github.com/huandu/go@v0.0.0-20151114150818-04e615e41150/src/crypto/tls/common.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package tls 6 7 import ( 8 "container/list" 9 "crypto" 10 "crypto/rand" 11 "crypto/sha512" 12 "crypto/x509" 13 "errors" 14 "fmt" 15 "io" 16 "math/big" 17 "strings" 18 "sync" 19 "time" 20 ) 21 22 const ( 23 VersionSSL30 = 0x0300 24 VersionTLS10 = 0x0301 25 VersionTLS11 = 0x0302 26 VersionTLS12 = 0x0303 27 ) 28 29 const ( 30 maxPlaintext = 16384 // maximum plaintext payload length 31 maxCiphertext = 16384 + 2048 // maximum ciphertext payload length 32 recordHeaderLen = 5 // record header length 33 maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB) 34 35 minVersion = VersionTLS10 36 maxVersion = VersionTLS12 37 ) 38 39 // TLS record types. 40 type recordType uint8 41 42 const ( 43 recordTypeChangeCipherSpec recordType = 20 44 recordTypeAlert recordType = 21 45 recordTypeHandshake recordType = 22 46 recordTypeApplicationData recordType = 23 47 ) 48 49 // TLS handshake message types. 50 const ( 51 typeClientHello uint8 = 1 52 typeServerHello uint8 = 2 53 typeNewSessionTicket uint8 = 4 54 typeCertificate uint8 = 11 55 typeServerKeyExchange uint8 = 12 56 typeCertificateRequest uint8 = 13 57 typeServerHelloDone uint8 = 14 58 typeCertificateVerify uint8 = 15 59 typeClientKeyExchange uint8 = 16 60 typeFinished uint8 = 20 61 typeCertificateStatus uint8 = 22 62 typeNextProtocol uint8 = 67 // Not IANA assigned 63 ) 64 65 // TLS compression types. 66 const ( 67 compressionNone uint8 = 0 68 ) 69 70 // TLS extension numbers 71 const ( 72 extensionServerName uint16 = 0 73 extensionStatusRequest uint16 = 5 74 extensionSupportedCurves uint16 = 10 75 extensionSupportedPoints uint16 = 11 76 extensionSignatureAlgorithms uint16 = 13 77 extensionALPN uint16 = 16 78 extensionSCT uint16 = 18 // https://tools.ietf.org/html/rfc6962#section-6 79 extensionSessionTicket uint16 = 35 80 extensionNextProtoNeg uint16 = 13172 // not IANA assigned 81 extensionRenegotiationInfo uint16 = 0xff01 82 ) 83 84 // TLS signaling cipher suite values 85 const ( 86 scsvRenegotiation uint16 = 0x00ff 87 ) 88 89 // CurveID is the type of a TLS identifier for an elliptic curve. See 90 // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8 91 type CurveID uint16 92 93 const ( 94 CurveP256 CurveID = 23 95 CurveP384 CurveID = 24 96 CurveP521 CurveID = 25 97 ) 98 99 // TLS Elliptic Curve Point Formats 100 // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9 101 const ( 102 pointFormatUncompressed uint8 = 0 103 ) 104 105 // TLS CertificateStatusType (RFC 3546) 106 const ( 107 statusTypeOCSP uint8 = 1 108 ) 109 110 // Certificate types (for certificateRequestMsg) 111 const ( 112 certTypeRSASign = 1 // A certificate containing an RSA key 113 certTypeDSSSign = 2 // A certificate containing a DSA key 114 certTypeRSAFixedDH = 3 // A certificate containing a static DH key 115 certTypeDSSFixedDH = 4 // A certificate containing a static DH key 116 117 // See RFC4492 sections 3 and 5.5. 118 certTypeECDSASign = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA. 119 certTypeRSAFixedECDH = 65 // A certificate containing an ECDH-capable public key, signed with RSA. 120 certTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA. 121 122 // Rest of these are reserved by the TLS spec 123 ) 124 125 // Hash functions for TLS 1.2 (See RFC 5246, section A.4.1) 126 const ( 127 hashSHA1 uint8 = 2 128 hashSHA256 uint8 = 4 129 hashSHA384 uint8 = 5 130 ) 131 132 // Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1) 133 const ( 134 signatureRSA uint8 = 1 135 signatureECDSA uint8 = 3 136 ) 137 138 // signatureAndHash mirrors the TLS 1.2, SignatureAndHashAlgorithm struct. See 139 // RFC 5246, section A.4.1. 140 type signatureAndHash struct { 141 hash, signature uint8 142 } 143 144 // supportedSignatureAlgorithms contains the signature and hash algorithms that 145 // the code advertises as supported in a TLS 1.2 ClientHello and in a TLS 1.2 146 // CertificateRequest. 