github.com/huandu/go@v0.0.0-20151114150818-04e615e41150/test/chan/powser1.go (about)

     1  // run
     2  
     3  // Copyright 2009 The Go Authors. All rights reserved.
     4  // Use of this source code is governed by a BSD-style
     5  // license that can be found in the LICENSE file.
     6  
     7  // Test concurrency primitives: power series.
     8  
     9  // Power series package
    10  // A power series is a channel, along which flow rational
    11  // coefficients.  A denominator of zero signifies the end.
    12  // Original code in Newsqueak by Doug McIlroy.
    13  // See Squinting at Power Series by Doug McIlroy,
    14  //   http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf
    15  
    16  package main
    17  
    18  import "os"
    19  
    20  type rat struct  {
    21  	num, den  int64	// numerator, denominator
    22  }
    23  
    24  func (u rat) pr() {
    25  	if u.den==1 {
    26  		print(u.num)
    27  	} else {
    28  		print(u.num, "/", u.den)
    29  	}
    30  	print(" ")
    31  }
    32  
    33  func (u rat) eq(c rat) bool {
    34  	return u.num == c.num && u.den == c.den
    35  }
    36  
    37  type dch struct {
    38  	req chan  int
    39  	dat chan  rat
    40  	nam int
    41  }
    42  
    43  type dch2 [2] *dch
    44  
    45  var chnames string
    46  var chnameserial int
    47  var seqno int
    48  
    49  func mkdch() *dch {
    50  	c := chnameserial % len(chnames)
    51  	chnameserial++
    52  	d := new(dch)
    53  	d.req = make(chan int)
    54  	d.dat = make(chan rat)
    55  	d.nam = c
    56  	return d
    57  }
    58  
    59  func mkdch2() *dch2 {
    60  	d2 := new(dch2)
    61  	d2[0] = mkdch()
    62  	d2[1] = mkdch()
    63  	return d2
    64  }
    65  
    66  // split reads a single demand channel and replicates its
    67  // output onto two, which may be read at different rates.
    68  // A process is created at first demand for a rat and dies
    69  // after the rat has been sent to both outputs.
    70  
    71  // When multiple generations of split exist, the newest
    72  // will service requests on one channel, which is
    73  // always renamed to be out[0]; the oldest will service
    74  // requests on the other channel, out[1].  All generations but the
    75  // newest hold queued data that has already been sent to
    76  // out[0].  When data has finally been sent to out[1],
    77  // a signal on the release-wait channel tells the next newer
    78  // generation to begin servicing out[1].
    79  
    80  func dosplit(in *dch, out *dch2, wait chan int ) {
    81  	both := false	// do not service both channels
    82  
    83  	select {
    84  	case <-out[0].req:
    85  		
    86  	case <-wait:
    87  		both = true
    88  		select {
    89  		case <-out[0].req:
    90  			
    91  		case <-out[1].req:
    92  			out[0], out[1] = out[1], out[0]
    93  		}
    94  	}
    95  
    96  	seqno++
    97  	in.req <- seqno
    98  	release := make(chan  int)
    99  	go dosplit(in, out, release)
   100  	dat := <-in.dat
   101  	out[0].dat <- dat
   102  	if !both {
   103  		<-wait
   104  	}
   105  	<-out[1].req
   106  	out[1].dat <- dat
   107  	release <- 0
   108  }
   109  
   110  func split(in *dch, out *dch2) {
   111  	release := make(chan int)
   112  	go dosplit(in, out, release)
   113  	release <- 0
   114  }
   115  
   116  func put(dat rat, out *dch) {
   117  	<-out.req
   118  	out.dat <- dat
   119  }
   120  
   121  func get(in *dch) rat {
   122  	seqno++
   123  	in.req <- seqno
   124  	return <-in.dat
   125  }
   126  
   127  // Get one rat from each of n demand channels
   128  
   129  func getn(in []*dch) []rat {
   130  	n := len(in)
   131  	if n != 2 { panic("bad n in getn") }
   132  	req := new([2] chan int)
   133  	dat := new([2] chan rat)
   134  	out := make([]rat, 2)
   135  	var i int
   136  	var it rat
   137  	for i=0; i<n; i++ {
   138  		req[i] = in[i].req
   139  		dat[i] = nil
   140  	}
   141  	for n=2*n; n>0; n-- {
   142  		seqno++
   143  
   144  		select {
   145  		case req[0] <- seqno:
   146  			dat[0] = in[0].dat
   147  			req[0] = nil
   148  		case req[1] <- seqno:
   149  			dat[1] = in[1].dat
   150  			req[1] = nil
   151  		case it = <-dat[0]:
   152  			out[0] = it
   153  			dat[0] = nil
   154  		case it = <-dat[1]:
   155  			out[1] = it
   156  			dat[1] = nil
   157  		}
   158  	}
   159  	return out
   160  }
   161  
   162  // Get one rat from each of 2 demand channels
   163  
   164  func get2(in0 *dch, in1 *dch) []rat {
   165  	return getn([]*dch{in0, in1})
   166  }
   167  
   168  func copy(in *dch, out *dch) {
   169  	for {
   170  		<-out.req
   171  		out.dat <- get(in)
   172  	}
   173  }
   174  
   175  func repeat(dat rat, out *dch) {
   176  	for {
   177  		put(dat, out)
   178  	}
   179  }
   180  
   181  type PS *dch	// power series
   182  type PS2 *[2] PS // pair of power series
   183  
   184  var Ones PS
   185  var Twos PS
   186  
   187  func mkPS() *dch {
   188  	return mkdch()
   189  }
   190  
   191  func mkPS2() *dch2 {
   192  	return mkdch2()
   193  }
   194  
   195  // Conventions
   196  // Upper-case for power series.
