github.com/huandu/go@v0.0.0-20151114150818-04e615e41150/src/crypto/cipher/gcm.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package cipher
     6  
     7  import (
     8  	"crypto/subtle"
     9  	"errors"
    10  )
    11  
    12  // AEAD is a cipher mode providing authenticated encryption with associated
    13  // data.
    14  type AEAD interface {
    15  	// NonceSize returns the size of the nonce that must be passed to Seal
    16  	// and Open.
    17  	NonceSize() int
    18  
    19  	// Overhead returns the maximum difference between the lengths of a
    20  	// plaintext and ciphertext.
    21  	Overhead() int
    22  
    23  	// Seal encrypts and authenticates plaintext, authenticates the
    24  	// additional data and appends the result to dst, returning the updated
    25  	// slice. The nonce must be NonceSize() bytes long and unique for all
    26  	// time, for a given key.
    27  	//
    28  	// The plaintext and dst may alias exactly or not at all.
    29  	Seal(dst, nonce, plaintext, data []byte) []byte
    30  
    31  	// Open decrypts and authenticates ciphertext, authenticates the
    32  	// additional data and, if successful, appends the resulting plaintext
    33  	// to dst, returning the updated slice. The nonce must be NonceSize()
    34  	// bytes long and both it and the additional data must match the
    35  	// value passed to Seal.
    36  	//
    37  	// The ciphertext and dst may alias exactly or not at all.
    38  	Open(dst, nonce, ciphertext, data []byte) ([]byte, error)
    39  }
    40  
    41  // gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM
    42  // standard and make getUint64 suitable for marshaling these values, the bits
    43  // are stored backwards. For example:
    44  //   the coefficient of x⁰ can be obtained by v.low >> 63.
    45  //   the coefficient of x⁶³ can be obtained by v.low & 1.
    46  //   the coefficient of x⁶⁴ can be obtained by v.high >> 63.
    47  //   the coefficient of x¹²⁷ can be obtained by v.high & 1.
    48  type gcmFieldElement struct {
    49  	low, high uint64
    50  }
    51  
    52  // gcm represents a Galois Counter Mode with a specific key. See
    53  // http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
    54  type gcm struct {
    55  	cipher    Block
    56  	nonceSize int
    57  	// productTable contains the first sixteen powers of the key, H.
    58  	// However, they are in bit reversed order. See NewGCMWithNonceSize.
    59  	productTable [16]gcmFieldElement
    60  }
    61  
    62  // NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode
    63  // with the standard nonce length.
    64  func NewGCM(cipher Block) (AEAD, error) {
    65  	return NewGCMWithNonceSize(cipher, gcmStandardNonceSize)
    66  }
    67  
    68  // NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois
    69  // Counter Mode, which accepts nonces of the given length.
    70  //
    71  // Only use this function if you require compatibility with an existing
    72  // cryptosystem that uses non-standard nonce lengths. All other users should use
    73  // NewGCM, which is faster and more resistant to misuse.
    74  func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) {
    75  	if cipher.BlockSize() != gcmBlockSize {
    76  		return nil, errors.New("cipher: NewGCM requires 128-bit block cipher")
    77  	}
    78  
    79  	var key [gcmBlockSize]byte
    80  	cipher.Encrypt(key[:], key[:])
    81  
    82  	g := &gcm{cipher: cipher, nonceSize: size}
    83  
    84  	// We precompute 16 multiples of |key|. However, when we do lookups
    85  	// into this table we'll be using bits from a field element and
    86  	// therefore the bits will be in the reverse order. So normally one
    87  	// would expect, say, 4*key to be in index 4 of the table but due to
    88  	// this bit ordering it will actually be in index 0010 (base 2) = 2.
