if trace.shutdown { 422 trace.lockOwner = nil 423 unlock(&trace.lock) 424 if raceenabled { 425 // Model synchronization on trace.shutdownSema, which race 426 // detector does not see. This is required to avoid false 427 // race reports on writer passed to trace.Start. 428 racerelease(unsafe.Pointer(&trace.shutdownSema)) 429 } 430 // trace.enabled is already reset, so can call traceable functions. 431 semrelease(&trace.shutdownSema) 432 return nil 433 } 434 // Also bad, but see the comment above. 435 trace.lockOwner = nil 436 unlock(&trace.lock) 437 println("runtime: spurious wakeup of trace reader") 438 return nil 439 } 440 441 // traceReader returns the trace reader that should be woken up, if any. 442 func traceReader() *g { 443 if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) { 444 return nil 445 } 446 lock(&trace.lock) 447 if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) { 448 unlock(&trace.lock) 449 return nil 450 } 451 gp := trace.reader.ptr() 452 trace.reader.set(nil) 453 unlock(&trace.lock) 454 return gp 455 } 456 457 // traceProcFree frees trace buffer associated with pp. 458 func traceProcFree(pp *p) { 459 buf := pp.tracebuf 460 pp.tracebuf = 0 461 if buf == 0 { 462 return 463 } 464 lock(&trace.lock) 465 traceFullQueue(buf) 466 unlock(&trace.lock) 467 } 468 469 // traceFullQueue queues buf into queue of full buffers. 470 func traceFullQueue(buf traceBufPtr) { 471 buf.ptr().link = 0 472 if trace.fullHead == 0 { 473 trace.fullHead = buf 474 } else { 475 trace.fullTail.ptr().link = buf 476 } 477 trace.fullTail = buf 478 } 479 480 // traceFullDequeue dequeues from queue of full buffers. 481 func traceFullDequeue() traceBufPtr { 482 buf := trace.fullHead 483 if buf == 0 { 484 return 0 485 } 486 trace.fullHead = buf.ptr().link 487 if trace.fullHead == 0 { 488 trace.fullTail = 0 489 } 490 buf.ptr().link = 0 491 return buf 492 } 493 494 // traceEvent writes a single event to trace buffer, flushing the buffer if necessary. 495 // ev is event type. 496 // If skip > 0, write current stack id as the last argument (skipping skip top frames). 497 // If skip = 0, this event type should contain a stack, but we don't want 498 // to collect and remember it for this particular call. 499 func traceEvent(ev byte, skip int, args ...uint64) { 500 mp, pid, bufp := traceAcquireBuffer() 501 // Double-check trace.enabled now that we've done m.locks++ and acquired bufLock. 502 // This protects from races between traceEvent and StartTrace/StopTrace. 503 504 // The caller checked that trace.enabled == true, but trace.enabled might have been 505 // turned off between the check and now. Check again. traceLockBuffer did mp.locks++, 506 // StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero, 507 // so if we see trace.enabled == true now, we know it's true for the rest of the function. 