   197  // Lower-case for rationals.
   198  // Input variables: U,V,...
   199  // Output variables: ...,Y,Z
   200  
   201  // Integer gcd; needed for rational arithmetic
   202  
   203  func gcd (u, v int64) int64 {
   204  	if u < 0 { return gcd(-u, v) }
   205  	if u == 0 { return v }
   206  	return gcd(v%u, u)
   207  }
   208  
   209  // Make a rational from two ints and from one int
   210  
   211  func i2tor(u, v int64) rat {
   212  	g := gcd(u,v)
   213  	var r rat
   214  	if v > 0 {
   215  		r.num = u/g
   216  		r.den = v/g
   217  	} else {
   218  		r.num = -u/g
   219  		r.den = -v/g
   220  	}
   221  	return r
   222  }
   223  
   224  func itor(u int64) rat {
   225  	return i2tor(u, 1)
   226  }
   227  
   228  var zero rat
   229  var one rat
   230  
   231  
   232  // End mark and end test
   233  
   234  var finis rat
   235  
   236  func end(u rat) int64 {
   237  	if u.den==0 { return 1 }
   238  	return 0
   239  }
   240  
   241  // Operations on rationals
   242  
   243  func add(u, v rat) rat {
   244  	g := gcd(u.den,v.den)
   245  	return  i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
   246  }
   247  
   248  func mul(u, v rat) rat {
   249  	g1 := gcd(u.num,v.den)
   250  	g2 := gcd(u.den,v.num)
   251  	var r rat
   252  	r.num = (u.num/g1)*(v.num/g2)
   253  	r.den = (u.den/g2)*(v.den/g1)
   254  	return r
   255  }
   256  
   257  func neg(u rat) rat {
   258  	return i2tor(-u.num, u.den)
   259  }
   260  
   261  func sub(u, v rat) rat {
   262  	return add(u, neg(v))
   263  }
   264  
   265  func inv(u rat) rat {	// invert a rat
   266  	if u.num == 0 { panic("zero divide in inv") }
   267  	return i2tor(u.den, u.num)
   268  }
   269  
   270  // print eval in floating point of PS at x=c to n terms
   271  func evaln(c rat, U PS, n int) {
   272  	xn := float64(1)
   273  	x := float64(c.num)/float64(c.den)
   274  	val := float64(0)
   275  	for i:=0; i<n; i++ {
   276  		u := get(U)
   277  		if end(u) != 0 {
   278  			break
   279  		}
   280  		val = val + x * float64(u.num)/float64(u.den)
   281  		xn = xn*x
   282  	}
   283  	print(val, "\n")
   284  }
   285  
   286  // Print n terms of a power series
   287  func printn(U PS, n int) {
   288  	done := false
   289  	for ; !done && n>0; n-- {
   290  		u := get(U)
   291  		if end(u) != 0 {
   292  			done = true
   293  		} else {
   294  			u.pr()
   295  		}
   296  	}
   297  	print(("\n"))
   298  }
   299  
   300  // Evaluate n terms of power series U at x=c
   301  func eval(c rat, U PS, n int) rat {
   302  	if n==0 { return zero }
   303  	y := get(U)
   304  	if end(y) != 0 { return zero }
   305  	return add(y,mul(c,eval(c,U,n-1)))
   306  }
   307  
   308  // Power-series constructors return channels on which power
   309  // series flow.  They start an encapsulated generator that
   310  // puts the terms of the series on the channel.
