github.com/hlts2/go@v0.0.0-20170904000733-812b34efaed8/src/strings/strings.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package strings implements simple functions to manipulate UTF-8 encoded strings.
     6  //
     7  // For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
     8  package strings
     9  
    10  import (
    11  	"unicode"
    12  	"unicode/utf8"
    13  )
    14  
    15  // explode splits s into a slice of UTF-8 strings,
    16  // one string per Unicode character up to a maximum of n (n < 0 means no limit).
    17  // Invalid UTF-8 sequences become correct encodings of U+FFFD.
    18  func explode(s string, n int) []string {
    19  	l := utf8.RuneCountInString(s)
    20  	if n < 0 || n > l {
    21  		n = l
    22  	}
    23  	a := make([]string, n)
    24  	for i := 0; i < n-1; i++ {
    25  		ch, size := utf8.DecodeRuneInString(s)
    26  		a[i] = s[:size]
    27  		s = s[size:]
    28  		if ch == utf8.RuneError {
    29  			a[i] = string(utf8.RuneError)
    30  		}
    31  	}
    32  	if n > 0 {
    33  		a[n-1] = s
    34  	}
    35  	return a
    36  }
    37  
    38  // primeRK is the prime base used in Rabin-Karp algorithm.
    39  const primeRK = 16777619
    40  
    41  // hashStr returns the hash and the appropriate multiplicative
    42  // factor for use in Rabin-Karp algorithm.
    43  func hashStr(sep string) (uint32, uint32) {
    44  	hash := uint32(0)
    45  	for i := 0; i < len(sep); i++ {
    46  		hash = hash*primeRK + uint32(sep[i])
    47  	}
    48  	var pow, sq uint32 = 1, primeRK
    49  	for i := len(sep); i > 0; i >>= 1 {
    50  		if i&1 != 0 {
    51  			pow *= sq
    52  		}
    53  		sq *= sq
    54  	}
    55  	return hash, pow
    56  }
    57  
    58  // hashStrRev returns the hash of the reverse of sep and the
    59  // appropriate multiplicative factor for use in Rabin-Karp algorithm.
    60  func hashStrRev(sep string) (uint32, uint32) {
    61  	hash := uint32(0)
    62  	for i := len(sep) - 1; i >= 0; i-- {
    63  		hash = hash*primeRK + uint32(sep[i])
    64  	}
    65  	var pow, sq uint32 = 1, primeRK
    66  	for i := len(sep); i > 0; i >>= 1 {
    67  		if i&1 != 0 {
    68  			pow *= sq
    69  		}
    70  		sq *= sq
    71  	}
    72  	return hash, pow
    73  }
    74  
    75  // countGeneric implements Count.
    76  func countGeneric(s, substr string) int {
    77  	// special case
    78  	if len(substr) == 0 {
    79  		return utf8.RuneCountInString(s) + 1
    80  	}
    81  	n := 0
    82  	for {
    83  		i := Index(s, substr)
    84  		if i == -1 {
    85  			return n
    86  		}
    87  		n++
    88  		s = s[i+len(substr):]
    89  	}
    90  }
    91  
    92  // Contains reports whether substr is within s.
    93  func Contains(s, substr string) bool {
    94  	return Index(s, substr) >= 0
    95  }
    96  
    97  // ContainsAny reports whether any Unicode code points in chars are within s.
    98  func ContainsAny(s, chars string) bool {
    99  	return IndexAny(s, chars) >= 0
   100  }
   101  
   102  // ContainsRune reports whether the Unicode code point r is within s.
   103  func ContainsRune(s string, r rune) bool {
   104  	return IndexRune(s, r) >= 0
   105  }
   106  
   107  // LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
   108  func LastIndex(s, substr string) int {
   109  	n := len(substr)
   110  	switch {
   111  	case n == 0:
   112  		return len(s)
   113  	case n == 1:
   114  		return LastIndexByte(s, substr[0])
   115  	case n == len(s):
   116  		if substr == s {
   117  			return 0
   118  		}
   119  		return -1
   120  	case n > len(s):
   121  		return -1
   122  	}
   123  	// Rabin-Karp search from the end of the string
   124  	hashss, pow := hashStrRev(substr)
   125  	last := len(s) - n
   126  	var h uint32
   127  	for i := len(s) - 1; i >= last; i-- {
   128  		h = h*primeRK + uint32(s[i])
   129  	}
   130  	if h == hashss && s[last:] == substr {
   131  		return last
   132  	}
   133  	for i := last - 1; i >= 0; i-- {
   134  		h *= primeRK
   135  		h += uint32(s[i])
   136  		h -= pow * uint32(s[i+n])
   137  		if h == hashss && s[i:i+n] == substr {
   138  			return i
   139  		}
   140  	}
   141  	return -1
   142  }
   143  
   144  // IndexRune returns the index of the first instance of the Unicode code point
   145  // r, or -1 if rune is not present in s.
