github.com/huandu/go@v0.0.0-20151114150818-04e615e41150/src/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "bytes" 9 "fmt" 10 "io" 11 "reflect" 12 "runtime" 13 "sort" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // state represents the state of an execution. It's not part of the 19 // template so that multiple executions of the same template 20 // can execute in parallel. 21 type state struct { 22 tmpl *Template 23 wr io.Writer 24 node parse.Node // current node, for errors 25 vars []variable // push-down stack of variable values. 26 } 27 28 // variable holds the dynamic value of a variable such as $, $x etc. 29 type variable struct { 30 name string 31 value reflect.Value 32 } 33 34 // push pushes a new variable on the stack. 35 func (s *state) push(name string, value reflect.Value) { 36 s.vars = append(s.vars, variable{name, value}) 37 } 38 39 // mark returns the length of the variable stack. 40 func (s *state) mark() int { 41 return len(s.vars) 42 } 43 44 // pop pops the variable stack up to the mark. 45 func (s *state) pop(mark int) { 46 s.vars = s.vars[0:mark] 47 } 48 49 // setVar overwrites the top-nth variable on the stack. Used by range iterations. 50 func (s *state) setVar(n int, value reflect.Value) { 51 s.vars[len(s.vars)-n].value = value 52 } 53 54 // varValue returns the value of the named variable. 55 func (s *state) varValue(name string) reflect.Value { 56 for i := s.mark() - 1; i >= 0; i-- { 57 if s.vars[i].name == name { 58 return s.vars[i].value 59 } 60 } 61 s.errorf("undefined variable: %s", name) 62 return zero 63 } 64 65 var zero reflect.Value 66 67 // at marks the state to be on node n, for error reporting. 68 func (s *state) at(node parse.Node) { 69 s.node = node 70 } 71 72 // doublePercent returns the string with %'s replaced by %%, if necessary, 73 // so it can be used safely inside a Printf format string. 74 func doublePercent(str string) string { 75 if strings.Contains(str, "%") { 76 str = strings.Replace(str, "%", "%%", -1) 77 } 78 return str 79 } 80 81 // errorf formats the error and terminates processing. 82 func (s *state) errorf(format string, args ...interface{}) { 83 name := doublePercent(s.tmpl.Name()) 84 if s.node == nil { 85 format = fmt.Sprintf("template: %s: %s", name, format) 86 } else { 87 location, context := s.tmpl.ErrorContext(s.node) 88 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 89 } 90 panic(fmt.Errorf(format, args...)) 91 } 92 93 // errRecover is the handler that turns panics into returns from the top 94 // level of Parse. 95 func errRecover(errp *error) { 96 e := recover() 97 if e != nil { 98 switch err := e.(type) { 99 case runtime.Error: 100 panic(e) 101 case error: 102 *errp = err 103 default: 104 panic(e) 105 } 106 } 107 } 108 109 // ExecuteTemplate applies the template associated with t that has the given name 110 // to the specified data object and writes the output to wr. 111 // If an error occurs executing the template or writing its output, 112 // execution stops, but partial results may already have been written to 113 // the output writer. 114 // A template may be executed safely in parallel. 115 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 116 var tmpl *Template 117 if t.common != nil { 118 tmpl = t.tmpl[name] 119 } 120 if tmpl == nil { 121 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 122 } 123 return tmpl.Execute(wr, data) 124 } 125 126 // Execute applies a parsed template to the specified data object, 127 // and writes the output to wr. 128 // If an error occurs executing the template or writing its output, 129 // execution stops, but partial results may already have been written to 130 // the output writer. 131 // A template may be executed safely in parallel. 132 func (t *Template) Execute(wr io.Writer, data interface{}) (err error) { 133 defer errRecover(&err) 134 value := reflect.ValueOf(data) 135 state := &state{ 136 tmpl: t, 137 wr: wr, 138 vars: []variable{{"$", value}}, 139 } 140 if t.Tree == nil || t.Root == nil { 141 state.errorf("%q is an incomplete or empty template%s", t.Name(), t.DefinedTemplates()) 142 } 143 state.walk(value, t.Root) 144 return 145 } 146 147 // DefinedTemplates returns a string listing the defined templates, 148 // prefixed by the string "defined templates are: ". If there are none, 149 // it returns the empty string. For generating an error message here 150 // and in html/template. 