   311  
   312  // Make a pair of power series identical to a given power series
   313  
   314  func Split(U PS) *dch2 {
   315  	UU := mkdch2()
   316  	go split(U,UU)
   317  	return UU
   318  }
   319  
   320  // Add two power series
   321  func Add(U, V PS) PS {
   322  	Z := mkPS()
   323  	go func() {
   324  		var uv []rat
   325  		for {
   326  			<-Z.req
   327  			uv = get2(U,V)
   328  			switch end(uv[0])+2*end(uv[1]) {
   329  			case 0:
   330  				Z.dat <- add(uv[0], uv[1])
   331  			case 1:
   332  				Z.dat <- uv[1]
   333  				copy(V,Z)
   334  			case 2:
   335  				Z.dat <- uv[0]
   336  				copy(U,Z)
   337  			case 3:
   338  				Z.dat <- finis
   339  			}
   340  		}
   341  	}()
   342  	return Z
   343  }
   344  
   345  // Multiply a power series by a constant
   346  func Cmul(c rat,U PS) PS {
   347  	Z := mkPS()
   348  	go func() {
   349  		done := false
   350  		for !done {
   351  			<-Z.req
   352  			u := get(U)
   353  			if end(u) != 0 {
   354  				done = true
   355  			} else {
   356  				Z.dat <- mul(c,u)
   357  			}
   358  		}
   359  		Z.dat <- finis
   360  	}()
   361  	return Z
   362  }
   363  
   364  // Subtract
   365  
   366  func Sub(U, V PS) PS {
   367  	return Add(U, Cmul(neg(one), V))
   368  }
   369  
   370  // Multiply a power series by the monomial x^n
   371  
   372  func Monmul(U PS, n int) PS {
   373  	Z := mkPS()
   374  	go func() {
   375  		for ; n>0; n-- { put(zero,Z) }
   376  		copy(U,Z)
   377  	}()
   378  	return Z
   379  }
   380  
   381  // Multiply by x
   382  
   383  func Xmul(U PS) PS {
   384  	return Monmul(U,1)
   385  }
   386  
   387  func Rep(c rat) PS {
   388  	Z := mkPS()
   389  	go repeat(c,Z)
   390  	return Z
   391  }
   392  
   393  // Monomial c*x^n
   394  
   395  func Mon(c rat, n int) PS {
   396  	Z:=mkPS()
   397  	go func() {
   398  		if(c.num!=0) {
   399  			for ; n>0; n=n-1 { put(zero,Z) }
   400  			put(c,Z)
   401  		}
   402  		put(finis,Z)
   403  	}()
   404  	return Z
   405  }
   406  
   407  func Shift(c rat, U PS) PS {
   408  	Z := mkPS()
   409  	go func() {
   410  		put(c,Z)
   411  		copy(U,Z)
   412  	}()
   413  	return Z
   414  }
   415  
   416  // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
   417  
   418  // Convert array of coefficients, constant term first
   419  // to a (finite) power series
   420  
   421  /*
   422  func Poly(a []rat) PS {
   423  	Z:=mkPS()
   424  	begin func(a []rat, Z PS) {
   425  		j:=0
   426  		done:=0
   427  		for j=len(a); !done&&j>0; j=j-1)
   428  			if(a[j-1].num!=0) done=1
   429  		i:=0
   430  		for(; i<j; i=i+1) put(a[i],Z)
   431  		put(finis,Z)
   432  	}()
   433  	return Z
   434  }
   435  */
   436  
   437  // Multiply. The algorithm is
   438  //	let U = u + x*UU
   439  //	let V = v + x*VV
   440  //	then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
   441  
   442  func Mul(U, V PS) PS {
   443  	Z:=mkPS()
   444  	go func() {
   445  		<-Z.req
   446  		uv := get2(U,V)
   447  		if end(uv[0])!=0 || end(uv[1]) != 0 {
   448  			Z.dat <- finis
   449  		} else {
   450  			Z.dat <- mul(uv[0],uv[1])
   451  			UU := Split(U)
   452  			VV := Split(V)
   453  			W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0]))
   454  			<-Z.req
   455  			Z.dat <- get(W)
   456  			copy(Add(W,Mul(UU[1],VV[1])),Z)
   457  		}
   458  	}()
   459  	return Z
   460  }
   461  
   462  // Differentiate
   463  