508 // Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace 509 // during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer. 510 if !trace.enabled && !mp.startingtrace { 511 traceReleaseBuffer(pid) 512 return 513 } 514 buf := (*bufp).ptr() 515 const maxSize = 2 + 5*traceBytesPerNumber // event type, length, sequence, timestamp, stack id and two add params 516 if buf == nil || len(buf.arr)-buf.pos < maxSize { 517 buf = traceFlush(traceBufPtrOf(buf)).ptr() 518 (*bufp).set(buf) 519 } 520 521 ticks := uint64(cputicks()) / traceTickDiv 522 tickDiff := ticks - buf.lastTicks 523 if buf.pos == 0 { 524 buf.byte(traceEvBatch | 1<<traceArgCountShift) 525 buf.varint(uint64(pid)) 526 buf.varint(ticks) 527 tickDiff = 0 528 } 529 buf.lastTicks = ticks 530 narg := byte(len(args)) 531 if skip >= 0 { 532 narg++ 533 } 534 // We have only 2 bits for number of arguments. 535 // If number is >= 3, then the event type is followed by event length in bytes. 536 if narg > 3 { 537 narg = 3 538 } 539 startPos := buf.pos 540 buf.byte(ev | narg<<traceArgCountShift) 541 var lenp *byte 542 if narg == 3 { 543 // Reserve the byte for length assuming that length < 128. 544 buf.varint(0) 545 lenp = &buf.arr[buf.pos-1] 546 } 547 buf.varint(tickDiff) 548 for _, a := range args { 549 buf.varint(a) 550 } 551 if skip == 0 { 552 buf.varint(0) 553 } else if skip > 0 { 554 buf.varint(traceStackID(mp, buf.stk[:], skip)) 555 } 556 evSize := buf.pos - startPos 557 if evSize > maxSize { 558 throw("invalid length of trace event") 559 } 560 if lenp != nil { 561 // Fill in actual length. 562 *lenp = byte(evSize - 2) 563 } 564 traceReleaseBuffer(pid) 565 } 566 567 func traceStackID(mp *m, buf []uintptr, skip int) uint64 { 568 _g_ := getg() 569 gp := mp.curg 570 var nstk int 571 if gp == _g_ { 572 nstk = callers(skip+1, buf[:]) 573 } else if gp != nil { 574 gp = mp.curg 575 nstk = gcallers(gp, skip, buf[:]) 576 } 577 if nstk > 0 { 578 nstk-- // skip runtime.goexit 579 } 580 if nstk > 0 && gp.goid == 1 { 581 nstk-- // skip runtime.main 582 } 583 id := trace.stackTab.put(buf[:nstk]) 584 return uint64(id) 585 } 586 587 // traceAcquireBuffer returns trace buffer to use and, if necessary, locks it. 588 func traceAcquireBuffer() (mp *m, pid int32, bufp *traceBufPtr) { 589 mp = acquirem() 590 if p := mp.p.ptr(); p != nil { 591 return mp, p.id, &p.tracebuf 592 } 593 lock(&trace.bufLock) 594 return mp, traceGlobProc, &trace.buf 595 } 596 597 // traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer. 598 func traceReleaseBuffer(pid int32) { 599 if pid == traceGlobProc { 600 unlock(&trace.bufLock) 601 } 602 releasem(getg().m) 603 } 604 605 // traceFlush puts buf onto stack of full buffers and returns an empty buffer. 606 func traceFlush(buf traceBufPtr) traceBufPtr { 607 owner := trace.lockOwner 608 dolock := owner == nil || owner != getg().m.curg 609 if dolock { 610 lock(&trace.lock) 611 } 612 if buf != 0 { 613 traceFullQueue(buf) 614 } 615 if trace.empty != 0 { 616 buf = trace.empty 617 trace.empty = buf.ptr().link 618 } else { 619 buf = traceBufPtr(sysAlloc(unsafe.Sizeof(traceBuf{}), &memstats.other_sys)) 620 if buf == 0 { 621 throw("trace: out of memory") 622 } 623 } 624 bufp := buf.ptr() 625 bufp.link.set(nil) 626 bufp.pos = 0 627 bufp.lastTicks = 0 628 if dolock { 629 unlock(&trace.lock) 630 } 631 return buf 632 } 633 634 func traceString(buf *traceBuf, s string) (uint64, *traceBuf) { 635 if s == "" { 636 return 0, buf 637 } 638 if id, ok := trace.strings[s]; ok { 639 return id, buf 640 } 641 642 trace.stringSeq++ 643 id := trace.stringSeq 644 trace.strings[s] = id 645 646 size := 1 + 2*traceBytesPerNumber + len(s) 647 if len(buf.arr)-buf.pos < size { 648 buf = traceFlush(traceBufPtrOf(buf)).ptr() 649 } 650 buf.byte(traceEvString) 651 buf.varint(id) 652 buf.varint(uint64(len(s))) 653 buf.pos += copy(buf.arr[buf.pos:], s) 654 return id, buf 655 } 656 657 // traceAppend appends v to buf in little-endian-base-128 encoding. 