151 func (t *Template) DefinedTemplates() string { 152 if t.common == nil { 153 return "" 154 } 155 var b bytes.Buffer 156 for name, tmpl := range t.tmpl { 157 if tmpl.Tree == nil || tmpl.Root == nil { 158 continue 159 } 160 if b.Len() > 0 { 161 b.WriteString(", ") 162 } 163 fmt.Fprintf(&b, "%q", name) 164 } 165 var s string 166 if b.Len() > 0 { 167 s = "; defined templates are: " + b.String() 168 } 169 return s 170 } 171 172 // Walk functions step through the major pieces of the template structure, 173 // generating output as they go. 174 func (s *state) walk(dot reflect.Value, node parse.Node) { 175 s.at(node) 176 switch node := node.(type) { 177 case *parse.ActionNode: 178 // Do not pop variables so they persist until next end. 179 // Also, if the action declares variables, don't print the result. 180 val := s.evalPipeline(dot, node.Pipe) 181 if len(node.Pipe.Decl) == 0 { 182 s.printValue(node, val) 183 } 184 case *parse.IfNode: 185 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 186 case *parse.ListNode: 187 for _, node := range node.Nodes { 188 s.walk(dot, node) 189 } 190 case *parse.RangeNode: 191 s.walkRange(dot, node) 192 case *parse.TemplateNode: 193 s.walkTemplate(dot, node) 194 case *parse.TextNode: 195 if _, err := s.wr.Write(node.Text); err != nil { 196 s.errorf("%s", err) 197 } 198 case *parse.WithNode: 199 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 200 default: 201 s.errorf("unknown node: %s", node) 202 } 203 } 204 205 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 206 // are identical in behavior except that 'with' sets dot. 207 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 208 defer s.pop(s.mark()) 209 val := s.evalPipeline(dot, pipe) 210 truth, ok := isTrue(val) 211 if !ok { 212 s.errorf("if/with can't use %v", val) 213 } 214 if truth { 215 if typ == parse.NodeWith { 216 s.walk(val, list) 217 } else { 218 s.walk(dot, list) 219 } 220 } else if elseList != nil { 221 s.walk(dot, elseList) 222 } 223 } 224 225 // isTrue reports whether the value is 'true', in the sense of not the zero of its type, 226 // and whether the value has a meaningful truth value. 227 func isTrue(val reflect.Value) (truth, ok bool) { 228 if !val.IsValid() { 229 // Something like var x interface{}, never set. It's a form of nil. 230 return false, true 231 } 232 switch val.Kind() { 233 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 234 truth = val.Len() > 0 235 case reflect.Bool: 236 truth = val.Bool() 237 case reflect.Complex64, reflect.Complex128: 238 truth = val.Complex() != 0 239 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 240 truth = !val.IsNil() 241 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 242 truth = val.Int() != 0 243 case reflect.Float32, reflect.Float64: 244 truth = val.Float() != 0 245 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 246 truth = val.Uint() != 0 247 case reflect.Struct: 248 truth = true // Struct values are always true. 249 default: 250 return 251 } 252 return truth, true 253 } 254 255 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 256 s.at(r) 257 defer s.pop(s.mark()) 258 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 259 // mark top of stack before any variables in the body are pushed. 260 mark := s.mark() 261 oneIteration := func(index, elem reflect.Value) { 262 // Set top var (lexically the second if there are two) to the element. 263 if len(r.Pipe.Decl) > 0 { 264 s.setVar(1, elem) 265 } 266 // Set next var (lexically the first if there are two) to the index. 267 if len(r.Pipe.Decl) > 1 { 268 s.setVar(2, index) 269 } 270 s.walk(elem, r.List) 271 s.pop(mark) 272 } 273 switch val.Kind() { 274 case reflect.Array, reflect.Slice: 275 if val.Len() == 0 { 276 break 277 } 278 for i := 0; i < val.Len(); i++ { 279 oneIteration(reflect.ValueOf(i), val.Index(i)) 280 } 281 return 282 case reflect.Map: 283 if val.Len() == 0 { 284 break 285 } 286 for _, key := range sortKeys(val.MapKeys()) { 287 oneIteration(key, val.MapIndex(key)) 288 } 289 return 290 case reflect.Chan: 291 if val.IsNil() { 292 break 293 } 294 i := 0 295 for ; ; i++ { 296 elem, ok := val.Recv() 297 if !ok { 298 break 299 } 300 oneIteration(reflect.ValueOf(i), elem) 301 } 302 if i == 0 { 303 break 304 } 305 return 306 case reflect.Invalid: 307 break // An invalid value is likely a nil map, etc. and acts like an empty map. 308 default: 309 s.errorf("range can't iterate over %v", val) 310 } 311 if r.ElseList != nil { 312 s.walk(dot, r.ElseList) 313 } 314 } 315 316 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 317 s.at(t) 318 tmpl := s.tmpl.tmpl[t.Name] 319 if tmpl == nil { 320 s.errorf("template %q not defined", t.Name) 321 } 322 // Variables declared by the pipeline persist. 