   146  // If r is utf8.RuneError, it returns the first instance of any
   147  // invalid UTF-8 byte sequence.
   148  func IndexRune(s string, r rune) int {
   149  	switch {
   150  	case 0 <= r && r < utf8.RuneSelf:
   151  		return IndexByte(s, byte(r))
   152  	case r == utf8.RuneError:
   153  		for i, r := range s {
   154  			if r == utf8.RuneError {
   155  				return i
   156  			}
   157  		}
   158  		return -1
   159  	case !utf8.ValidRune(r):
   160  		return -1
   161  	default:
   162  		return Index(s, string(r))
   163  	}
   164  }
   165  
   166  // IndexAny returns the index of the first instance of any Unicode code point
   167  // from chars in s, or -1 if no Unicode code point from chars is present in s.
   168  func IndexAny(s, chars string) int {
   169  	if len(chars) > 0 {
   170  		if len(s) > 8 {
   171  			if as, isASCII := makeASCIISet(chars); isASCII {
   172  				for i := 0; i < len(s); i++ {
   173  					if as.contains(s[i]) {
   174  						return i
   175  					}
   176  				}
   177  				return -1
   178  			}
   179  		}
   180  		for i, c := range s {
   181  			for _, m := range chars {
   182  				if c == m {
   183  					return i
   184  				}
   185  			}
   186  		}
   187  	}
   188  	return -1
   189  }
   190  
   191  // LastIndexAny returns the index of the last instance of any Unicode code
   192  // point from chars in s, or -1 if no Unicode code point from chars is
   193  // present in s.
   194  func LastIndexAny(s, chars string) int {
   195  	if len(chars) > 0 {
   196  		if len(s) > 8 {
   197  			if as, isASCII := makeASCIISet(chars); isASCII {
   198  				for i := len(s) - 1; i >= 0; i-- {
   199  					if as.contains(s[i]) {
   200  						return i
   201  					}
   202  				}
   203  				return -1
   204  			}
   205  		}
   206  		for i := len(s); i > 0; {
   207  			r, size := utf8.DecodeLastRuneInString(s[:i])
   208  			i -= size
   209  			for _, c := range chars {
   210  				if r == c {
   211  					return i
   212  				}
   213  			}
   214  		}
   215  	}
   216  	return -1
   217  }
   218  
   219  // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
   220  func LastIndexByte(s string, c byte) int {
   221  	for i := len(s) - 1; i >= 0; i-- {
   222  		if s[i] == c {
   223  			return i
   224  		}
   225  	}
   226  	return -1
   227  }
   228  
   229  // Generic split: splits after each instance of sep,
   230  // including sepSave bytes of sep in the subarrays.
   231  func genSplit(s, sep string, sepSave, n int) []string {
   232  	if n == 0 {
   233  		return nil
   234  	}
   235  	if sep == "" {
   236  		return explode(s, n)
   237  	}
   238  	if n < 0 {
   239  		n = Count(s, sep) + 1
   240  	}
   241  
   242  	a := make([]string, n)
   243  	n--
   244  	i := 0
   245  	for i < n {
   246  		m := Index(s, sep)
   247  		if m < 0 {
   248  			break
   249  		}
   250  		a[i] = s[:m+sepSave]
   251  		s = s[m+len(sep):]
   252  		i++
   253  	}
   254  	a[i] = s
   255  	return a[:i+1]
   256  }
   257  
   258  // SplitN slices s into substrings separated by sep and returns a slice of
   259  // the substrings between those separators.
   260  //
   261  // The count determines the number of substrings to return:
   262  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   263  //   n == 0: the result is nil (zero substrings)
   264  //   n < 0: all substrings
   265  //
   266  // Edge cases for s and sep (for example, empty strings) are handled
   267  // as described in the documentation for Split.