658 func traceAppend(buf []byte, v uint64) []byte { 659 for ; v >= 0x80; v >>= 7 { 660 buf = append(buf, 0x80|byte(v)) 661 } 662 buf = append(buf, byte(v)) 663 return buf 664 } 665 666 // varint appends v to buf in little-endian-base-128 encoding. 667 func (buf *traceBuf) varint(v uint64) { 668 pos := buf.pos 669 for ; v >= 0x80; v >>= 7 { 670 buf.arr[pos] = 0x80 | byte(v) 671 pos++ 672 } 673 buf.arr[pos] = byte(v) 674 pos++ 675 buf.pos = pos 676 } 677 678 // byte appends v to buf. 679 func (buf *traceBuf) byte(v byte) { 680 buf.arr[buf.pos] = v 681 buf.pos++ 682 } 683 684 // traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids. 685 // It is lock-free for reading. 686 type traceStackTable struct { 687 lock mutex 688 seq uint32 689 mem traceAlloc 690 tab [1 << 13]traceStackPtr 691 } 692 693 // traceStack is a single stack in traceStackTable. 694 type traceStack struct { 695 link traceStackPtr 696 hash uintptr 697 id uint32 698 n int 699 stk [0]uintptr // real type [n]uintptr 700 } 701 702 type traceStackPtr uintptr 703 704 func (tp traceStackPtr) ptr() *traceStack { return (*traceStack)(unsafe.Pointer(tp)) } 705 706 // stack returns slice of PCs. 707 func (ts *traceStack) stack() []uintptr { 708 return (*[traceStackSize]uintptr)(unsafe.Pointer(&ts.stk))[:ts.n] 709 } 710 711 // put returns a unique id for the stack trace pcs and caches it in the table, 712 // if it sees the trace for the first time. 713 func (tab *traceStackTable) put(pcs []uintptr) uint32 { 714 if len(pcs) == 0 { 715 return 0 716 } 717 hash := memhash(unsafe.Pointer(&pcs[0]), 0, uintptr(len(pcs))*unsafe.Sizeof(pcs[0])) 718 // First, search the hashtable w/o the mutex. 719 if id := tab.find(pcs, hash); id != 0 { 720 return id 721 } 722 // Now, double check under the mutex. 723 lock(&tab.lock) 724 if id := tab.find(pcs, hash); id != 0 { 725 unlock(&tab.lock) 726 return id 727 } 728 // Create new record. 729 tab.seq++ 730 stk := tab.newStack(len(pcs)) 731 stk.hash = hash 732 stk.id = tab.seq 733 stk.n = len(pcs) 734 stkpc := stk.stack() 735 for i, pc := range pcs { 736 stkpc[i] = pc 737 } 738 part := int(hash % uintptr(len(tab.tab))) 739 stk.link = tab.tab[part] 740 atomicstorep(unsafe.Pointer(&tab.tab[part]), unsafe.Pointer(stk)) 741 unlock(&tab.lock) 742 return stk.id 743 } 744 745 // find checks if the stack trace pcs is already present in the table. 746 func (tab *traceStackTable) find(pcs []uintptr, hash uintptr) uint32 { 747 part := int(hash % uintptr(len(tab.tab))) 748 Search: 749 for stk := tab.tab[part].ptr(); stk != nil; stk = stk.link.ptr() { 750 if stk.hash == hash && stk.n == len(pcs) { 751 for i, stkpc := range stk.stack() { 752 if stkpc != pcs[i] { 753 continue Search 754 } 755 } 756 return stk.id 757 } 758 } 759 return 0 760 } 761 762 // newStack allocates a new stack of size n. 763 func (tab *traceStackTable) newStack(n int) *traceStack { 764 