323 dot = s.evalPipeline(dot, t.Pipe) 324 newState := *s 325 newState.tmpl = tmpl 326 // No dynamic scoping: template invocations inherit no variables. 327 newState.vars = []variable{{"$", dot}} 328 newState.walk(dot, tmpl.Root) 329 } 330 331 // Eval functions evaluate pipelines, commands, and their elements and extract 332 // values from the data structure by examining fields, calling methods, and so on. 333 // The printing of those values happens only through walk functions. 334 335 // evalPipeline returns the value acquired by evaluating a pipeline. If the 336 // pipeline has a variable declaration, the variable will be pushed on the 337 // stack. Callers should therefore pop the stack after they are finished 338 // executing commands depending on the pipeline value. 339 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 340 if pipe == nil { 341 return 342 } 343 s.at(pipe) 344 for _, cmd := range pipe.Cmds { 345 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 346 // If the object has type interface{}, dig down one level to the thing inside. 347 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 348 value = reflect.ValueOf(value.Interface()) // lovely! 349 } 350 } 351 for _, variable := range pipe.Decl { 352 s.push(variable.Ident[0], value) 353 } 354 return value 355 } 356 357 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 358 if len(args) > 1 || final.IsValid() { 359 s.errorf("can't give argument to non-function %s", args[0]) 360 } 361 } 362 363 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 364 firstWord := cmd.Args[0] 365 switch n := firstWord.(type) { 366 case *parse.FieldNode: 367 return s.evalFieldNode(dot, n, cmd.Args, final) 368 case *parse.ChainNode: 369 return s.evalChainNode(dot, n, cmd.Args, final) 370 case *parse.IdentifierNode: 371 // Must be a function. 372 return s.evalFunction(dot, n, cmd, cmd.Args, final) 373 case *parse.PipeNode: 374 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. 375 return s.evalPipeline(dot, n) 376 case *parse.VariableNode: 377 return s.evalVariableNode(dot, n, cmd.Args, final) 378 } 379 s.at(firstWord) 380 s.notAFunction(cmd.Args, final) 381 switch word := firstWord.(type) { 382 case *parse.BoolNode: 383 return reflect.ValueOf(word.True) 384 case *parse.DotNode: 385 return dot 386 case *parse.NilNode: 387 s.errorf("nil is not a command") 388 case *parse.NumberNode: 389 return s.idealConstant(word) 390 case *parse.StringNode: 391 return reflect.ValueOf(word.Text) 392 } 393 s.errorf("can't evaluate command %q", firstWord) 394 panic("not reached") 395 } 396 397 // idealConstant is called to return the value of a number in a context where 398 // we don't know the type. In that case, the syntax of the number tells us 399 // its type, and we use Go rules to resolve. Note there is no such thing as 400 // a uint ideal constant in this situation - the value must be of int type. 401 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 402 // These are ideal constants but we don't know the type 403 // and we have no context. (If it was a method argument, 404 // we'd know what we need.) The syntax guides us to some extent. 405 s.at(constant) 406 switch { 407 case constant.IsComplex: 408 return reflect.ValueOf(constant.Complex128) // incontrovertible. 409 case constant.IsFloat && !isHexConstant(constant.Text) && strings.IndexAny(constant.Text, ".eE") >= 0: 410 return reflect.ValueOf(constant.Float64) 411 case constant.IsInt: 412 n := int(constant.Int64) 413 if int64(n) != constant.Int64 { 414 s.errorf("%s overflows int", constant.Text) 415 } 416 return reflect.ValueOf(n) 417 case constant.IsUint: 418 s.errorf("%s overflows int", constant.Text) 419 } 420 return zero 421 } 422 423 func isHexConstant(s string) bool { 424 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') 425 } 426 427 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 428 s.at(field) 429 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 430 } 431 432 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 433 s.at(chain) 434 if len(chain.Field) == 0 { 435 s.errorf("internal error: no fields in evalChainNode") 436 } 437 if chain.Node.Type() == parse.NodeNil { 438 s.errorf("indirection through explicit nil in %s", chain) 439 } 440 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 441 pipe := s.evalArg(dot, nil, chain.Node) 442 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 443 } 444 445 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 446 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 447 s.at(variable) 448 value := s.varValue(variable.Ident[0]) 449 if len(variable.Ident) == 1 { 450 s.notAFunction(args, final) 451 return value 452 } 453 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 454 } 455 456 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 457 // dot is the environment in which to evaluate arguments, while 458 // receiver is the value being walked along the chain. 