   268  func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
   269  
   270  // SplitAfterN slices s into substrings after each instance of sep and
   271  // returns a slice of those substrings.
   272  //
   273  // The count determines the number of substrings to return:
   274  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   275  //   n == 0: the result is nil (zero substrings)
   276  //   n < 0: all substrings
   277  //
   278  // Edge cases for s and sep (for example, empty strings) are handled
   279  // as described in the documentation for SplitAfter.
   280  func SplitAfterN(s, sep string, n int) []string {
   281  	return genSplit(s, sep, len(sep), n)
   282  }
   283  
   284  // Split slices s into all substrings separated by sep and returns a slice of
   285  // the substrings between those separators.
   286  //
   287  // If s does not contain sep and sep is not empty, Split returns a
   288  // slice of length 1 whose only element is s.
   289  //
   290  // If sep is empty, Split splits after each UTF-8 sequence. If both s
   291  // and sep are empty, Split returns an empty slice.
   292  //
   293  // It is equivalent to SplitN with a count of -1.
   294  func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
   295  
   296  // SplitAfter slices s into all substrings after each instance of sep and
   297  // returns a slice of those substrings.
   298  //
   299  // If s does not contain sep and sep is not empty, SplitAfter returns
   300  // a slice of length 1 whose only element is s.
   301  //
   302  // If sep is empty, SplitAfter splits after each UTF-8 sequence. If
   303  // both s and sep are empty, SplitAfter returns an empty slice.
   304  //
   305  // It is equivalent to SplitAfterN with a count of -1.
   306  func SplitAfter(s, sep string) []string {
   307  	return genSplit(s, sep, len(sep), -1)
   308  }
   309  
   310  var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
   311  
   312  // Fields splits the string s around each instance of one or more consecutive white space
   313  // characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
   314  // empty slice if s contains only white space.
   315  func Fields(s string) []string {
   316  	// First count the fields.
   317  	// This is an exact count if s is ASCII, otherwise it is an approximation.
   318  	n := 0
   319  	wasSpace := 1
   320  	// setBits is used to track which bits are set in the bytes of s.
   321  	setBits := uint8(0)
   322  	for i := 0; i < len(s); i++ {
   323  		r := s[i]
   324  		setBits |= r
   325  		isSpace := int(asciiSpace[r])
   326  		n += wasSpace & ^isSpace
   327  		wasSpace = isSpace
   328  	}
   329  
   330  	if setBits < utf8.RuneSelf { // ASCII fast path
   331  		a := make([]string, n)
   332  		na := 0
   333  		fieldStart := 0
   334  		i := 0
   335  		// Skip spaces in the front of the input.
   336  		for i < len(s) && asciiSpace[s[i]] != 0 {
   337  			i++
   338  		}
   339  		fieldStart = i
   340  		for i < len(s) {
   341  			if asciiSpace[s[i]] == 0 {
   342  				i++
   343  				continue
   344  			}
   345  			a[na] = s[fieldStart:i]
   346  			na++
   347  			i++
   348  			// Skip spaces in between fields.
   349  			for i < len(s) && asciiSpace[s[i]] != 0 {
   350  				i++
   351  			}
   352  			fieldStart = i
   353  		}
   354  		if fieldStart < len(s) { // Last field might end at EOF.
   355  			a[na] = s[fieldStart:]
   356  		}
   357  		return a
   358  	}
   359  
   360  	// Some runes in the input string are not ASCII.
   361  	return FieldsFunc(s, unicode.IsSpace)
   362  }
   363  
   364  // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
   365  // and returns an array of slices of s. If all code points in s satisfy f(c) or the
   366  // string is empty, an empty slice is returned.
   367  // FieldsFunc makes no guarantees about the order in which it calls f(c).
   368  // If f does not return consistent results for a given c, FieldsFunc may crash.
   369  func FieldsFunc(s string, f func(rune) bool) []string {
   370  	// A span is used to record a slice of s of the form s[start:end].
   371  	// The start index is inclusive and the end index is exclusive.
   372  	type span struct {
   373  		start int
   374  		end   int
   375  	}
   376  	spans := make([]span, 0, 32)
   377  
   378  	// Find the field start and end indices.