return (*traceStack)(tab.mem.alloc(unsafe.Sizeof(traceStack{}) + uintptr(n)*sys.PtrSize)) 765 } 766 767 // allFrames returns all of the Frames corresponding to pcs. 768 func allFrames(pcs []uintptr) []Frame { 769 frames := make([]Frame, 0, len(pcs)) 770 ci := CallersFrames(pcs) 771 for { 772 f, more := ci.Next() 773 frames = append(frames, f) 774 if !more { 775 return frames 776 } 777 } 778 } 779 780 // dump writes all previously cached stacks to trace buffers, 781 // releases all memory and resets state. 782 func (tab *traceStackTable) dump() { 783 var tmp [(2 + 4*traceStackSize) * traceBytesPerNumber]byte 784 buf := traceFlush(0).ptr() 785 for _, stk := range tab.tab { 786 stk := stk.ptr() 787 for ; stk != nil; stk = stk.link.ptr() { 788 tmpbuf := tmp[:0] 789 tmpbuf = traceAppend(tmpbuf, uint64(stk.id)) 790 frames := allFrames(stk.stack()) 791 tmpbuf = traceAppend(tmpbuf, uint64(len(frames))) 792 for _, f := range frames { 793 var frame traceFrame 794 frame, buf = traceFrameForPC(buf, f) 795 tmpbuf = traceAppend(tmpbuf, uint64(f.PC)) 796 tmpbuf = traceAppend(tmpbuf, uint64(frame.funcID)) 797 tmpbuf = traceAppend(tmpbuf, uint64(frame.fileID)) 798 tmpbuf = traceAppend(tmpbuf, uint64(frame.line)) 799 } 800 // Now copy to the buffer. 801 size := 1 + traceBytesPerNumber + len(tmpbuf) 802 if len(buf.arr)-buf.pos < size { 803 buf = traceFlush(traceBufPtrOf(buf)).ptr() 804 } 805 buf.byte(traceEvStack | 3<<traceArgCountShift) 806 buf.varint(uint64(len(tmpbuf))) 807 buf.pos += copy(buf.arr[buf.pos:], tmpbuf) 808 } 809 } 810 811 lock(&trace.lock) 812 traceFullQueue(traceBufPtrOf(buf)) 813 unlock(&trace.lock) 814 815 tab.mem.drop() 816 *tab = traceStackTable{} 817 } 818 819 type traceFrame struct { 820 funcID uint64 821 fileID uint64 822 line uint64 823 } 824 825 func traceFrameForPC(buf *traceBuf, f Frame) (traceFrame, *traceBuf) { 826 var frame traceFrame 827 828 fn := f.Function 829 const maxLen = 1 << 10 830 if len(fn) > maxLen { 831 fn = fn[len(fn)-maxLen:] 832 } 833 frame.funcID, buf = traceString(buf, fn) 834 frame.line = uint64(f.Line) 835 file := f.File 836 if len(file) > maxLen { 837 file = file[len(file)-maxLen:] 838 } 839 frame.fileID, buf = traceString(buf, file) 840 return frame, buf 841 } 842 843 // traceAlloc is a non-thread-safe region allocator. 844 // It holds a linked list of traceAllocBlock. 845 type traceAlloc struct { 846 head traceAllocBlockPtr 847 off uintptr 848 } 849 850 // traceAllocBlock is a block in traceAlloc. 851 // 852 // traceAllocBlock is allocated from non-GC'd memory, so it must not 853 // contain heap pointers. Writes to pointers to traceAllocBlocks do 854 // not need write barriers. 855 // 856 //go:notinheap 857 type traceAllocBlock struct { 858 next traceAllocBlockPtr 859 data [64<<10 - sys.PtrSize]byte 860 } 861 862 // TODO: Since traceAllocBlock is now go:notinheap, this isn't necessary. 863 type traceAllocBlockPtr uintptr 864 865 func (p traceAllocBlockPtr) ptr() *traceAllocBlock { return (*traceAllocBlock)(unsafe.Pointer(p)) } 866 func (p *traceAllocBlockPtr) set(x *traceAllocBlock) { *p = traceAllocBlockPtr(unsafe.Pointer(x)) } 867 868 // alloc allocates n-byte block. 