147 var supportedSignatureAlgorithms = []signatureAndHash{ 148 {hashSHA256, signatureRSA}, 149 {hashSHA256, signatureECDSA}, 150 {hashSHA384, signatureRSA}, 151 {hashSHA384, signatureECDSA}, 152 {hashSHA1, signatureRSA}, 153 {hashSHA1, signatureECDSA}, 154 } 155 156 // ConnectionState records basic TLS details about the connection. 157 type ConnectionState struct { 158 Version uint16 // TLS version used by the connection (e.g. VersionTLS12) 159 HandshakeComplete bool // TLS handshake is complete 160 DidResume bool // connection resumes a previous TLS connection 161 CipherSuite uint16 // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...) 162 NegotiatedProtocol string // negotiated next protocol (from Config.NextProtos) 163 NegotiatedProtocolIsMutual bool // negotiated protocol was advertised by server 164 ServerName string // server name requested by client, if any (server side only) 165 PeerCertificates []*x509.Certificate // certificate chain presented by remote peer 166 VerifiedChains [][]*x509.Certificate // verified chains built from PeerCertificates 167 SignedCertificateTimestamps [][]byte // SCTs from the server, if any 168 OCSPResponse []byte // stapled OCSP response from server, if any 169 170 // TLSUnique contains the "tls-unique" channel binding value (see RFC 171 // 5929, section 3). For resumed sessions this value will be nil 172 // because resumption does not include enough context (see 173 // https://secure-resumption.com/#channelbindings). This will change in 174 // future versions of Go once the TLS master-secret fix has been 175 // standardized and implemented. 176 TLSUnique []byte 177 } 178 179 // ClientAuthType declares the policy the server will follow for 180 // TLS Client Authentication. 181 type ClientAuthType int 182 183 const ( 184 NoClientCert ClientAuthType = iota 185 RequestClientCert 186 RequireAnyClientCert 187 VerifyClientCertIfGiven 188 RequireAndVerifyClientCert 189 ) 190 191 // ClientSessionState contains the state needed by clients to resume TLS 192 // sessions. 193 type ClientSessionState struct { 194 sessionTicket []uint8 // Encrypted ticket used for session resumption with server 195 vers uint16 // SSL/TLS version negotiated for the session 196 cipherSuite uint16 // Ciphersuite negotiated for the session 197 masterSecret []byte // MasterSecret generated by client on a full handshake 198 serverCertificates []*x509.Certificate // Certificate chain presented by the server 199 verifiedChains [][]*x509.Certificate // Certificate chains we built for verification 200 } 201 202 // ClientSessionCache is a cache of ClientSessionState objects that can be used 203 // by a client to resume a TLS session with a given server. ClientSessionCache 204 // implementations should expect to be called concurrently from different 205 // goroutines. 206 type ClientSessionCache interface { 207 // Get searches for a ClientSessionState associated with the given key. 208 // On return, ok is true if one was found. 209 Get(sessionKey string) (session *ClientSessionState, ok bool) 210 211 // Put adds the ClientSessionState to the cache with the given key. 212 Put(sessionKey string, cs *ClientSessionState) 213 } 214 215 // ClientHelloInfo contains information from a ClientHello message in order to 216 // guide certificate selection in the GetCertificate callback. 217 type ClientHelloInfo struct { 218 // CipherSuites lists the CipherSuites supported by the client (e.g. 219 // TLS_RSA_WITH_RC4_128_SHA). 220 CipherSuites []uint16 221 222 // ServerName indicates the name of the server requested by the client 223 // in order to support virtual hosting. ServerName is only set if the 224 // client is using SNI (see 225 // http://tools.ietf.org/html/rfc4366#section-3.1). 226 ServerName string 227 228 // SupportedCurves lists the elliptic curves supported by the client. 229 // SupportedCurves is set only if the Supported Elliptic Curves 230 // Extension is being used (see 231 // http://tools.ietf.org/html/rfc4492#section-5.1.1). 