    89  	x := gcmFieldElement{
    90  		getUint64(key[:8]),
    91  		getUint64(key[8:]),
    92  	}
    93  	g.productTable[reverseBits(1)] = x
    94  
    95  	for i := 2; i < 16; i += 2 {
    96  		g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)])
    97  		g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x)
    98  	}
    99  
   100  	return g, nil
   101  }
   102  
   103  const (
   104  	gcmBlockSize         = 16
   105  	gcmTagSize           = 16
   106  	gcmStandardNonceSize = 12
   107  )
   108  
   109  func (g *gcm) NonceSize() int {
   110  	return g.nonceSize
   111  }
   112  
   113  func (*gcm) Overhead() int {
   114  	return gcmTagSize
   115  }
   116  
   117  func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte {
   118  	if len(nonce) != g.nonceSize {
   119  		panic("cipher: incorrect nonce length given to GCM")
   120  	}
   121  	ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize)
   122  
   123  	var counter, tagMask [gcmBlockSize]byte
   124  	g.deriveCounter(&counter, nonce)
   125  
   126  	g.cipher.Encrypt(tagMask[:], counter[:])
   127  	gcmInc32(&counter)
   128  
   129  	g.counterCrypt(out, plaintext, &counter)
   130  	g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask)
   131  
   132  	return ret
   133  }
   134  
   135  var errOpen = errors.New("cipher: message authentication failed")
   136  
   137  func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
   138  	if len(nonce) != g.nonceSize {
   139  		panic("cipher: incorrect nonce length given to GCM")
   140  	}
   141  
   142  	if len(ciphertext) < gcmTagSize {
   143  		return nil, errOpen
   144  	}
   145  	tag := ciphertext[len(ciphertext)-gcmTagSize:]
   146  	ciphertext = ciphertext[:len(ciphertext)-gcmTagSize]
   147  
   148  	var counter, tagMask [gcmBlockSize]byte
   149  	g.deriveCounter(&counter, nonce)
   150  
   151  	g.cipher.Encrypt(tagMask[:], counter[:])
   152  	gcmInc32(&counter)
   153  
   154  	var expectedTag [gcmTagSize]byte
   155  	g.auth(expectedTag[:], ciphertext, data, &tagMask)
   156  
   157  	if subtle.ConstantTimeCompare(expectedTag[:], tag) != 1 {
   158  		return nil, errOpen
   159  	}
   160  
   161  	ret, out := sliceForAppend(dst, len(ciphertext))
   162  	g.counterCrypt(out, ciphertext, &counter)
   163  
   164  	return ret, nil
   165  }
   166  
   167  // reverseBits reverses the order of the bits of 4-bit number in i.
   168  func reverseBits(i int) int {
   169  	i = ((i << 2) & 0xc) | ((i >> 2) & 0x3)
   170  	i = ((i << 1) & 0xa) | ((i >> 1) & 0x5)
   171  	return i
   172  }
   173  
   174  // gcmAdd adds two elements of GF(2¹²⁸) and returns the sum.
   175  func gcmAdd(x, y *gcmFieldElement) gcmFieldElement {
   176  	// Addition in a characteristic 2 field is just XOR.
   177  	return gcmFieldElement{x.low ^ y.low, x.high ^ y.high}
   178  }
   179  
   180  // gcmDouble returns the result of doubling an element of GF(2¹²⁸).
   181  func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) {
   182  	msbSet := x.high&1 == 1
   183  
   184  	// Because of the bit-ordering, doubling is actually a right shift.
   185  	double.high = x.high >> 1
   186  	double.high |= x.low << 63
   187  	double.low = x.low >> 1
   188  
   189  	// If the most-significant bit was set before shifting then it,
   190  	// conceptually, becomes a term of x^128. This is greater than the
   191  	// irreducible polynomial so the result has to be reduced. The
   192  	// irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to
   193  	// eliminate the term at x^128 which also means subtracting the other
   194  	// four terms. In characteristic 2 fields, subtraction == addition ==
   195  	// XOR.
   196  	if msbSet {
   197  		double.low ^= 0xe100000000000000
   198  	}
   199  
   200  	return
   201  }
   202  
   203  var gcmReductionTable = []uint16{
   204  	0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
   205  	0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
   206  }
   207  
   208  // mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize.
   209  func (g *gcm) mul(y *gcmFieldElement) {
   210  	var z gcmFieldElement
   211  
   212  	for i := 0; i < 2; i++ {
   213  		word := y.high
   214  		if i == 1 {
   215  			word = y.low
   216  		}
   217  
   218  		// Multiplication works by multiplying z by 16 and adding in
   219  		// one of the precomputed multiples of H.
   220  		for j := 0; j < 64; j += 4 {
   221  			msw := z.high & 0xf
   222  			z.high >>= 4
   223  			z.high |= z.low << 60
   224  			z.low >>= 4
   225  			z.low ^= uint64(gcmReductionTable[msw]) << 48
   226  
   227  			// the values in |table| are ordered for
   228  			// little-endian bit positions. See the comment
   229  			// in NewGCMWithNonceSize.
   230  			t := &g.productTable[word&0xf]
   231  
   232  			z.low ^= t.low
   233  			z.high ^= t.high
   234  			word >>= 4
   235  		}
   236  	}
   237  
   238  	*y = z
   239  }
   240  
   241  // updateBlocks extends y with more polynomial terms from blocks, based on
   242  // Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks.
   243  func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) {
   244  	for len(blocks) > 0 {
   245  		y.low ^= getUint64(blocks)
   246  		y.high ^= getUint64(blocks[8:])
   247  		g.mul(y)
   248  		blocks = blocks[gcmBlockSize:]
   249  	}
   250  }
   251  
   252  // update extends y with more polynomial terms from data. If data is not a
   253  // multiple of gcmBlockSize bytes long then the remainder is zero padded.
