github.com/hspak/nomad@v0.7.2-0.20180309000617-bc4ae22a39a5/scheduler/reconcile_util.go (about)

     1  package scheduler
     2  
     3  import (
     4  	"fmt"
     5  	"sort"
     6  	"strings"
     7  
     8  	"time"
     9  
    10  	"github.com/hashicorp/nomad/nomad/structs"
    11  )
    12  
    13  // placementResult is an allocation that must be placed. It potentially has a
    14  // previous allocation attached to it that should be stopped only if the
    15  // paired placement is complete. This gives an atomic place/stop behavior to
    16  // prevent an impossible resource ask as part of a rolling update to wipe the
    17  // job out.
    18  type placementResult interface {
    19  	// TaskGroup returns the task group the placement is for
    20  	TaskGroup() *structs.TaskGroup
    21  
    22  	// Name returns the name of the desired allocation
    23  	Name() string
    24  
    25  	// Canary returns whether the placement should be a canary
    26  	Canary() bool
    27  
    28  	// PreviousAllocation returns the previous allocation
    29  	PreviousAllocation() *structs.Allocation
    30  
    31  	// IsRescheduling returns whether the placement was rescheduling a failed allocation
    32  	IsRescheduling() bool
    33  
    34  	// StopPreviousAlloc returns whether the previous allocation should be
    35  	// stopped and if so the status description.
    36  	StopPreviousAlloc() (bool, string)
    37  }
    38  
    39  // allocStopResult contains the information required to stop a single allocation
    40  type allocStopResult struct {
    41  	alloc             *structs.Allocation
    42  	clientStatus      string
    43  	statusDescription string
    44  }
    45  
    46  // allocPlaceResult contains the information required to place a single
    47  // allocation
    48  type allocPlaceResult struct {
    49  	name          string
    50  	canary        bool
    51  	taskGroup     *structs.TaskGroup
    52  	previousAlloc *structs.Allocation
    53  	reschedule    bool
    54  }
    55  
    56  func (a allocPlaceResult) TaskGroup() *structs.TaskGroup           { return a.taskGroup }
    57  func (a allocPlaceResult) Name() string                            { return a.name }
    58  func (a allocPlaceResult) Canary() bool                            { return a.canary }
    59  func (a allocPlaceResult) PreviousAllocation() *structs.Allocation { return a.previousAlloc }
    60  func (a allocPlaceResult) IsRescheduling() bool                    { return a.reschedule }
    61  func (a allocPlaceResult) StopPreviousAlloc() (bool, string)       { return false, "" }
    62  
    63  // allocDestructiveResult contains the information required to do a destructive
    64  // update. Destructive changes should be applied atomically, as in the old alloc
    65  // is only stopped if the new one can be placed.
    66  type allocDestructiveResult struct {
    67  	placeName             string
    68  	placeTaskGroup        *structs.TaskGroup
    69  	stopAlloc             *structs.Allocation
    70  	stopStatusDescription string
    71  }
    72  
    73  func (a allocDestructiveResult) TaskGroup() *structs.TaskGroup           { return a.placeTaskGroup }
    74  func (a allocDestructiveResult) Name() string                            { return a.placeName }
    75  func (a allocDestructiveResult) Canary() bool                            { return false }
    76  func (a allocDestructiveResult) PreviousAllocation() *structs.Allocation { return a.stopAlloc }
    77  func (a allocDestructiveResult) IsRescheduling() bool                    { return false }
    78  func (a allocDestructiveResult) StopPreviousAlloc() (bool, string) {
    79  	return true, a.stopStatusDescription
    80  }
    81  
    82  // allocMatrix is a mapping of task groups to their allocation set.
    83  type allocMatrix map[string]allocSet
    84  
    85  // newAllocMatrix takes a job and the existing allocations for the job and
    86  // creates an allocMatrix
    87  func newAllocMatrix(job *structs.Job, allocs []*structs.Allocation) allocMatrix {
    88  	m := allocMatrix(make(map[string]allocSet))
    89  	for _, a := range allocs {
    90  		s, ok := m[a.TaskGroup]
    91  		if !ok {
    92  			s = make(map[string]*structs.Allocation)
    93  			m[a.TaskGroup] = s
    94  		}
    95  		s[a.ID] = a
    96  	}
    97  
    98  	if job != nil {
    99  		for _, tg := range job.TaskGroups {
   100  			if _, ok := m[tg.Name]; !ok {
   101  				m[tg.Name] = make(map[string]*structs.Allocation)
   102  			}
   103  		}
   104  	}
   105  	return m
   106  }
   107  
   108  // allocSet is a set of allocations with a series of helper functions defined
   109  // that help reconcile state.