232 SupportedCurves []CurveID 233 234 // SupportedPoints lists the point formats supported by the client. 235 // SupportedPoints is set only if the Supported Point Formats Extension 236 // is being used (see 237 // http://tools.ietf.org/html/rfc4492#section-5.1.2). 238 SupportedPoints []uint8 239 } 240 241 // A Config structure is used to configure a TLS client or server. 242 // After one has been passed to a TLS function it must not be 243 // modified. A Config may be reused; the tls package will also not 244 // modify it. 245 type Config struct { 246 // Rand provides the source of entropy for nonces and RSA blinding. 247 // If Rand is nil, TLS uses the cryptographic random reader in package 248 // crypto/rand. 249 // The Reader must be safe for use by multiple goroutines. 250 Rand io.Reader 251 252 // Time returns the current time as the number of seconds since the epoch. 253 // If Time is nil, TLS uses time.Now. 254 Time func() time.Time 255 256 // Certificates contains one or more certificate chains 257 // to present to the other side of the connection. 258 // Server configurations must include at least one certificate. 259 Certificates []Certificate 260 261 // NameToCertificate maps from a certificate name to an element of 262 // Certificates. Note that a certificate name can be of the form 263 // '*.example.com' and so doesn't have to be a domain name as such. 264 // See Config.BuildNameToCertificate 265 // The nil value causes the first element of Certificates to be used 266 // for all connections. 267 NameToCertificate map[string]*Certificate 268 269 // GetCertificate returns a Certificate based on the given 270 // ClientHelloInfo. It will only be called if the client supplies SNI 271 // information or if Certificates is empty. 272 // 273 // If GetCertificate is nil or returns nil, then the certificate is 274 // retrieved from NameToCertificate. If NameToCertificate is nil, the 275 // first element of Certificates will be used. 276 GetCertificate func(clientHello *ClientHelloInfo) (*Certificate, error) 277 278 // RootCAs defines the set of root certificate authorities 279 // that clients use when verifying server certificates. 280 // If RootCAs is nil, TLS uses the host's root CA set. 281 RootCAs *x509.CertPool 282 283 // NextProtos is a list of supported, application level protocols. 284 NextProtos []string 285 286 // ServerName is used to verify the hostname on the returned 287 // certificates unless InsecureSkipVerify is given. It is also included 288 // in the client's handshake to support virtual hosting. 289 ServerName string 290 291 // ClientAuth determines the server's policy for 292 // TLS Client Authentication. The default is NoClientCert. 293 ClientAuth ClientAuthType 294 295 // ClientCAs defines the set of root certificate authorities 296 // that servers use if required to verify a client certificate 297 // by the policy in ClientAuth. 298 ClientCAs *x509.CertPool 299 300 // InsecureSkipVerify controls whether a client verifies the 301 // server's certificate chain and host name. 302 // If InsecureSkipVerify is true, TLS accepts any certificate 303 // presented by the server and any host name in that certificate. 304 // In this mode, TLS is susceptible to man-in-the-middle attacks. 305 // This should be used only for testing. 306 InsecureSkipVerify bool 307 308 // CipherSuites is a list of supported cipher suites. If CipherSuites 309 // is nil, TLS uses a list of suites supported by the implementation. 310 CipherSuites []uint16 311 312 // PreferServerCipherSuites controls whether the server selects the 313 // client's most preferred ciphersuite, or the server's most preferred 314 // ciphersuite. If true then the server's preference, as expressed in 315 // the order of elements in CipherSuites, is used. 316 PreferServerCipherSuites bool 317 318 // SessionTicketsDisabled may be set to true to disable session ticket 319 // (resumption) support. 