459 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 460 n := len(ident) 461 for i := 0; i < n-1; i++ { 462 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) 463 } 464 // Now if it's a method, it gets the arguments. 465 return s.evalField(dot, ident[n-1], node, args, final, receiver) 466 } 467 468 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 469 s.at(node) 470 name := node.Ident 471 function, ok := findFunction(name, s.tmpl) 472 if !ok { 473 s.errorf("%q is not a defined function", name) 474 } 475 return s.evalCall(dot, function, cmd, name, args, final) 476 } 477 478 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 479 // The 'final' argument represents the return value from the preceding 480 // value of the pipeline, if any. 481 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 482 if !receiver.IsValid() { 483 return zero 484 } 485 typ := receiver.Type() 486 receiver, _ = indirect(receiver) 487 // Unless it's an interface, need to get to a value of type *T to guarantee 488 // we see all methods of T and *T. 489 ptr := receiver 490 if ptr.Kind() != reflect.Interface && ptr.CanAddr() { 491 ptr = ptr.Addr() 492 } 493 if method := ptr.MethodByName(fieldName); method.IsValid() { 494 return s.evalCall(dot, method, node, fieldName, args, final) 495 } 496 hasArgs := len(args) > 1 || final.IsValid() 497 // It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil. 498 receiver, isNil := indirect(receiver) 499 if isNil { 500 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 501 } 502 switch receiver.Kind() { 503 case reflect.Struct: 504 tField, ok := receiver.Type().FieldByName(fieldName) 505 if ok { 506 field := receiver.FieldByIndex(tField.Index) 507 if tField.PkgPath != "" { // field is unexported 508 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 509 } 510 // If it's a function, we must call it. 511 if hasArgs { 512 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 513 } 514 return field 515 } 516 s.errorf("%s is not a field of struct type %s", fieldName, typ) 517 case reflect.Map: 518 // If it's a map, attempt to use the field name as a key. 519 nameVal := reflect.ValueOf(fieldName) 520 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 521 if hasArgs { 522 s.errorf("%s is not a method but has arguments", fieldName) 523 } 524 result := receiver.MapIndex(nameVal) 525 if !result.IsValid() { 526 switch s.tmpl.option.missingKey { 527 case mapInvalid: 528 // Just use the invalid value. 529 case mapZeroValue: 530 result = reflect.Zero(receiver.Type().Elem()) 531 case mapError: 532 s.errorf("map has no entry for key %q", fieldName) 533 } 534 } 535 return result 536 } 537 } 538 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 539 panic("not reached") 540 } 541 542 var ( 543 errorType = reflect.TypeOf((*error)(nil)).Elem() 544 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 545 ) 546 547 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 548 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 549 // as the function itself. 550 func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 551 if args != nil { 552 args = args[1:] // Zeroth arg is function name/node; not passed to function. 553 } 554 typ := fun.Type() 555 numIn := len(args) 556 if final.IsValid() { 557 numIn++ 558 } 559 numFixed := len(args) 560 if typ.IsVariadic() { 561 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 562 if numIn < numFixed { 563 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 564 } 565 } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { 566 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) 567 } 568 if !goodFunc(typ) { 569 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 570 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 571 } 572 // Build the arg list. 573 argv := make([]reflect.Value, numIn) 574 // Args must be evaluated. Fixed args first. 575 i := 0 576 for ; i < numFixed && i < len(args); i++ { 577 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 578 } 579 // Now the ... args. 580 if typ.IsVariadic() { 581 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 582 for ; i < len(args); i++ { 583 argv[i] = s.evalArg(dot, argType, args[i]) 584 } 585 } 586 // Add final value if necessary. 