github.com/hustcat/docker@v1.3.3-0.20160314103604-901c67a8eeab/man/docker-run.1.md (about)

     1  % DOCKER(1) Docker User Manuals
     2  % Docker Community
     3  % JUNE 2014
     4  # NAME
     5  docker-run - Run a command in a new container
     6  
     7  # SYNOPSIS
     8  **docker run**
     9  [**-a**|**--attach**[=*[]*]]
    10  [**--add-host**[=*[]*]]
    11  [**--blkio-weight**[=*[BLKIO-WEIGHT]*]]
    12  [**--blkio-weight-device**[=*[]*]]
    13  [**--cpu-shares**[=*0*]]
    14  [**--cap-add**[=*[]*]]
    15  [**--cap-drop**[=*[]*]]
    16  [**--cgroup-parent**[=*CGROUP-PATH*]]
    17  [**--cidfile**[=*CIDFILE*]]
    18  [**--cpu-period**[=*0*]]
    19  [**--cpu-quota**[=*0*]]
    20  [**--cpuset-cpus**[=*CPUSET-CPUS*]]
    21  [**--cpuset-mems**[=*CPUSET-MEMS*]]
    22  [**-d**|**--detach**]
    23  [**--detach-keys**[=*[]*]]
    24  [**--device**[=*[]*]]
    25  [**--device-read-bps**[=*[]*]]
    26  [**--device-read-iops**[=*[]*]]
    27  [**--device-write-bps**[=*[]*]]
    28  [**--device-write-iops**[=*[]*]]
    29  [**--dns**[=*[]*]]
    30  [**--dns-opt**[=*[]*]]
    31  [**--dns-search**[=*[]*]]
    32  [**-e**|**--env**[=*[]*]]
    33  [**--entrypoint**[=*ENTRYPOINT*]]
    34  [**--env-file**[=*[]*]]
    35  [**--expose**[=*[]*]]
    36  [**--group-add**[=*[]*]]
    37  [**-h**|**--hostname**[=*HOSTNAME*]]
    38  [**--help**]
    39  [**-i**|**--interactive**]
    40  [**--ip**[=*IPv4-ADDRESS*]]
    41  [**--ip6**[=*IPv6-ADDRESS*]]
    42  [**--ipc**[=*IPC*]]
    43  [**--isolation**[=*default*]]
    44  [**--kernel-memory**[=*KERNEL-MEMORY*]]
    45  [**-l**|**--label**[=*[]*]]
    46  [**--label-file**[=*[]*]]
    47  [**--link**[=*[]*]]
    48  [**--log-driver**[=*[]*]]
    49  [**--log-opt**[=*[]*]]
    50  [**-m**|**--memory**[=*MEMORY*]]
    51  [**--mac-address**[=*MAC-ADDRESS*]]
    52  [**--memory-reservation**[=*MEMORY-RESERVATION*]]
    53  [**--memory-swap**[=*LIMIT*]]
    54  [**--memory-swappiness**[=*MEMORY-SWAPPINESS*]]
    55  [**--name**[=*NAME*]]
    56  [**--net**[=*"bridge"*]]
    57  [**--net-alias**[=*[]*]]
    58  [**--oom-kill-disable**]
    59  [**--oom-score-adj**[=*0*]]
    60  [**-P**|**--publish-all**]
    61  [**-p**|**--publish**[=*[]*]]
    62  [**--pid**[=*[]*]]
    63  [**--pids-limit**[=*PIDS_LIMIT*]]
    64  [**--privileged**]
    65  [**--read-only**]
    66  [**--restart**[=*RESTART*]]
    67  [**--rm**]
    68  [**--security-opt**[=*[]*]]
    69  [**--stop-signal**[=*SIGNAL*]]
    70  [**--shm-size**[=*[]*]]
    71  [**--sig-proxy**[=*true*]]
    72  [**-t**|**--tty**]
    73  [**--tmpfs**[=*[CONTAINER-DIR[:<OPTIONS>]*]]
    74  [**-u**|**--user**[=*USER*]]
    75  [**--ulimit**[=*[]*]]
    76  [**--uts**[=*[]*]]
    77  [**-v**|**--volume**[=*[[HOST-DIR:]CONTAINER-DIR[:OPTIONS]]*]]
    78  [**--volume-driver**[=*DRIVER*]]
    79  [**--volumes-from**[=*[]*]]
    80  [**-w**|**--workdir**[=*WORKDIR*]]