   379  	wasField := false
   380  	fromIndex := 0
   381  	for i, rune := range s {
   382  		if f(rune) {
   383  			if wasField {
   384  				spans = append(spans, span{start: fromIndex, end: i})
   385  				wasField = false
   386  			}
   387  		} else {
   388  			if !wasField {
   389  				fromIndex = i
   390  				wasField = true
   391  			}
   392  		}
   393  	}
   394  
   395  	// Last field might end at EOF.
   396  	if wasField {
   397  		spans = append(spans, span{fromIndex, len(s)})
   398  	}
   399  
   400  	// Create strings from recorded field indices.
   401  	a := make([]string, len(spans))
   402  	for i, span := range spans {
   403  		a[i] = s[span.start:span.end]
   404  	}
   405  
   406  	return a
   407  }
   408  
   409  // Join concatenates the elements of a to create a single string. The separator string
   410  // sep is placed between elements in the resulting string.
   411  func Join(a []string, sep string) string {
   412  	switch len(a) {
   413  	case 0:
   414  		return ""
   415  	case 1:
   416  		return a[0]
   417  	case 2:
   418  		// Special case for common small values.
   419  		// Remove if golang.org/issue/6714 is fixed
   420  		return a[0] + sep + a[1]
   421  	case 3:
   422  		// Special case for common small values.
   423  		// Remove if golang.org/issue/6714 is fixed
   424  		return a[0] + sep + a[1] + sep + a[2]
   425  	}
   426  	n := len(sep) * (len(a) - 1)
   427  	for i := 0; i < len(a); i++ {
   428  		n += len(a[i])
   429  	}
   430  
   431  	b := make([]byte, n)
   432  	bp := copy(b, a[0])
   433  	for _, s := range a[1:] {
   434  		bp += copy(b[bp:], sep)
   435  		bp += copy(b[bp:], s)
   436  	}
   437  	return string(b)
   438  }
   439  
   440  // HasPrefix tests whether the string s begins with prefix.
   441  func HasPrefix(s, prefix string) bool {
   442  	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
   443  }
   444  
   445  // HasSuffix tests whether the string s ends with suffix.
   446  func HasSuffix(s, suffix string) bool {
   447  	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
   448  }
   449  
   450  // Map returns a copy of the string s with all its characters modified
   451  // according to the mapping function. If mapping returns a negative value, the character is
   452  // dropped from the string with no replacement.
   453  func Map(mapping func(rune) rune, s string) string {
   454  	// In the worst case, the string can grow when mapped, making
   455  	// things unpleasant. But it's so rare we barge in assuming it's
   456  	// fine. It could also shrink but that falls out naturally.
   457  
   458  	// The output buffer b is initialized on demand, the first
   459  	// time a character differs.
   460  	var b []byte
   461  	// nbytes is the number of bytes encoded in b.
   462  	var nbytes int
   463  
   464  	for i, c := range s {
   465  		r := mapping(c)
   466  		if r == c {
   467  			continue
   468  		}
   469  
   470  		b = make([]byte, len(s)+utf8.UTFMax)
   471  		nbytes = copy(b, s[:i])
   472  		if r >= 0 {
   473  			if r <= utf8.RuneSelf {
   474  				b[nbytes] = byte(r)
   475  				nbytes++
   476  			} else {
   477  				nbytes += utf8.EncodeRune(b[nbytes:], r)
   478  			}
   479  		}
   480  
   481  		if c == utf8.RuneError {
   482  			// RuneError is the result of either decoding
   483  			// an invalid sequence or '\uFFFD'. Determine
   484  			// the correct number of bytes we need to advance.
   485  			_, w := utf8.DecodeRuneInString(s[i:])
   486  			i += w
   487  		} else {
   488  			i += utf8.RuneLen(c)
   489  		}
   490  
   491  		s = s[i:]
   492  		break
   493  	}
   494  
   495  	if b == nil {
   496  		return s
   497  	}
   498  
   499  	for _, c := range s {
   500  		r := mapping(c)
   501  
   502  		// common case
   503  		if (0 <= r && r <= utf8.RuneSelf) && nbytes < len(b) {
   504  			b[nbytes] = byte(r)
   505  			nbytes++
   506  			continue
   507  		}
   508  
   509  		// b is not big enough or r is not a ASCII rune.
   510  		if r >= 0 {
   511  			if nbytes+utf8.UTFMax >= len(b) {
   512  				// Grow the buffer.