   464  func Diff(U PS) PS {
   465  	Z:=mkPS()
   466  	go func() {
   467  		<-Z.req
   468  		u := get(U)
   469  		if end(u) == 0 {
   470  			done:=false
   471  			for i:=1; !done; i++ {
   472  				u = get(U)
   473  				if end(u) != 0 {
   474  					done = true
   475  				} else {
   476  					Z.dat <- mul(itor(int64(i)),u)
   477  					<-Z.req
   478  				}
   479  			}
   480  		}
   481  		Z.dat <- finis
   482  	}()
   483  	return Z
   484  }
   485  
   486  // Integrate, with const of integration
   487  func Integ(c rat,U PS) PS {
   488  	Z:=mkPS()
   489  	go func() {
   490  		put(c,Z)
   491  		done:=false
   492  		for i:=1; !done; i++ {
   493  			<-Z.req
   494  			u := get(U)
   495  			if end(u) != 0 { done= true }
   496  			Z.dat <- mul(i2tor(1,int64(i)),u)
   497  		}
   498  		Z.dat <- finis
   499  	}()
   500  	return Z
   501  }
   502  
   503  // Binomial theorem (1+x)^c
   504  
   505  func Binom(c rat) PS {
   506  	Z:=mkPS()
   507  	go func() {
   508  		n := 1
   509  		t := itor(1)
   510  		for c.num!=0 {
   511  			put(t,Z)
   512  			t = mul(mul(t,c),i2tor(1,int64(n)))
   513  			c = sub(c,one)
   514  			n++
   515  		}
   516  		put(finis,Z)
   517  	}()
   518  	return Z
   519  }
   520  
   521  // Reciprocal of a power series
   522  //	let U = u + x*UU
   523  //	let Z = z + x*ZZ
   524  //	(u+x*UU)*(z+x*ZZ) = 1
   525  //	z = 1/u
   526  //	u*ZZ + z*UU +x*UU*ZZ = 0
   527  //	ZZ = -UU*(z+x*ZZ)/u
   528  
   529  func Recip(U PS) PS {
   530  	Z:=mkPS()
   531  	go func() {
   532  		ZZ:=mkPS2()
   533  		<-Z.req
   534  		z := inv(get(U))
   535  		Z.dat <- z
   536  		split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
   537  		copy(ZZ[1],Z)
   538  	}()
   539  	return Z
   540  }
   541  
   542  // Exponential of a power series with constant term 0
   543  // (nonzero constant term would make nonrational coefficients)
   544  // bug: the constant term is simply ignored
   545  //	Z = exp(U)
   546  //	DZ = Z*DU
   547  //	integrate to get Z
   548  
   549  func Exp(U PS) PS {
   550  	ZZ := mkPS2()
   551  	split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
   552  	return ZZ[1]
   553  }
   554  
   555  // Substitute V for x in U, where the leading term of V is zero
   556  //	let U = u + x*UU
   557  //	let V = v + x*VV
   558  //	then S(U,V) = u + VV*S(V,UU)
   559  // bug: a nonzero constant term is ignored
   560  
   561  func Subst(U, V PS) PS {
   562  	Z:= mkPS()
   563  	go func() {
   564  		VV := Split(V)
   565  		<-Z.req
   566  		u := get(U)
   567  		Z.dat <- u
   568  		if end(u) == 0 {
   569  			if end(get(VV[0])) != 0 {
   570  				put(finis,Z)
   571  			} else {
   572  				copy(Mul(VV[0],Subst(U,VV[1])),Z)
   573  			}
   574  		}
   575  	}()
   576  	return Z
   577  }
   578  
   579  // Monomial Substition: U(c x^n)
   580  // Each Ui is multiplied by c^i and followed by n-1 zeros
   581  
   582  func MonSubst(U PS, c0 rat, n int) PS {
   583  	Z:= mkPS()
   584  	go func() {
   585  		c := one
   586  		for {
   587  			<-Z.req
   588  			u := get(U)
   589  			Z.dat <- mul(u, c)
   590  			c = mul(c, c0)
   591  			if end(u) != 0 {
   592  				Z.dat <- finis
   593  				break
   594  			}
   595  			for i := 1; i < n; i++ {
   596  				<-Z.req
   597  				Z.dat <- zero
   598  			}
   599  		}
   600  	}()
   601  	return Z
   602  }
   603  
   604  
   605  func Init() {
   606  	chnameserial = -1