    81  IMAGE [COMMAND] [ARG...]
    82  
    83  # DESCRIPTION
    84  
    85  Run a process in a new container. **docker run** starts a process with its own
    86  file system, its own networking, and its own isolated process tree. The IMAGE
    87  which starts the process may define defaults related to the process that will be
    88  run in the container, the networking to expose, and more, but **docker run**
    89  gives final control to the operator or administrator who starts the container
    90  from the image. For that reason **docker run** has more options than any other
    91  Docker command.
    92  
    93  If the IMAGE is not already loaded then **docker run** will pull the IMAGE, and
    94  all image dependencies, from the repository in the same way running **docker
    95  pull** IMAGE, before it starts the container from that image.
    96  
    97  # OPTIONS
    98  **-a**, **--attach**=[]
    99     Attach to STDIN, STDOUT or STDERR.
   100  
   101     In foreground mode (the default when **-d**
   102  is not specified), **docker run** can start the process in the container
   103  and attach the console to the process’s standard input, output, and standard
   104  error. It can even pretend to be a TTY (this is what most commandline
   105  executables expect) and pass along signals. The **-a** option can be set for
   106  each of stdin, stdout, and stderr.
   107  
   108  **--add-host**=[]
   109     Add a custom host-to-IP mapping (host:ip)
   110  
   111     Add a line to /etc/hosts. The format is hostname:ip.  The **--add-host**
   112  option can be set multiple times.
   113  
   114  **--blkio-weight**=*0*
   115     Block IO weight (relative weight) accepts a weight value between 10 and 1000.
   116  
   117  **--blkio-weight-device**=[]
   118     Block IO weight (relative device weight, format: `DEVICE_NAME:WEIGHT`).
   119  
   120  **--cpu-shares**=*0*
   121     CPU shares (relative weight)
   122  
   123     By default, all containers get the same proportion of CPU cycles. This proportion
   124  can be modified by changing the container's CPU share weighting relative
   125  to the weighting of all other running containers.
   126  
   127  To modify the proportion from the default of 1024, use the **--cpu-shares**
   128  flag to set the weighting to 2 or higher.
   129  
   130  The proportion will only apply when CPU-intensive processes are running.
   131  When tasks in one container are idle, other containers can use the
   132  left-over CPU time. The actual amount of CPU time will vary depending on
   133  the number of containers running on the system.
   134  
   135  For example, consider three containers, one has a cpu-share of 1024 and
   136  two others have a cpu-share setting of 512. When processes in all three
   137  containers attempt to use 100% of CPU, the first container would receive
   138  50% of the total CPU time. If you add a fourth container with a cpu-share
   139  of 1024, the first container only gets 33% of the CPU. The remaining containers
   140  receive 16.5%, 16.5% and 33% of the CPU.
   141  
   142  On a multi-core system, the shares of CPU time are distributed over all CPU
   143  cores. Even if a container is limited to less than 100% of CPU time, it can
   144  use 100% of each individual CPU core.
   145  
   146  For example, consider a system with more than three cores. If you start one
   147  container **{C0}** with **-c=512** running one process, and another container
   148  **{C1}** with **-c=1024** running two processes, this can result in the following
   149  division of CPU shares:
   150  
   151      PID    container	CPU	CPU share
   152      100    {C0}		0	100% of CPU0
   153      101    {C1}		1	100% of CPU1
   154      102    {C1}		2	100% of CPU2
   155  
   156  **--cap-add**=[]
   157     Add Linux capabilities
   158  
   159  **--cap-drop**=[]
   160     Drop Linux capabilities
   161  
   162  **--cgroup-parent**=""
   163     Path to cgroups under which the cgroup for the container will be created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups will be created if they do not already exist.
   164  
   165  **--cidfile**=""
   166     Write the container ID to the file
   167  
   168  **--cpu-period**=*0*
   169     Limit the CPU CFS (Completely Fair Scheduler) period
   170  
   171     Limit the container's CPU usage. This flag tell the kernel to restrict the container's CPU usage to the period you specify.
   172  
   173  **--cpuset-cpus**=""
   174     CPUs in which to allow execution (0-3, 0,1)
   175  
   176  **--cpuset-mems**=""
   177     Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems.