320 SessionTicketsDisabled bool 321 322 // SessionTicketKey is used by TLS servers to provide session 323 // resumption. See RFC 5077. If zero, it will be filled with 324 // random data before the first server handshake. 325 // 326 // If multiple servers are terminating connections for the same host 327 // they should all have the same SessionTicketKey. If the 328 // SessionTicketKey leaks, previously recorded and future TLS 329 // connections using that key are compromised. 330 SessionTicketKey [32]byte 331 332 // SessionCache is a cache of ClientSessionState entries for TLS session 333 // resumption. 334 ClientSessionCache ClientSessionCache 335 336 // MinVersion contains the minimum SSL/TLS version that is acceptable. 337 // If zero, then TLS 1.0 is taken as the minimum. 338 MinVersion uint16 339 340 // MaxVersion contains the maximum SSL/TLS version that is acceptable. 341 // If zero, then the maximum version supported by this package is used, 342 // which is currently TLS 1.2. 343 MaxVersion uint16 344 345 // CurvePreferences contains the elliptic curves that will be used in 346 // an ECDHE handshake, in preference order. If empty, the default will 347 // be used. 348 CurvePreferences []CurveID 349 350 serverInitOnce sync.Once // guards calling (*Config).serverInit 351 352 // mutex protects sessionTicketKeys 353 mutex sync.RWMutex 354 // sessionTicketKeys contains zero or more ticket keys. If the length 355 // is zero, SessionTicketsDisabled must be true. The first key is used 356 // for new tickets and any subsequent keys can be used to decrypt old 357 // tickets. 358 sessionTicketKeys []ticketKey 359 } 360 361 // ticketKeyNameLen is the number of bytes of identifier that is prepended to 362 // an encrypted session ticket in order to identify the key used to encrypt it. 363 const ticketKeyNameLen = 16 364 365 // ticketKey is the internal representation of a session ticket key. 366 type ticketKey struct { 367 // keyName is an opaque byte string that serves to identify the session 368 // ticket key. It's exposed as plaintext in every session ticket. 369 keyName [ticketKeyNameLen]byte 370 aesKey [16]byte 371 hmacKey [16]byte 372 } 373 374 // ticketKeyFromBytes converts from the external representation of a session 375 // ticket key to a ticketKey. Externally, session ticket keys are 32 random 376 // bytes and this function expands that into sufficient name and key material. 377 func ticketKeyFromBytes(b [32]byte) (key ticketKey) { 378 hashed := sha512.Sum512(b[:]) 379 copy(key.keyName[:], hashed[:ticketKeyNameLen]) 380 copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16]) 381 copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32]) 382 return key 383 } 384 385 func (c *Config) serverInit() { 386 if c.SessionTicketsDisabled { 387 return 388 } 389 390 alreadySet := false 391 for _, b := range c.SessionTicketKey { 392 if b != 0 { 393 alreadySet = true 394 break 395 } 396 } 397 398 if !alreadySet { 399 if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil { 400 c.SessionTicketsDisabled = true 401 return 402 } 403 } 404 405 c.sessionTicketKeys = []ticketKey{ticketKeyFromBytes(c.SessionTicketKey)} 406 } 407 408 func (c *Config) ticketKeys() []ticketKey { 409 c.mutex.RLock() 410 // c.sessionTicketKeys is constant once created. SetSessionTicketKeys 411 // will only update it by replacing it with a new value. 412 ret := c.sessionTicketKeys 413 c.mutex.RUnlock() 414 return ret 415 } 416 417 // SetSessionTicketKeys updates the session ticket keys for a server. The first 418 // key will be used when creating new tickets, while all keys can be used for 419 // decrypting tickets. It is safe to call this function while the server is 420 // running in order to rotate the session ticket keys. The function will panic 421 // if keys is empty. 