   254  func (g *gcm) update(y *gcmFieldElement, data []byte) {
   255  	fullBlocks := (len(data) >> 4) << 4
   256  	g.updateBlocks(y, data[:fullBlocks])
   257  
   258  	if len(data) != fullBlocks {
   259  		var partialBlock [gcmBlockSize]byte
   260  		copy(partialBlock[:], data[fullBlocks:])
   261  		g.updateBlocks(y, partialBlock[:])
   262  	}
   263  }
   264  
   265  // gcmInc32 treats the final four bytes of counterBlock as a big-endian value
   266  // and increments it.
   267  func gcmInc32(counterBlock *[16]byte) {
   268  	for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- {
   269  		counterBlock[i]++
   270  		if counterBlock[i] != 0 {
   271  			break
   272  		}
   273  	}
   274  }
   275  
   276  // sliceForAppend takes a slice and a requested number of bytes. It returns a
   277  // slice with the contents of the given slice followed by that many bytes and a
   278  // second slice that aliases into it and contains only the extra bytes. If the
   279  // original slice has sufficient capacity then no allocation is performed.
   280  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   281  	if total := len(in) + n; cap(in) >= total {
   282  		head = in[:total]
   283  	} else {
   284  		head = make([]byte, total)
   285  		copy(head, in)
   286  	}
   287  	tail = head[len(in):]
   288  	return
   289  }
   290  
   291  // counterCrypt crypts in to out using g.cipher in counter mode.
   292  func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) {
   293  	var mask [gcmBlockSize]byte
   294  
   295  	for len(in) >= gcmBlockSize {
   296  		g.cipher.Encrypt(mask[:], counter[:])
   297  		gcmInc32(counter)
   298  
   299  		xorWords(out, in, mask[:])
   300  		out = out[gcmBlockSize:]
   301  		in = in[gcmBlockSize:]
   302  	}
   303  
   304  	if len(in) > 0 {
   305  		g.cipher.Encrypt(mask[:], counter[:])
   306  		gcmInc32(counter)
   307  		xorBytes(out, in, mask[:])
   308  	}
   309  }
   310  
   311  // deriveCounter computes the initial GCM counter state from the given nonce.
   312  // See NIST SP 800-38D, section 7.1. This assumes that counter is filled with
   313  // zeros on entry.
   314  func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) {
   315  	// GCM has two modes of operation with respect to the initial counter
   316  	// state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path"
   317  	// for nonces of other lengths. For a 96-bit nonce, the nonce, along
   318  	// with a four-byte big-endian counter starting at one, is used
   319  	// directly as the starting counter. For other nonce sizes, the counter
   320  	// is computed by passing it through the GHASH function.
   321  	if len(nonce) == gcmStandardNonceSize {
   322  		copy(counter[:], nonce)
   323  		counter[gcmBlockSize-1] = 1
   324  	} else {
   325  		var y gcmFieldElement
   326  		g.update(&y, nonce)
   327  		y.high ^= uint64(len(nonce)) * 8
   328  		g.mul(&y)
   329  		putUint64(counter[:8], y.low)
   330  		putUint64(counter[8:], y.high)
   331  	}
   332  }
   333  
   334  // auth calculates GHASH(ciphertext, additionalData), masks the result with
   335  // tagMask and writes the result to out.
   336  func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) {
   337  	var y gcmFieldElement
   338  	g.update(&y, additionalData)
   339  	g.update(&y, ciphertext)
   340  
   341  	y.low ^= uint64(len(additionalData)) * 8
   342  	y.high ^= uint64(len(ciphertext)) * 8
   343  
   344  	g.mul(&y)
   345  
   346  	putUint64(out, y.low)
   347  	putUint64(out[8:], y.high)
   348  
   349  	xorWords(out, out, tagMask[:])
   350  }
   351  
   352  func getUint64(data []byte) uint64 {
   353  	r := uint64(data[0])<<56 |
   354  		uint64(data[1])<<48 |
   355  		uint64(data[2])<<40 |
   356  		uint64(data[3])<<32 |
   357  		uint64(data[4])<<24 |
   358  		uint64(data[5])<<16 |
   359  		uint64(data[6])<<8 |
   360  		uint64(data[7])
   361  	return r
   362  }
   363  
   364  func putUint64(out []byte, v uint64) {
   365  	out[0] = byte(v >> 56)
   366  	out[1] = byte(v >> 48)
   367  	out[2] = byte(v >> 40)
   368  	out[3] = byte(v >> 32)
   369  	out[4] = byte(v >> 24)
   370  	out[5] = byte(v >> 16)
   371  	out[6] = byte(v >> 8)
   372  	out[7] = byte(v)
   373  }