   178  
   179     If you have four memory nodes on your system (0-3), use `--cpuset-mems=0,1`
   180  then processes in your Docker container will only use memory from the first
   181  two memory nodes.
   182  
   183  **--cpu-quota**=*0*
   184     Limit the CPU CFS (Completely Fair Scheduler) quota
   185  
   186     Limit the container's CPU usage. By default, containers run with the full
   187  CPU resource. This flag tell the kernel to restrict the container's CPU usage
   188  to the quota you specify.
   189  
   190  **-d**, **--detach**=*true*|*false*
   191     Detached mode: run the container in the background and print the new container ID. The default is *false*.
   192  
   193     At any time you can run **docker ps** in
   194  the other shell to view a list of the running containers. You can reattach to a
   195  detached container with **docker attach**. If you choose to run a container in
   196  the detached mode, then you cannot use the **-rm** option.
   197  
   198     When attached in the tty mode, you can detach from the container (and leave it
   199  running) using a configurable key sequence. The default sequence is `CTRL-p CTRL-q`.
   200  You configure the key sequence using the **--detach-keys** option or a configuration file.
   201  See **config-json(5)** for documentation on using a configuration file.
   202  
   203  **--detach-keys**=""
   204     Override the key sequence for detaching a container. Format is a single character `[a-Z]` or `ctrl-<value>` where `<value>` is one of: `a-z`, `@`, `^`, `[`, `,` or `_`.
   205  
   206  **--device**=[]
   207     Add a host device to the container (e.g. --device=/dev/sdc:/dev/xvdc:rwm)
   208  
   209  **--device-read-bps**=[]
   210     Limit read rate from a device (e.g. --device-read-bps=/dev/sda:1mb)
   211  
   212  **--device-read-iops**=[]
   213     Limit read rate from a device (e.g. --device-read-iops=/dev/sda:1000)
   214  
   215  **--device-write-bps**=[]
   216     Limit write rate to a device (e.g. --device-write-bps=/dev/sda:1mb)
   217  
   218  **--device-write-iops**=[]
   219     Limit write rate a a device (e.g. --device-write-iops=/dev/sda:1000)
   220  
   221  **--dns-search**=[]
   222     Set custom DNS search domains (Use --dns-search=. if you don't wish to set the search domain)
   223  
   224  **--dns-opt**=[]
   225     Set custom DNS options
   226  
   227  **--dns**=[]
   228     Set custom DNS servers
   229  
   230     This option can be used to override the DNS
   231  configuration passed to the container. Typically this is necessary when the
   232  host DNS configuration is invalid for the container (e.g., 127.0.0.1). When this
   233  is the case the **--dns** flags is necessary for every run.
   234  
   235  **-e**, **--env**=[]
   236     Set environment variables
   237  
   238     This option allows you to specify arbitrary
   239  environment variables that are available for the process that will be launched
   240  inside of the container.
   241  
   242  **--entrypoint**=""
   243     Overwrite the default ENTRYPOINT of the image
   244  
   245     This option allows you to overwrite the default entrypoint of the image that
   246  is set in the Dockerfile. The ENTRYPOINT of an image is similar to a COMMAND
   247  because it specifies what executable to run when the container starts, but it is
   248  (purposely) more difficult to override. The ENTRYPOINT gives a container its
   249  default nature or behavior, so that when you set an ENTRYPOINT you can run the
   250  container as if it were that binary, complete with default options, and you can
   251  pass in more options via the COMMAND. But, sometimes an operator may want to run
   252  something else inside the container, so you can override the default ENTRYPOINT
   253  at runtime by using a **--entrypoint** and a string to specify the new
   254  ENTRYPOINT.
   255  
   256  **--env-file**=[]
   257     Read in a line delimited file of environment variables
   258  
   259  **--expose**=[]
   260     Expose a port, or a range of ports (e.g. --expose=3300-3310) informs Docker
   261  that the container listens on the specified network ports at runtime. Docker
   262  uses this information to interconnect containers using links and to set up port
   263  redirection on the host system.