587 if final.IsValid() { 588 t := typ.In(typ.NumIn() - 1) 589 if typ.IsVariadic() { 590 if numIn-1 < numFixed { 591 // The added final argument corresponds to a fixed parameter of the function. 592 // Validate against the type of the actual parameter. 593 t = typ.In(numIn - 1) 594 } else { 595 // The added final argument corresponds to the variadic part. 596 // Validate against the type of the elements of the variadic slice. 597 t = t.Elem() 598 } 599 } 600 argv[i] = s.validateType(final, t) 601 } 602 result := fun.Call(argv) 603 // If we have an error that is not nil, stop execution and return that error to the caller. 604 if len(result) == 2 && !result[1].IsNil() { 605 s.at(node) 606 s.errorf("error calling %s: %s", name, result[1].Interface().(error)) 607 } 608 return result[0] 609 } 610 611 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 612 func canBeNil(typ reflect.Type) bool { 613 switch typ.Kind() { 614 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 615 return true 616 } 617 return false 618 } 619 620 // validateType guarantees that the value is valid and assignable to the type. 621 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 622 if !value.IsValid() { 623 if typ == nil || canBeNil(typ) { 624 // An untyped nil interface{}. Accept as a proper nil value. 625 return reflect.Zero(typ) 626 } 627 s.errorf("invalid value; expected %s", typ) 628 } 629 if typ != nil && !value.Type().AssignableTo(typ) { 630 if value.Kind() == reflect.Interface && !value.IsNil() { 631 value = value.Elem() 632 if value.Type().AssignableTo(typ) { 633 return value 634 } 635 // fallthrough 636 } 637 // Does one dereference or indirection work? We could do more, as we 638 // do with method receivers, but that gets messy and method receivers 639 // are much more constrained, so it makes more sense there than here. 640 // Besides, one is almost always all you need. 641 switch { 642 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 643 value = value.Elem() 644 if !value.IsValid() { 645 s.errorf("dereference of nil pointer of type %s", typ) 646 } 647 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 648 value = value.Addr() 649 default: 650 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 651 } 652 } 653 return value 654 } 655 656 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 657 s.at(n) 658 switch arg := n.(type) { 659 case *parse.DotNode: 660 return s.validateType(dot, typ) 661 case *parse.NilNode: 662 if canBeNil(typ) { 663 return reflect.Zero(typ) 664 } 665 s.errorf("cannot assign nil to %s", typ) 666 case *parse.FieldNode: 667 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) 668 case *parse.VariableNode: 669 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) 670 case *parse.PipeNode: 671 return s.validateType(s.evalPipeline(dot, arg), typ) 672 case *parse.IdentifierNode: 673 return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ) 674 case *parse.ChainNode: 675 return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ) 676 } 677 switch typ.Kind() { 678 case reflect.Bool: 679 return s.evalBool(typ, n) 680 case reflect.Complex64, reflect.Complex128: 681 return s.evalComplex(typ, n) 682 case reflect.Float32, reflect.Float64: 683 return s.evalFloat(typ, n) 684 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 685 return s.evalInteger(typ, n) 686 case reflect.Interface: 687 if typ.NumMethod() == 0 { 688 return s.evalEmptyInterface(dot, n) 689 } 690 case reflect.String: 691 return s.evalString(typ, n) 692 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 693 return s.evalUnsignedInteger(typ, n) 694 } 695 s.errorf("can't handle %s for arg of type %s", n, typ) 696 panic("not reached") 697 } 698 699 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 700 s.at(n) 701 if n, ok := n.(*parse.BoolNode); ok { 702 value := reflect.New(typ).Elem() 703 value.SetBool(n.True) 704 return value 705 } 706 s.errorf("expected bool; found %s", n) 707 panic("not reached") 708 } 709 710 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 711 s.at(n) 712 if n, ok := n.