422 func (c *Config) SetSessionTicketKeys(keys [][32]byte) { 423 if len(keys) == 0 { 424 panic("tls: keys must have at least one key") 425 } 426 427 newKeys := make([]ticketKey, len(keys)) 428 for i, bytes := range keys { 429 newKeys[i] = ticketKeyFromBytes(bytes) 430 } 431 432 c.mutex.Lock() 433 c.sessionTicketKeys = newKeys 434 c.mutex.Unlock() 435 } 436 437 func (c *Config) rand() io.Reader { 438 r := c.Rand 439 if r == nil { 440 return rand.Reader 441 } 442 return r 443 } 444 445 func (c *Config) time() time.Time { 446 t := c.Time 447 if t == nil { 448 t = time.Now 449 } 450 return t() 451 } 452 453 func (c *Config) cipherSuites() []uint16 { 454 s := c.CipherSuites 455 if s == nil { 456 s = defaultCipherSuites() 457 } 458 return s 459 } 460 461 func (c *Config) minVersion() uint16 { 462 if c == nil || c.MinVersion == 0 { 463 return minVersion 464 } 465 return c.MinVersion 466 } 467 468 func (c *Config) maxVersion() uint16 { 469 if c == nil || c.MaxVersion == 0 { 470 return maxVersion 471 } 472 return c.MaxVersion 473 } 474 475 var defaultCurvePreferences = []CurveID{CurveP256, CurveP384, CurveP521} 476 477 func (c *Config) curvePreferences() []CurveID { 478 if c == nil || len(c.CurvePreferences) == 0 { 479 return defaultCurvePreferences 480 } 481 return c.CurvePreferences 482 } 483 484 // mutualVersion returns the protocol version to use given the advertised 485 // version of the peer. 486 func (c *Config) mutualVersion(vers uint16) (uint16, bool) { 487 minVersion := c.minVersion() 488 maxVersion := c.maxVersion() 489 490 if vers < minVersion { 491 return 0, false 492 } 493 if vers > maxVersion { 494 vers = maxVersion 495 } 496 return vers, true 497 } 498 499 // getCertificate returns the best certificate for the given ClientHelloInfo, 500 // defaulting to the first element of c.Certificates. 501 func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) { 502 if c.GetCertificate != nil && 503 (len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) { 504 cert, err := c.GetCertificate(clientHello) 505 if cert != nil || err != nil { 506 return cert, err 507 } 508 } 509 510 if len(c.Certificates) == 0 { 511 return nil, errors.New("crypto/tls: no certificates configured") 512 } 513 514 if len(c.Certificates) == 1 || c.NameToCertificate == nil { 515 // There's only one choice, so no point doing any work. 516 return &c.Certificates[0], nil 517 } 518 519 name := strings.ToLower(clientHello.ServerName) 520 for len(name) > 0 && name[len(name)-1] == '.' { 521 name = name[:len(name)-1] 522 } 523 524 if cert, ok := c.NameToCertificate[name]; ok { 525 return cert, nil 526 } 527 528 // try replacing labels in the name with wildcards until we get a 529 // match. 530 labels := strings.Split(name, ".") 531 for i := range labels { 532 labels[i] = "*" 533 candidate := strings.Join(labels, ".") 534 if cert, ok := c.NameToCertificate[candidate]; ok { 535 return cert, nil 536 } 537 } 538 539 // If nothing matches, return the first certificate. 540 return &c.Certificates[0], nil 541 } 542 543 // BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate 544 // from the CommonName and SubjectAlternateName fields of each of the leaf 545 // certificates. 546 func (c *Config) BuildNameToCertificate() { 547 c.NameToCertificate = make(map[string]*Certificate) 548 for i := range c.Certificates { 549 cert := &c.Certificates[i] 550 x509Cert, err := x509.ParseCertificate(cert.Certificate[0]) 551 if err != nil { 552 continue 553 } 554 if len(x509Cert.Subject.CommonName) > 0 { 555 c.NameToCertificate[x509Cert.Subject.CommonName] = cert 556 } 557 for _, san := range x509Cert.DNSNames { 558 c.NameToCertificate[san] = cert 559 } 560 } 561 } 562 563 // A Certificate is a chain of one or more certificates, leaf first. 564 type Certificate struct { 565 Certificate [][]byte 566 // PrivateKey contains the private key corresponding to the public key 567 // in Leaf. For a server, this must implement crypto.Signer and/or 568 // crypto.Decrypter, with an RSA or ECDSA PublicKey. For a client 569 // (performing client authentication), this must be a crypto.Signer 570 // with an RSA or ECDSA PublicKey. 