   513  				nb := make([]byte, 2*len(b))
   514  				copy(nb, b[:nbytes])
   515  				b = nb
   516  			}
   517  			nbytes += utf8.EncodeRune(b[nbytes:], r)
   518  		}
   519  	}
   520  
   521  	return string(b[:nbytes])
   522  }
   523  
   524  // Repeat returns a new string consisting of count copies of the string s.
   525  //
   526  // It panics if count is negative or if
   527  // the result of (len(s) * count) overflows.
   528  func Repeat(s string, count int) string {
   529  	// Since we cannot return an error on overflow,
   530  	// we should panic if the repeat will generate
   531  	// an overflow.
   532  	// See Issue golang.org/issue/16237
   533  	if count < 0 {
   534  		panic("strings: negative Repeat count")
   535  	} else if count > 0 && len(s)*count/count != len(s) {
   536  		panic("strings: Repeat count causes overflow")
   537  	}
   538  
   539  	b := make([]byte, len(s)*count)
   540  	bp := copy(b, s)
   541  	for bp < len(b) {
   542  		copy(b[bp:], b[:bp])
   543  		bp *= 2
   544  	}
   545  	return string(b)
   546  }
   547  
   548  // ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case.
   549  func ToUpper(s string) string { return Map(unicode.ToUpper, s) }
   550  
   551  // ToLower returns a copy of the string s with all Unicode letters mapped to their lower case.
   552  func ToLower(s string) string { return Map(unicode.ToLower, s) }
   553  
   554  // ToTitle returns a copy of the string s with all Unicode letters mapped to their title case.
   555  func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
   556  
   557  // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
   558  // upper case, giving priority to the special casing rules.
   559  func ToUpperSpecial(c unicode.SpecialCase, s string) string {
   560  	return Map(func(r rune) rune { return c.ToUpper(r) }, s)
   561  }
   562  
   563  // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
   564  // lower case, giving priority to the special casing rules.
   565  func ToLowerSpecial(c unicode.SpecialCase, s string) string {
   566  	return Map(func(r rune) rune { return c.ToLower(r) }, s)
   567  }
   568  
   569  // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
   570  // title case, giving priority to the special casing rules.
   571  func ToTitleSpecial(c unicode.SpecialCase, s string) string {
   572  	return Map(func(r rune) rune { return c.ToTitle(r) }, s)
   573  }
   574  
   575  // isSeparator reports whether the rune could mark a word boundary.
   576  // TODO: update when package unicode captures more of the properties.
   577  func isSeparator(r rune) bool {
   578  	// ASCII alphanumerics and underscore are not separators
   579  	if r <= 0x7F {
   580  		switch {
   581  		case '0' <= r && r <= '9':
   582  			return false
   583  		case 'a' <= r && r <= 'z':
   584  			return false
   585  		case 'A' <= r && r <= 'Z':
   586  			return false
   587  		case r == '_':
   588  			return false
   589  		}
   590  		return true
   591  	}
   592  	// Letters and digits are not separators
   593  	if unicode.IsLetter(r) || unicode.IsDigit(r) {
   594  		return false
   595  	}
   596  	// Otherwise, all we can do for now is treat spaces as separators.
   597  	return unicode.IsSpace(r)
   598  }
   599  
   600  // Title returns a copy of the string s with all Unicode letters that begin words
   601  // mapped to their title case.
   602  //
   603  // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
   604  func Title(s string) string {
   605  	// Use a closure here to remember state.
   606  	// Hackish but effective. Depends on Map scanning in order and calling
   607  	// the closure once per rune.
   608  	prev := ' '
   609  	return Map(
   610  		func(r rune) rune {
   611  			if isSeparator(prev) {
   612  				prev = r
   613  				return unicode.ToTitle(r)
   614  			}
   615  			prev = r
   616  			return r
   617  		},
   618  		s)
   619  }
   620  
   621  // TrimLeftFunc returns a slice of the string s with all leading
   622  // Unicode code points c satisfying f(c) removed.
   623  func TrimLeftFunc(s string, f func(rune) bool) string {
   624  	i := indexFunc(s, f, false)
   625  	if i == -1 {
   626  		return ""
   627  	}
   628  	return s[i:]
   629  }
   630  
   631  // TrimRightFunc returns a slice of the string s with all trailing
   632  // Unicode code points c satisfying f(c) removed.