(*parse.StringNode); ok { 713 value := reflect.New(typ).Elem() 714 value.SetString(n.Text) 715 return value 716 } 717 s.errorf("expected string; found %s", n) 718 panic("not reached") 719 } 720 721 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 722 s.at(n) 723 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 724 value := reflect.New(typ).Elem() 725 value.SetInt(n.Int64) 726 return value 727 } 728 s.errorf("expected integer; found %s", n) 729 panic("not reached") 730 } 731 732 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 733 s.at(n) 734 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 735 value := reflect.New(typ).Elem() 736 value.SetUint(n.Uint64) 737 return value 738 } 739 s.errorf("expected unsigned integer; found %s", n) 740 panic("not reached") 741 } 742 743 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 744 s.at(n) 745 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 746 value := reflect.New(typ).Elem() 747 value.SetFloat(n.Float64) 748 return value 749 } 750 s.errorf("expected float; found %s", n) 751 panic("not reached") 752 } 753 754 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 755 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 756 value := reflect.New(typ).Elem() 757 value.SetComplex(n.Complex128) 758 return value 759 } 760 s.errorf("expected complex; found %s", n) 761 panic("not reached") 762 } 763 764 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 765 s.at(n) 766 switch n := n.(type) { 767 case *parse.BoolNode: 768 return reflect.ValueOf(n.True) 769 case *parse.DotNode: 770 return dot 771 case *parse.FieldNode: 772 return s.evalFieldNode(dot, n, nil, zero) 773 case *parse.IdentifierNode: 774 return s.evalFunction(dot, n, n, nil, zero) 775 case *parse.NilNode: 776 // NilNode is handled in evalArg, the only place that calls here. 777 s.errorf("evalEmptyInterface: nil (can't happen)") 778 case *parse.NumberNode: 779 return s.idealConstant(n) 780 case *parse.StringNode: 781 return reflect.ValueOf(n.Text) 782 case *parse.VariableNode: 783 return s.evalVariableNode(dot, n, nil, zero) 784 case *parse.PipeNode: 785 return s.evalPipeline(dot, n) 786 } 787 s.errorf("can't handle assignment of %s to empty interface argument", n) 788 panic("not reached") 789 } 790 791 // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. 792 // We indirect through pointers and empty interfaces (only) because 793 // non-empty interfaces have methods we might need. 794 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 795 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 796 if v.IsNil() { 797 return v, true 798 } 799 if v.Kind() == reflect.Interface && v.NumMethod() > 0 { 800 break 801 } 802 } 803 return v, false 804 } 805 806 // printValue writes the textual representation of the value to the output of 807 // the template. 808 func (s *state) printValue(n parse.Node, v reflect.Value) { 809 s.at(n) 810 iface, ok := printableValue(v) 811 if !ok { 812 s.errorf("can't print %s of type %s", n, v.Type()) 813 } 814 fmt.Fprint(s.wr, iface) 815 } 816 817 // printableValue returns the, possibly indirected, interface value inside v that 818 // is best for a call to formatted printer. 819 func printableValue(v reflect.Value) (interface{}, bool) { 820 if v.Kind() == reflect.Ptr { 821 v, _ = indirect(v) // fmt.Fprint handles nil. 822 } 823 if !v.IsValid() { 824 return "<no value>", true 825 } 826 827 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 828 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 829 v = v.Addr() 830 } else { 831 switch v.Kind() { 832 case reflect.Chan, reflect.Func: 833 return nil, false 834 } 835 } 836 } 837 return v.Interface(), true 838 } 839 840 // Types to help sort the keys in a map for reproducible output. 841 842 type rvs []reflect.Value 843 844 func (x rvs) Len() int { return len(x) } 845 func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 846 847 type rvInts struct{ rvs } 848 849 func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() } 850 851 type rvUints struct{ rvs } 852 853 func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() } 854 855 type rvFloats struct{ rvs } 856 857 func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() } 858 859 type rvStrings struct{ rvs } 860 861 func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() } 862 863 // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. 864 func sortKeys(v []reflect.Value) []reflect.Value { 865 if len(v) <= 1 { 866 return v 867 } 868 switch v[0].Kind() { 869 case reflect.Float32, reflect.Float64: 870 sort.Sort(rvFloats{v}) 871 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 872 sort.Sort(rvInts{v}) 873 case reflect.String: 874 sort.Sort(rvStrings{v}) 875 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 876 sort.Sort(rvUints{v}) 877 } 878 return v 879 }