   264  
   265  **--group-add**=[]
   266     Add additional groups to run as
   267  
   268  **-h**, **--hostname**=""
   269     Container host name
   270  
   271     Sets the container host name that is available inside the container.
   272  
   273  **--help**
   274    Print usage statement
   275  
   276  **-i**, **--interactive**=*true*|*false*
   277     Keep STDIN open even if not attached. The default is *false*.
   278  
   279     When set to true, keep stdin open even if not attached. The default is false.
   280  
   281  **--ip**=""
   282     Sets the container's interface IPv4 address (e.g. 172.23.0.9)
   283  
   284     It can only be used in conjunction with **--net** for user-defined networks
   285  
   286  **--ip6**=""
   287     Sets the container's interface IPv6 address (e.g. 2001:db8::1b99)
   288  
   289     It can only be used in conjunction with **--net** for user-defined networks
   290  
   291  **--ipc**=""
   292     Default is to create a private IPC namespace (POSIX SysV IPC) for the container
   293                                 'container:<name|id>': reuses another container shared memory, semaphores and message queues
   294                                 'host': use the host shared memory,semaphores and message queues inside the container.  Note: the host mode gives the container full access to local shared memory and is therefore considered insecure.
   295  
   296  **--isolation**="*default*"
   297     Isolation specifies the type of isolation technology used by containers.
   298  
   299  **-l**, **--label**=[]
   300     Set metadata on the container (e.g., --label com.example.key=value)
   301  
   302  **--kernel-memory**=""
   303     Kernel memory limit (format: `<number>[<unit>]`, where unit = b, k, m or g)
   304  
   305     Constrains the kernel memory available to a container. If a limit of 0
   306  is specified (not using `--kernel-memory`), the container's kernel memory
   307  is not limited. If you specify a limit, it may be rounded up to a multiple
   308  of the operating system's page size and the value can be very large,
   309  millions of trillions.
   310  
   311  **--label-file**=[]
   312     Read in a line delimited file of labels
   313  
   314  **--link**=[]
   315     Add link to another container in the form of <name or id>:alias or just <name or id>
   316  in which case the alias will match the name
   317  
   318     If the operator
   319  uses **--link** when starting the new client container, then the client
   320  container can access the exposed port via a private networking interface. Docker
   321  will set some environment variables in the client container to help indicate
   322  which interface and port to use.
   323  
   324  **--log-driver**="*json-file*|*syslog*|*journald*|*gelf*|*fluentd*|*awslogs*|*splunk*|*etwlogs*|*gcplogs*|*none*"
   325    Logging driver for container. Default is defined by daemon `--log-driver` flag.
   326    **Warning**: the `docker logs` command works only for the `json-file` and
   327    `journald` logging drivers.
   328  
   329  **--log-opt**=[]
   330    Logging driver specific options.
   331  
   332  **-m**, **--memory**=""
   333     Memory limit (format: <number>[<unit>], where unit = b, k, m or g)
   334  
   335     Allows you to constrain the memory available to a container. If the host
   336  supports swap memory, then the **-m** memory setting can be larger than physical
   337  RAM. If a limit of 0 is specified (not using **-m**), the container's memory is
   338  not limited. The actual limit may be rounded up to a multiple of the operating
   339  system's page size (the value would be very large, that's millions of trillions).
   340  
   341  **--memory-reservation**=""
   342     Memory soft limit (format: <number>[<unit>], where unit = b, k, m or g)
   343  
   344     After setting memory reservation, when the system detects memory contention
   345  or low memory, containers are forced to restrict their consumption to their
   346  reservation. So you should always set the value below **--memory**, otherwise the
   347  hard limit will take precedence. By default, memory reservation will be the same
   348  as memory limit.
   349  
   350  **--memory-swap**="LIMIT"
   351     A limit value equal to memory plus swap. Must be used with the  **-m**
   352  (**--memory**) flag. The swap `LIMIT` should always be larger than **-m**
   353  (**--memory**) value.
   354  
   355     The format of `LIMIT` is `<number>[<unit>]`. Unit can be `b` (bytes),
   356  `k` (kilobytes), `m` (megabytes), or `g` (gigabytes). If you don't specify a
   357  unit, `b` is used. Set LIMIT to `-1` to enable unlimited swap.
   358  
   359  **--mac-address**=""
   360     Container MAC address (e.g. 92:d0:c6:0a:29:33)
   361  
   362     Remember that the MAC address in an Ethernet network must be unique.
   363  The IPv6 link-local address will be based on the device's MAC address
   364  according to RFC4862.