   633  func TrimRightFunc(s string, f func(rune) bool) string {
   634  	i := lastIndexFunc(s, f, false)
   635  	if i >= 0 && s[i] >= utf8.RuneSelf {
   636  		_, wid := utf8.DecodeRuneInString(s[i:])
   637  		i += wid
   638  	} else {
   639  		i++
   640  	}
   641  	return s[0:i]
   642  }
   643  
   644  // TrimFunc returns a slice of the string s with all leading
   645  // and trailing Unicode code points c satisfying f(c) removed.
   646  func TrimFunc(s string, f func(rune) bool) string {
   647  	return TrimRightFunc(TrimLeftFunc(s, f), f)
   648  }
   649  
   650  // IndexFunc returns the index into s of the first Unicode
   651  // code point satisfying f(c), or -1 if none do.
   652  func IndexFunc(s string, f func(rune) bool) int {
   653  	return indexFunc(s, f, true)
   654  }
   655  
   656  // LastIndexFunc returns the index into s of the last
   657  // Unicode code point satisfying f(c), or -1 if none do.
   658  func LastIndexFunc(s string, f func(rune) bool) int {
   659  	return lastIndexFunc(s, f, true)
   660  }
   661  
   662  // indexFunc is the same as IndexFunc except that if
   663  // truth==false, the sense of the predicate function is
   664  // inverted.
   665  func indexFunc(s string, f func(rune) bool, truth bool) int {
   666  	for i, r := range s {
   667  		if f(r) == truth {
   668  			return i
   669  		}
   670  	}
   671  	return -1
   672  }
   673  
   674  // lastIndexFunc is the same as LastIndexFunc except that if
   675  // truth==false, the sense of the predicate function is
   676  // inverted.
   677  func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
   678  	for i := len(s); i > 0; {
   679  		r, size := utf8.DecodeLastRuneInString(s[0:i])
   680  		i -= size
   681  		if f(r) == truth {
   682  			return i
   683  		}
   684  	}
   685  	return -1
   686  }
   687  
   688  // asciiSet is a 32-byte value, where each bit represents the presence of a
   689  // given ASCII character in the set. The 128-bits of the lower 16 bytes,
   690  // starting with the least-significant bit of the lowest word to the
   691  // most-significant bit of the highest word, map to the full range of all
   692  // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
   693  // ensuring that any non-ASCII character will be reported as not in the set.
   694  type asciiSet [8]uint32
   695  
   696  // makeASCIISet creates a set of ASCII characters and reports whether all
   697  // characters in chars are ASCII.
   698  func makeASCIISet(chars string) (as asciiSet, ok bool) {
   699  	for i := 0; i < len(chars); i++ {
   700  		c := chars[i]
   701  		if c >= utf8.RuneSelf {
   702  			return as, false
   703  		}
   704  		as[c>>5] |= 1 << uint(c&31)
   705  	}
   706  	return as, true
   707  }
   708  
   709  // contains reports whether c is inside the set.
   710  func (as *asciiSet) contains(c byte) bool {
   711  	return (as[c>>5] & (1 << uint(c&31))) != 0
   712  }
   713  
   714  func makeCutsetFunc(cutset string) func(rune) bool {
   715  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
   716  		return func(r rune) bool {
   717  			return r == rune(cutset[0])
   718  		}
   719  	}
   720  	if as, isASCII := makeASCIISet(cutset); isASCII {
   721  		return func(r rune) bool {
   722  			return r < utf8.RuneSelf && as.contains(byte(r))
   723  		}
   724  	}
   725  	return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
   726  }
   727  
   728  // Trim returns a slice of the string s with all leading and
   729  // trailing Unicode code points contained in cutset removed.
   730  func Trim(s string, cutset string) string {
   731  	if s == "" || cutset == "" {
   732  		return s
   733  	}
   734  	return TrimFunc(s, makeCutsetFunc(cutset))
   735  }
   736  
   737  // TrimLeft returns a slice of the string s with all leading
   738  // Unicode code points contained in cutset removed.
   739  func TrimLeft(s string, cutset string) string {
   740  	if s == "" || cutset == "" {
   741  		return s
   742  	}
   743  	return TrimLeftFunc(s, makeCutsetFunc(cutset))
   744  }
   745  
   746  // TrimRight returns a slice of the string s, with all trailing
   747  // Unicode code points contained in cutset removed.