   110  type allocSet map[string]*structs.Allocation
   111  
   112  // GoString provides a human readable view of the set
   113  func (a allocSet) GoString() string {
   114  	if len(a) == 0 {
   115  		return "[]"
   116  	}
   117  
   118  	start := fmt.Sprintf("len(%d) [\n", len(a))
   119  	var s []string
   120  	for k, v := range a {
   121  		s = append(s, fmt.Sprintf("%q: %v", k, v.Name))
   122  	}
   123  	return start + strings.Join(s, "\n") + "]"
   124  }
   125  
   126  // nameSet returns the set of allocation names
   127  func (a allocSet) nameSet() map[string]struct{} {
   128  	names := make(map[string]struct{}, len(a))
   129  	for _, alloc := range a {
   130  		names[alloc.Name] = struct{}{}
   131  	}
   132  	return names
   133  }
   134  
   135  // nameOrder returns the set of allocation names in sorted order
   136  func (a allocSet) nameOrder() []*structs.Allocation {
   137  	allocs := make([]*structs.Allocation, 0, len(a))
   138  	for _, alloc := range a {
   139  		allocs = append(allocs, alloc)
   140  	}
   141  	sort.Slice(allocs, func(i, j int) bool {
   142  		return allocs[i].Index() < allocs[j].Index()
   143  	})
   144  	return allocs
   145  }
   146  
   147  // difference returns a new allocSet that has all the existing item except those
   148  // contained within the other allocation sets
   149  func (a allocSet) difference(others ...allocSet) allocSet {
   150  	diff := make(map[string]*structs.Allocation)
   151  OUTER:
   152  	for k, v := range a {
   153  		for _, other := range others {
   154  			if _, ok := other[k]; ok {
   155  				continue OUTER
   156  			}
   157  		}
   158  		diff[k] = v
   159  	}
   160  	return diff
   161  }
   162  
   163  // union returns a new allocSet that has the union of the two allocSets.
   164  // Conflicts prefer the last passed allocSet containing the value
   165  func (a allocSet) union(others ...allocSet) allocSet {
   166  	union := make(map[string]*structs.Allocation, len(a))
   167  	order := []allocSet{a}
   168  	order = append(order, others...)
   169  
   170  	for _, set := range order {
   171  		for k, v := range set {
   172  			union[k] = v
   173  		}
   174  	}
   175  
   176  	return union
   177  }
   178  
   179  // fromKeys returns an alloc set matching the passed keys
   180  func (a allocSet) fromKeys(keys ...[]string) allocSet {
   181  	from := make(map[string]*structs.Allocation)
   182  	for _, set := range keys {
   183  		for _, k := range set {
   184  			if alloc, ok := a[k]; ok {
   185  				from[k] = alloc
   186  			}
   187  		}
   188  	}
   189  	return from
   190  }
   191  
   192  // filterByTainted takes a set of tainted nodes and filters the allocation set
   193  // into three groups:
   194  // 1. Those that exist on untainted nodes
   195  // 2. Those exist on nodes that are draining
   196  // 3. Those that exist on lost nodes
   197  func (a allocSet) filterByTainted(nodes map[string]*structs.Node) (untainted, migrate, lost allocSet) {
   198  	untainted = make(map[string]*structs.Allocation)
   199  	migrate = make(map[string]*structs.Allocation)
   200  	lost = make(map[string]*structs.Allocation)
   201  	for _, alloc := range a {
   202  		n, ok := nodes[alloc.NodeID]
   203  		if !ok {
   204  			untainted[alloc.ID] = alloc
   205  			continue
   206  		}
   207  
   208  		// If the job is batch and finished successfully, the fact that the
   209  		// node is tainted does not mean it should be migrated or marked as
   210  		// lost as the work was already successfully finished. However for
   211  		// service/system jobs, tasks should never complete. The check of
   212  		// batch type, defends against client bugs.
   213  		if alloc.Job.Type == structs.JobTypeBatch && alloc.RanSuccessfully() {
   214  			untainted[alloc.ID] = alloc
   215  			continue
   216  		}
   217  		if !alloc.TerminalStatus() {
   218  			if n == nil || n.TerminalStatus() {
   219  				lost[alloc.ID] = alloc
   220  			} else {
   221  				migrate[alloc.ID] = alloc
   222  			}
   223  		} else {
   224  			untainted[alloc.ID] = alloc
   225  		}
   226  	}
   227  	return
   228  }
   229  
   230  // filterByRescheduleable filters the allocation set to return the set of allocations that are either
   231  // terminal or running, and a set of allocations that must be rescheduled
   232  func (a allocSet) filterByRescheduleable(isBatch bool, reschedulePolicy *structs.ReschedulePolicy) (untainted, reschedule allocSet) {
   233  	untainted = make(map[string]*structs.Allocation)
   234  	reschedule = make(map[string]*structs.Allocation)
   235  
   236  	now := time.Now()
   237  	for _, alloc := range a {
   238  		if isBatch {
   239  			// Allocs from batch jobs should be filtered when the desired status
   240  			// is terminal and the client did not finish or when the client
   241  			// status is failed so that they will be replaced. If they are
   242  			// complete but not failed, they shouldn't be replaced.