869 func (a *traceAlloc) alloc(n uintptr) unsafe.Pointer { 870 n = round(n, sys.PtrSize) 871 if a.head == 0 || a.off+n > uintptr(len(a.head.ptr().data)) { 872 if n > uintptr(len(a.head.ptr().data)) { 873 throw("trace: alloc too large") 874 } 875 block := (*traceAllocBlock)(sysAlloc(unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys)) 876 if block == nil { 877 throw("trace: out of memory") 878 } 879 block.next.set(a.head.ptr()) 880 a.head.set(block) 881 a.off = 0 882 } 883 p := &a.head.ptr().data[a.off] 884 a.off += n 885 return unsafe.Pointer(p) 886 } 887 888 // drop frees all previously allocated memory and resets the allocator. 889 func (a *traceAlloc) drop() { 890 for a.head != 0 { 891 block := a.head.ptr() 892 a.head.set(block.next.ptr()) 893 sysFree(unsafe.Pointer(block), unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys) 894 } 895 } 896 897 // The following functions write specific events to trace. 898 899 func traceGomaxprocs(procs int32) { 900 traceEvent(traceEvGomaxprocs, 1, uint64(procs)) 901 } 902 903 func traceProcStart() { 904 traceEvent(traceEvProcStart, -1, uint64(getg().m.id)) 905 } 906 907 func traceProcStop(pp *p) { 908 // Sysmon and stopTheWorld can stop Ps blocked in syscalls, 909 // to handle this we temporary employ the P. 910 mp := acquirem() 911 oldp := mp.p 912 mp.p.set(pp) 913 traceEvent(traceEvProcStop, -1) 914 mp.p = oldp 915 releasem(mp) 916 } 917 918 func traceGCStart() { 919 traceEvent(traceEvGCStart, 3, trace.seqGC) 920 trace.seqGC++ 921 } 922 923 func traceGCDone() { 924 traceEvent(traceEvGCDone, -1) 925 } 926 927 func traceGCSTWStart(kind int) { 928 traceEvent(traceEvGCSTWStart, -1, uint64(kind)) 929 } 930 931 func traceGCSTWDone() { 932 traceEvent(traceEvGCSTWDone, -1) 933 } 934 935 // traceGCSweepStart prepares to trace a sweep loop. This does not 936 // emit any events until traceGCSweepSpan is called. 937 // 938 // traceGCSweepStart must be paired with traceGCSweepDone and there 939 // must be no preemption points between these two calls. 940 func traceGCSweepStart() { 941 // Delay the actual GCSweepStart event until the first span 942 // sweep. If we don't sweep anything, don't emit any events. 943 _p_ := getg().m.p.ptr() 944 if _p_.traceSweep { 945 throw("double traceGCSweepStart") 946 } 947 _p_.traceSweep, _p_.traceSwept, _p_.traceReclaimed = true, 0, 0 948 } 949 950 // traceGCSweepSpan traces the sweep of a single page. 951 // 952 // This may be called outside a traceGCSweepStart/traceGCSweepDone 953 // pair; however, it will not emit any trace events in this case. 954 func traceGCSweepSpan(bytesSwept uintptr) { 955 _p_ := getg().m.p.ptr() 956 if _p_.traceSweep { 957 if _p_.traceSwept == 0 { 958 traceEvent(traceEvGCSweepStart, 1) 959 } 960 _p_.traceSwept += bytesSwept 961 } 962 } 963 964 func traceGCSweepDone() { 965 _p_ := getg().m.p.ptr() 966 if !