   365  
   366  **--name**=""
   367     Assign a name to the container
   368  
   369     The operator can identify a container in three ways:
   370      UUID long identifier (“f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778”)
   371      UUID short identifier (“f78375b1c487”)
   372      Name (“jonah”)
   373  
   374     The UUID identifiers come from the Docker daemon, and if a name is not assigned
   375  to the container with **--name** then the daemon will also generate a random
   376  string name. The name is useful when defining links (see **--link**) (or any
   377  other place you need to identify a container). This works for both background
   378  and foreground Docker containers.
   379  
   380  **--net**="*bridge*"
   381     Set the Network mode for the container
   382                                 'bridge': create a network stack on the default Docker bridge
   383                                 'none': no networking
   384                                 'container:<name|id>': reuse another container's network stack
   385                                 'host': use the Docker host network stack. Note: the host mode gives the container full access to local system services such as D-bus and is therefore considered insecure.
   386                                 '<network-name>|<network-id>': connect to a user-defined network
   387  
   388  **--net-alias**=[]
   389     Add network-scoped alias for the container
   390  
   391  **--oom-kill-disable**=*true*|*false*
   392     Whether to disable OOM Killer for the container or not.
   393  
   394  **--oom-score-adj**=""
   395     Tune the host's OOM preferences for containers (accepts -1000 to 1000)
   396  
   397  **-P**, **--publish-all**=*true*|*false*
   398     Publish all exposed ports to random ports on the host interfaces. The default is *false*.
   399  
   400     When set to true publish all exposed ports to the host interfaces. The
   401  default is false. If the operator uses -P (or -p) then Docker will make the
   402  exposed port accessible on the host and the ports will be available to any
   403  client that can reach the host. When using -P, Docker will bind any exposed
   404  port to a random port on the host within an *ephemeral port range* defined by
   405  `/proc/sys/net/ipv4/ip_local_port_range`. To find the mapping between the host
   406  ports and the exposed ports, use `docker port`.
   407  
   408  **-p**, **--publish**=[]
   409     Publish a container's port, or range of ports, to the host.
   410  
   411     Format: `ip:hostPort:containerPort | ip::containerPort | hostPort:containerPort | containerPort`
   412  Both hostPort and containerPort can be specified as a range of ports.
   413  When specifying ranges for both, the number of container ports in the range must match the number of host ports in the range.
   414  (e.g., `docker run -p 1234-1236:1222-1224 --name thisWorks -t busybox`
   415  but not `docker run -p 1230-1236:1230-1240 --name RangeContainerPortsBiggerThanRangeHostPorts -t busybox`)
   416  With ip: `docker run -p 127.0.0.1:$HOSTPORT:$CONTAINERPORT --name CONTAINER -t someimage`
   417  Use `docker port` to see the actual mapping: `docker port CONTAINER $CONTAINERPORT`
   418  
   419  **--pid**=*host*
   420     Set the PID mode for the container
   421       **host**: use the host's PID namespace inside the container.
   422       Note: the host mode gives the container full access to local PID and is therefore considered insecure.
   423  
   424  **--pids-limit**=""
   425     Tune the container's pids limit. Set `-1` to have unlimited pids for the container.
   426  
   427  **--uts**=*host*
   428     Set the UTS mode for the container
   429       **host**: use the host's UTS namespace inside the container.
   430       Note: the host mode gives the container access to changing the host's hostname and is therefore considered insecure.
   431  
   432  **--privileged**=*true*|*false*
   433     Give extended privileges to this container. The default is *false*.
   434  
   435     By default, Docker containers are
   436  “unprivileged” (=false) and cannot, for example, run a Docker daemon inside the
   437  Docker container. This is because by default a container is not allowed to
   438  access any devices. A “privileged” container is given access to all devices.
   439  
   440     When the operator executes **docker run --privileged**, Docker will enable access
   441  to all devices on the host as well as set some configuration in AppArmor to
   442  allow the container nearly all the same access to the host as processes running
   443  outside of a container on the host.
   444  
   445  **--read-only**=*true*|*false*
   446     Mount the container's root filesystem as read only.
   447  
   448     By default a container will have its root filesystem writable allowing processes
   449  to write files anywhere.  By specifying the `--read-only` flag the container will have
   450  its root filesystem mounted as read only prohibiting any writes.