   243  			switch alloc.DesiredStatus {
   244  			case structs.AllocDesiredStatusStop, structs.AllocDesiredStatusEvict:
   245  				if alloc.RanSuccessfully() {
   246  					untainted[alloc.ID] = alloc
   247  				}
   248  				continue
   249  			default:
   250  			}
   251  			if alloc.NextAllocation == "" {
   252  				if alloc.ShouldReschedule(reschedulePolicy, now) {
   253  					reschedule[alloc.ID] = alloc
   254  				} else {
   255  					untainted[alloc.ID] = alloc
   256  				}
   257  			}
   258  		} else {
   259  			//ignore allocs that have already been rescheduled
   260  			if alloc.NextAllocation == "" {
   261  				// ignore allocs whose desired state is stop/evict
   262  				// everything else is either rescheduleable or untainted
   263  				if alloc.ShouldReschedule(reschedulePolicy, now) {
   264  					reschedule[alloc.ID] = alloc
   265  				} else if alloc.DesiredStatus != structs.AllocDesiredStatusStop && alloc.DesiredStatus != structs.AllocDesiredStatusEvict {
   266  					untainted[alloc.ID] = alloc
   267  				}
   268  			}
   269  		}
   270  	}
   271  
   272  	return
   273  }
   274  
   275  // filterByTerminal filters out terminal allocs
   276  func filterByTerminal(untainted allocSet) (nonTerminal allocSet) {
   277  	nonTerminal = make(map[string]*structs.Allocation)
   278  	for id, alloc := range untainted {
   279  		if !alloc.TerminalStatus() {
   280  			nonTerminal[id] = alloc
   281  		}
   282  	}
   283  	return
   284  }
   285  
   286  // filterByDeployment filters allocations into two sets, those that match the
   287  // given deployment ID and those that don't
   288  func (a allocSet) filterByDeployment(id string) (match, nonmatch allocSet) {
   289  	match = make(map[string]*structs.Allocation)
   290  	nonmatch = make(map[string]*structs.Allocation)
   291  	for _, alloc := range a {
   292  		if alloc.DeploymentID == id {
   293  			match[alloc.ID] = alloc
   294  		} else {
   295  			nonmatch[alloc.ID] = alloc
   296  		}
   297  	}
   298  	return
   299  }
   300  
   301  // allocNameIndex is used to select allocation names for placement or removal
   302  // given an existing set of placed allocations.
   303  type allocNameIndex struct {
   304  	job, taskGroup string
   305  	count          int
   306  	b              structs.Bitmap
   307  }
   308  
   309  // newAllocNameIndex returns an allocNameIndex for use in selecting names of
   310  // allocations to create or stop. It takes the job and task group name, desired
   311  // count and any existing allocations as input.
   312  func newAllocNameIndex(job, taskGroup string, count int, in allocSet) *allocNameIndex {
   313  	return &allocNameIndex{
   314  		count:     count,
   315  		b:         bitmapFrom(in, uint(count)),
   316  		job:       job,
   317  		taskGroup: taskGroup,
   318  	}
   319  }
   320  
   321  // bitmapFrom creates a bitmap from the given allocation set and a minimum size
   322  // maybe given. The size of the bitmap is as the larger of the passed minimum
   323  // and the maximum alloc index of the passed input (byte aligned).
   324  func bitmapFrom(input allocSet, minSize uint) structs.Bitmap {
   325  	var max uint
   326  	for _, a := range input {
   327  		if num := a.Index(); num > max {
   328  			max = num
   329  		}
   330  	}
   331  
   332  	if l := uint(len(input)); minSize < l {
   333  		minSize = l
   334  	}
   335  
   336  	if max < minSize {
   337  		max = minSize
   338  	} else if max%8 == 0 {
   339  		// This may be possible if the job was scaled down. We want to make sure
   340  		// that the max index is not byte-aligned otherwise we will overflow
   341  		// the bitmap.