_p_.traceSweep { 967 throw("missing traceGCSweepStart") 968 } 969 if _p_.traceSwept != 0 { 970 traceEvent(traceEvGCSweepDone, -1, uint64(_p_.traceSwept), uint64(_p_.traceReclaimed)) 971 } 972 _p_.traceSweep = false 973 } 974 975 func traceGCMarkAssistStart() { 976 traceEvent(traceEvGCMarkAssistStart, 1) 977 } 978 979 func traceGCMarkAssistDone() { 980 traceEvent(traceEvGCMarkAssistDone, -1) 981 } 982 983 func traceGoCreate(newg *g, pc uintptr) { 984 newg.traceseq = 0 985 newg.tracelastp = getg().m.p 986 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum. 987 id := trace.stackTab.put([]uintptr{pc + sys.PCQuantum}) 988 traceEvent(traceEvGoCreate, 2, uint64(newg.goid), uint64(id)) 989 } 990 991 func traceGoStart() { 992 _g_ := getg().m.curg 993 _p_ := _g_.m.p 994 _g_.traceseq++ 995 if _g_ == _p_.ptr().gcBgMarkWorker.ptr() { 996 traceEvent(traceEvGoStartLabel, -1, uint64(_g_.goid), _g_.traceseq, trace.markWorkerLabels[_p_.ptr().gcMarkWorkerMode]) 997 } else if _g_.tracelastp == _p_ { 998 traceEvent(traceEvGoStartLocal, -1, uint64(_g_.goid)) 999 } else { 1000 _g_.tracelastp = _p_ 1001 traceEvent(traceEvGoStart, -1, uint64(_g_.goid), _g_.traceseq) 1002 } 1003 } 1004 1005 func traceGoEnd() { 1006 traceEvent(traceEvGoEnd, -1) 1007 } 1008 1009 func traceGoSched() { 1010 _g_ := getg() 1011 _g_.tracelastp = _g_.m.p 1012 traceEvent(traceEvGoSched, 1) 1013 } 1014 1015 func traceGoPreempt() { 1016 _g_ := getg() 1017 _g_.tracelastp = _g_.m.p 1018 traceEvent(traceEvGoPreempt, 1) 1019 } 1020 1021 func traceGoPark(traceEv byte, skip int) { 1022 if traceEv&traceFutileWakeup != 0 { 1023 traceEvent(traceEvFutileWakeup, -1) 1024 } 1025 traceEvent(traceEv & ^traceFutileWakeup, skip) 1026 } 1027 1028 func traceGoUnpark(gp *g, skip int) { 1029 _p_ := getg().m.p 1030 gp.traceseq++ 1031 if gp.tracelastp == _p_ { 1032 traceEvent(traceEvGoUnblockLocal, skip, uint64(gp.goid)) 1033 } else { 1034 gp.tracelastp = _p_ 1035 traceEvent(traceEvGoUnblock, skip, uint64(gp.goid), gp.traceseq) 1036 } 1037 } 1038 1039 func traceGoSysCall() { 1040 traceEvent(traceEvGoSysCall, 1) 1041 } 1042 1043 func traceGoSysExit(ts int64) { 1044 if ts != 0 && ts < trace.ticksStart { 1045 // There is a race between the code that initializes sysexitticks 1046 // (in exitsyscall, which runs without a P, and therefore is not 1047 // stopped with the rest of the world) and the code that initializes 1048 // a new trace. The recorded sysexitticks must therefore be treated 1049 // as "best effort". If they are valid for this trace, then great, 1050 // use them for greater accuracy. But if they're not valid for this 1051 // trace, assume that the trace was started after the actual syscall 1052 // exit (but before we actually managed to start the goroutine, 1053 // aka right now), and assign a fresh time stamp to keep the log consistent. 1054 ts = 0 1055 } 1056 _g_ := getg().m.curg 1057 _g_.traceseq++ 1058 _g_.tracelastp = _g_.m.p 1059 traceEvent(traceEvGoSysExit, -1, uint64(_g_.goid), _g_.traceseq, uint64(ts)/traceTickDiv) 1060 } 1061 1062 func traceGoSysBlock(pp *p) { 1063 // Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked, 1064 // to handle this we temporary employ the P. 1065 mp := acquirem() 1066 oldp := mp.p 1067 mp.p.set(pp) 1068 traceEvent(traceEvGoSysBlock, -1) 1069 mp.p = oldp 1070 releasem(mp) 1071 } 1072 1073 func traceHeapAlloc() { 1074 traceEvent(traceEvHeapAlloc, -1, memstats.heap_live) 1075 } 1076 1077 func traceNextGC() { 1078 if memstats.next_gc == ^uint64(0) { 1079 // Heap-based triggering is disabled. 1080 traceEvent(traceEvNextGC, -1, 0) 1081 } else { 1082 traceEvent(traceEvNextGC, -1, memstats.next_gc) 1083 } 1084 }