571 PrivateKey crypto.PrivateKey 572 // OCSPStaple contains an optional OCSP response which will be served 573 // to clients that request it. 574 OCSPStaple []byte 575 // SignedCertificateTimestamps contains an optional list of Signed 576 // Certificate Timestamps which will be served to clients that request it. 577 SignedCertificateTimestamps [][]byte 578 // Leaf is the parsed form of the leaf certificate, which may be 579 // initialized using x509.ParseCertificate to reduce per-handshake 580 // processing for TLS clients doing client authentication. If nil, the 581 // leaf certificate will be parsed as needed. 582 Leaf *x509.Certificate 583 } 584 585 // A TLS record. 586 type record struct { 587 contentType recordType 588 major, minor uint8 589 payload []byte 590 } 591 592 type handshakeMessage interface { 593 marshal() []byte 594 unmarshal([]byte) bool 595 } 596 597 // lruSessionCache is a ClientSessionCache implementation that uses an LRU 598 // caching strategy. 599 type lruSessionCache struct { 600 sync.Mutex 601 602 m map[string]*list.Element 603 q *list.List 604 capacity int 605 } 606 607 type lruSessionCacheEntry struct { 608 sessionKey string 609 state *ClientSessionState 610 } 611 612 // NewLRUClientSessionCache returns a ClientSessionCache with the given 613 // capacity that uses an LRU strategy. If capacity is < 1, a default capacity 614 // is used instead. 615 func NewLRUClientSessionCache(capacity int) ClientSessionCache { 616 const defaultSessionCacheCapacity = 64 617 618 if capacity < 1 { 619 capacity = defaultSessionCacheCapacity 620 } 621 return &lruSessionCache{ 622 m: make(map[string]*list.Element), 623 q: list.New(), 624 capacity: capacity, 625 } 626 } 627 628 // Put adds the provided (sessionKey, cs) pair to the cache. 629 func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) { 630 c.Lock() 631 defer c.Unlock() 632 633 if elem, ok := c.m[sessionKey]; ok { 634 entry := elem.Value.(*lruSessionCacheEntry) 635 entry.state = cs 636 c.q.MoveToFront(elem) 637 return 638 } 639 640 if c.q.Len() < c.capacity { 641 entry := &lruSessionCacheEntry{sessionKey, cs} 642 c.m[sessionKey] = c.q.PushFront(entry) 643 return 644 } 645 646 elem := c.q.Back() 647 entry := elem.Value.(*lruSessionCacheEntry) 648 delete(c.m, entry.sessionKey) 649 entry.sessionKey = sessionKey 650 entry.state = cs 651 c.q.MoveToFront(elem) 652 c.m[sessionKey] = elem 653 } 654 655 // Get returns the ClientSessionState value associated with a given key. It 656 // returns (nil, false) if no value is found. 657 func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) { 658 c.Lock() 659 defer c.Unlock() 660 661 if elem, ok := c.m[sessionKey]; ok { 662 c.q.MoveToFront(elem) 663 return elem.Value.(*lruSessionCacheEntry).state, true 664 } 665 return nil, false 666 } 667 668 // TODO(jsing): Make these available to both crypto/x509 and crypto/tls. 669 type dsaSignature struct { 670 R, S *big.Int 671 } 672 673 type ecdsaSignature dsaSignature 674 675 var emptyConfig Config 676 677 func defaultConfig() *Config { 678 return &emptyConfig 679 } 680 681 var ( 682 once sync.Once 683 varDefaultCipherSuites []uint16 684 ) 685 686 func defaultCipherSuites() []uint16 { 687 once.Do(initDefaultCipherSuites) 688 return varDefaultCipherSuites 689 } 690 691 func initDefaultCipherSuites() { 692 varDefaultCipherSuites = make([]uint16, 0, len(cipherSuites)) 693 for _, suite := range cipherSuites { 694 if suite.flags&suiteDefaultOff != 0 { 695 continue 696 } 697 varDefaultCipherSuites = append(varDefaultCipherSuites, suite.id) 698 } 699 } 700 701 func unexpectedMessageError(wanted, got interface{}) error { 702 return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted) 703 } 704 705 func isSupportedSignatureAndHash(sigHash signatureAndHash, sigHashes []signatureAndHash) bool { 706 for _, s := range sigHashes { 707 if s == sigHash { 708 return true 709 } 710 } 711 return false 712 }