   342  		max++
   343  	}
   344  
   345  	if max == 0 {
   346  		max = 8
   347  	}
   348  
   349  	// byteAlign the count
   350  	if remainder := max % 8; remainder != 0 {
   351  		max = max + 8 - remainder
   352  	}
   353  
   354  	bitmap, err := structs.NewBitmap(max)
   355  	if err != nil {
   356  		panic(err)
   357  	}
   358  
   359  	for _, a := range input {
   360  		bitmap.Set(a.Index())
   361  	}
   362  
   363  	return bitmap
   364  }
   365  
   366  // RemoveHighest removes and returns the highest n used names. The returned set
   367  // can be less than n if there aren't n names set in the index
   368  func (a *allocNameIndex) Highest(n uint) map[string]struct{} {
   369  	h := make(map[string]struct{}, n)
   370  	for i := a.b.Size(); i > uint(0) && uint(len(h)) < n; i-- {
   371  		// Use this to avoid wrapping around b/c of the unsigned int
   372  		idx := i - 1
   373  		if a.b.Check(idx) {
   374  			a.b.Unset(idx)
   375  			h[structs.AllocName(a.job, a.taskGroup, idx)] = struct{}{}
   376  		}
   377  	}
   378  
   379  	return h
   380  }
   381  
   382  // Set sets the indexes from the passed alloc set as used
   383  func (a *allocNameIndex) Set(set allocSet) {
   384  	for _, alloc := range set {
   385  		a.b.Set(alloc.Index())
   386  	}
   387  }
   388  
   389  // Unset unsets all indexes of the passed alloc set as being used
   390  func (a *allocNameIndex) Unset(as allocSet) {
   391  	for _, alloc := range as {
   392  		a.b.Unset(alloc.Index())
   393  	}
   394  }
   395  
   396  // UnsetIndex unsets the index as having its name used
   397  func (a *allocNameIndex) UnsetIndex(idx uint) {
   398  	a.b.Unset(idx)
   399  }
   400  
   401  // NextCanaries returns the next n names for use as canaries and sets them as
   402  // used. The existing canaries and destructive updates are also passed in.
   403  func (a *allocNameIndex) NextCanaries(n uint, existing, destructive allocSet) []string {
   404  	next := make([]string, 0, n)
   405  
   406  	// Create a name index
   407  	existingNames := existing.nameSet()
   408  
   409  	// First select indexes from the allocations that are undergoing destructive
   410  	// updates. This way we avoid duplicate names as they will get replaced.
   411  	dmap := bitmapFrom(destructive, uint(a.count))
   412  	var remainder uint
   413  	for _, idx := range dmap.IndexesInRange(true, uint(0), uint(a.count)-1) {
   414  		name := structs.AllocName(a.job, a.taskGroup, uint(idx))
   415  		if _, used := existingNames[name]; !used {
   416  			next = append(next, name)
   417  			a.b.Set(uint(idx))
   418  
   419  			// If we have enough, return
   420  			remainder := n - uint(len(next))
   421  			if remainder == 0 {
   422  				return next
   423  			}
   424  		}
   425  	}
   426  
   427  	// Get the set of unset names that can be used
   428  	for _, idx := range a.b.IndexesInRange(false, uint(0), uint(a.count)-1) {
   429  		name := structs.AllocName(a.job, a.taskGroup, uint(idx))
   430  		if _, used := existingNames[name]; !used {
   431  			next = append(next, name)
   432  			a.b.Set(uint(idx))
   433  
   434  			// If we have enough, return
   435  			remainder = n - uint(len(next))
   436  			if remainder == 0 {
   437  				return next
   438  			}
   439  		}
   440  	}
   441  
   442  	// We have exhausted the preferred and free set, now just pick overlapping
   443  	// indexes
   444  	var i uint
   445  	for i = 0; i < remainder; i++ {
   446  		name := structs.AllocName(a.job, a.taskGroup, i)
   447  		if _, used := existingNames[name]; !used {
   448  			next = append(next, name)
   449  			a.b.Set(i)
   450  
   451  			// If we have enough, return
   452  			remainder = n - uint(len(next))
   453  			if remainder == 0 {
   454  				return next
   455  			}
   456  		}
   457  	}
   458  
   459  	return next
   460  }
   461  
   462  // Next returns the next n names for use as new placements and sets them as
   463  // used.
   464  func (a *allocNameIndex) Next(n uint) []string {
   465  	next := make([]string, 0, n)
   466  
   467  	// Get the set of unset names that can be used
   468  	remainder := n
   469  	for _, idx := range a.b.IndexesInRange(false, uint(0), uint(a.count)-1) {
   470  		next = append(next, structs.AllocName(a.job, a.taskGroup, uint(idx)))
   471  		a.b.Set(uint(idx))
   472  
   473  		// If we have enough, return
   474  		remainder = n - uint(len(next))
   475  		if remainder == 0 {
   476  			return next
   477  		}
   478  	}
   479  
   480  	// We have exhausted the free set, now just pick overlapping indexes
   481  	var i uint
   482  	for i = 0; i < remainder; i++ {
   483  		next = append(next, structs.AllocName(a.job, a.taskGroup, i))
   484  		a.b.Set(i)
   485  	}
   486  
   487  	return next
   488  }