   607  	seqno = 0
   608  	chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
   609  	zero = itor(0)
   610  	one = itor(1)
   611  	finis = i2tor(1,0)
   612  	Ones = Rep(one)
   613  	Twos = Rep(itor(2))
   614  }
   615  
   616  func check(U PS, c rat, count int, str string) {
   617  	for i := 0; i < count; i++ {
   618  		r := get(U)
   619  		if !r.eq(c) {
   620  			print("got: ")
   621  			r.pr()
   622  			print("should get ")
   623  			c.pr()
   624  			print("\n")
   625  			panic(str)
   626  		}
   627  	}
   628  }
   629  
   630  const N=10
   631  func checka(U PS, a []rat, str string) {
   632  	for i := 0; i < N; i++ {
   633  		check(U, a[i], 1, str)
   634  	}
   635  }
   636  
   637  func main() {
   638  	Init()
   639  	if len(os.Args) > 1 {  // print
   640  		print("Ones: "); printn(Ones, 10)
   641  		print("Twos: "); printn(Twos, 10)
   642  		print("Add: "); printn(Add(Ones, Twos), 10)
   643  		print("Diff: "); printn(Diff(Ones), 10)
   644  		print("Integ: "); printn(Integ(zero, Ones), 10)
   645  		print("CMul: "); printn(Cmul(neg(one), Ones), 10)
   646  		print("Sub: "); printn(Sub(Ones, Twos), 10)
   647  		print("Mul: "); printn(Mul(Ones, Ones), 10)
   648  		print("Exp: "); printn(Exp(Ones), 15)
   649  		print("MonSubst: "); printn(MonSubst(Ones, neg(one), 2), 10)
   650  		print("ATan: "); printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
   651  	} else {  // test
   652  		check(Ones, one, 5, "Ones")
   653  		check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones")  // 1 1 1 1 1
   654  		check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
   655  		a := make([]rat, N)
   656  		d := Diff(Ones)
   657  		for i:=0; i < N; i++ {
   658  			a[i] = itor(int64(i+1))
   659  		}
   660  		checka(d, a, "Diff")  // 1 2 3 4 5
   661  		in := Integ(zero, Ones)
   662  		a[0] = zero  // integration constant
   663  		for i:=1; i < N; i++ {
   664  			a[i] = i2tor(1, int64(i))
   665  		}
   666  		checka(in, a, "Integ")  // 0 1 1/2 1/3 1/4 1/5
   667  		check(Cmul(neg(one), Twos), itor(-2), 10, "CMul")  // -1 -1 -1 -1 -1
   668  		check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos")  // -1 -1 -1 -1 -1
   669  		m := Mul(Ones, Ones)
   670  		for i:=0; i < N; i++ {
   671  			a[i] = itor(int64(i+1))
   672  		}
   673  		checka(m, a, "Mul")  // 1 2 3 4 5
   674  		e := Exp(Ones)
   675  		a[0] = itor(1)
   676  		a[1] = itor(1)
   677  		a[2] = i2tor(3,2)
   678  		a[3] = i2tor(13,6)
   679  		a[4] = i2tor(73,24)
   680  		a[5] = i2tor(167,40)
   681  		a[6] = i2tor(4051,720)
   682  		a[7] = i2tor(37633,5040)
   683  		a[8] = i2tor(43817,4480)
   684  		a[9] = i2tor(4596553,362880)
   685  		checka(e, a, "Exp")  // 1 1 3/2 13/6 73/24
   686  		at := Integ(zero, MonSubst(Ones, neg(one), 2))
   687  		for c, i := 1, 0; i < N; i++ {
   688  			if i%2 == 0 {
   689  				a[i] = zero
   690  			} else {
   691  				a[i] = i2tor(int64(c), int64(i))
   692  				c *= -1
   693  			}
   694  		}
   695  		checka(at, a, "ATan")  // 0 -1 0 -1/3 0 -1/5
   696  /*
   697  		t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
   698  		a[0] = zero
   699  		a[1] = itor(1)
   700  		a[2] = zero
   701  		a[3] = i2tor(1,3)
   702  		a[4] = zero
   703  		a[5] = i2tor(2,15)
   704  		a[6] = zero
   705  		a[7] = i2tor(17,315)
   706  		a[8] = zero
   707  		a[9] = i2tor(62,2835)
   708  		checka(t, a, "Tan")  // 0 1 0 1/3 0 2/15
   709  */
   710  	}
   711  }