   748  func TrimRight(s string, cutset string) string {
   749  	if s == "" || cutset == "" {
   750  		return s
   751  	}
   752  	return TrimRightFunc(s, makeCutsetFunc(cutset))
   753  }
   754  
   755  // TrimSpace returns a slice of the string s, with all leading
   756  // and trailing white space removed, as defined by Unicode.
   757  func TrimSpace(s string) string {
   758  	return TrimFunc(s, unicode.IsSpace)
   759  }
   760  
   761  // TrimPrefix returns s without the provided leading prefix string.
   762  // If s doesn't start with prefix, s is returned unchanged.
   763  func TrimPrefix(s, prefix string) string {
   764  	if HasPrefix(s, prefix) {
   765  		return s[len(prefix):]
   766  	}
   767  	return s
   768  }
   769  
   770  // TrimSuffix returns s without the provided trailing suffix string.
   771  // If s doesn't end with suffix, s is returned unchanged.
   772  func TrimSuffix(s, suffix string) string {
   773  	if HasSuffix(s, suffix) {
   774  		return s[:len(s)-len(suffix)]
   775  	}
   776  	return s
   777  }
   778  
   779  // Replace returns a copy of the string s with the first n
   780  // non-overlapping instances of old replaced by new.
   781  // If old is empty, it matches at the beginning of the string
   782  // and after each UTF-8 sequence, yielding up to k+1 replacements
   783  // for a k-rune string.
   784  // If n < 0, there is no limit on the number of replacements.
   785  func Replace(s, old, new string, n int) string {
   786  	if old == new || n == 0 {
   787  		return s // avoid allocation
   788  	}
   789  
   790  	// Compute number of replacements.
   791  	if m := Count(s, old); m == 0 {
   792  		return s // avoid allocation
   793  	} else if n < 0 || m < n {
   794  		n = m
   795  	}
   796  
   797  	// Apply replacements to buffer.
   798  	t := make([]byte, len(s)+n*(len(new)-len(old)))
   799  	w := 0
   800  	start := 0
   801  	for i := 0; i < n; i++ {
   802  		j := start
   803  		if len(old) == 0 {
   804  			if i > 0 {
   805  				_, wid := utf8.DecodeRuneInString(s[start:])
   806  				j += wid
   807  			}
   808  		} else {
   809  			j += Index(s[start:], old)
   810  		}
   811  		w += copy(t[w:], s[start:j])
   812  		w += copy(t[w:], new)
   813  		start = j + len(old)
   814  	}
   815  	w += copy(t[w:], s[start:])
   816  	return string(t[0:w])
   817  }
   818  
   819  // EqualFold reports whether s and t, interpreted as UTF-8 strings,
   820  // are equal under Unicode case-folding.
   821  func EqualFold(s, t string) bool {
   822  	for s != "" && t != "" {
   823  		// Extract first rune from each string.
   824  		var sr, tr rune
   825  		if s[0] < utf8.RuneSelf {
   826  			sr, s = rune(s[0]), s[1:]
   827  		} else {
   828  			r, size := utf8.DecodeRuneInString(s)
   829  			sr, s = r, s[size:]
   830  		}
   831  		if t[0] < utf8.RuneSelf {
   832  			tr, t = rune(t[0]), t[1:]
   833  		} else {
   834  			r, size := utf8.DecodeRuneInString(t)
   835  			tr, t = r, t[size:]
   836  		}
   837  
   838  		// If they match, keep going; if not, return false.
   839  
   840  		// Easy case.
   841  		if tr == sr {
   842  			continue
   843  		}
   844  
   845  		// Make sr < tr to simplify what follows.
   846  		if tr < sr {
   847  			tr, sr = sr, tr
   848  		}
   849  		// Fast check for ASCII.
   850  		if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' {
   851  			// ASCII, and sr is upper case.  tr must be lower case.
   852  			if tr == sr+'a'-'A' {
   853  				continue
   854  			}
   855  			return false
   856  		}
   857  
   858  		// General case. SimpleFold(x) returns the next equivalent rune > x
   859  		// or wraps around to smaller values.
   860  		r := unicode.SimpleFold(sr)
   861  		for r != sr && r < tr {
   862  			r = unicode.SimpleFold(r)
   863  		}
   864  		if r == tr {
   865  			continue
   866  		}
   867  		return false
   868  	}
   869  
   870  	// One string is empty. Are both?
   871  	return s == t
   872  }