   451  
   452  **--restart**="*no*"
   453     Restart policy to apply when a container exits (no, on-failure[:max-retry], always, unless-stopped).
   454  
   455  **--rm**=*true*|*false*
   456     Automatically remove the container when it exits (incompatible with -d). The default is *false*.
   457  
   458  **--security-opt**=[]
   459     Security Options
   460  
   461     "label:user:USER"   : Set the label user for the container
   462      "label:role:ROLE"   : Set the label role for the container
   463      "label:type:TYPE"   : Set the label type for the container
   464      "label:level:LEVEL" : Set the label level for the container
   465      "label:disable"     : Turn off label confinement for the container
   466      "no-new-privileges" : Disable container processes from gaining additional privileges
   467  
   468  
   469  **--stop-signal**=*SIGTERM*
   470    Signal to stop a container. Default is SIGTERM.
   471  
   472  **--shm-size**=""
   473     Size of `/dev/shm`. The format is `<number><unit>`.
   474     `number` must be greater than `0`.  Unit is optional and can be `b` (bytes), `k` (kilobytes), `m`(megabytes), or `g` (gigabytes).
   475     If you omit the unit, the system uses bytes. If you omit the size entirely, the system uses `64m`.
   476  
   477  **--sig-proxy**=*true*|*false*
   478     Proxy received signals to the process (non-TTY mode only). SIGCHLD, SIGSTOP, and SIGKILL are not proxied. The default is *true*.
   479  
   480  **--memory-swappiness**=""
   481     Tune a container's memory swappiness behavior. Accepts an integer between 0 and 100.
   482  
   483  **-t**, **--tty**=*true*|*false*
   484     Allocate a pseudo-TTY. The default is *false*.
   485  
   486     When set to true Docker can allocate a pseudo-tty and attach to the standard
   487  input of any container. This can be used, for example, to run a throwaway
   488  interactive shell. The default is false.
   489  
   490  The **-t** option is incompatible with a redirection of the docker client
   491  standard input.
   492  
   493  **--tmpfs**=[] Create a tmpfs mount
   494  
   495     Mount a temporary filesystem (`tmpfs`) mount into a container, for example:
   496  
   497     $ docker run -d --tmpfs /tmp:rw,size=787448k,mode=1777 my_image
   498  
   499     This command mounts a `tmpfs` at `/tmp` within the container.  The supported mount
   500  options are the same as the Linux default `mount` flags. If you do not specify
   501  any options, the systems uses the following options:
   502  `rw,noexec,nosuid,nodev,size=65536k`.
   503  
   504  **-u**, **--user**=""
   505     Sets the username or UID used and optionally the groupname or GID for the specified command.
   506  
   507     The followings examples are all valid:
   508     --user [user | user:group | uid | uid:gid | user:gid | uid:group ]
   509  
   510     Without this argument the command will be run as root in the container.
   511  
   512  **--ulimit**=[]
   513      Ulimit options
   514  
   515  **-v**|**--volume**[=*[[HOST-DIR:]CONTAINER-DIR[:OPTIONS]]*]
   516     Create a bind mount. If you specify, ` -v /HOST-DIR:/CONTAINER-DIR`, Docker
   517     bind mounts `/HOST-DIR` in the host to `/CONTAINER-DIR` in the Docker
   518     container. If 'HOST-DIR' is omitted,  Docker automatically creates the new
   519     volume on the host.  The `OPTIONS` are a comma delimited list and can be:
   520  
   521     * [rw|ro]
   522     * [z|Z]
   523     * [`[r]shared`|`[r]slave`|`[r]private`]
   524  
   525  The `CONTAINER-DIR` must be an absolute path such as `/src/docs`. The `HOST-DIR`
   526  can be an absolute path or a `name` value. A `name` value must start with an
   527  alphanumeric character, followed by `a-z0-9`, `_` (underscore), `.` (period) or
   528  `-` (hyphen). An absolute path starts with a `/` (forward slash).
   529  
   530  If you supply a `HOST-DIR` that is an absolute path,  Docker bind-mounts to the
   531  path you specify. If you supply a `name`, Docker creates a named volume by that
   532  `name`. For example, you can specify either `/foo` or `foo` for a `HOST-DIR`
   533  value. If you supply the `/foo` value, Docker creates a bind-mount. If you
   534  supply the `foo` specification, Docker creates a named volume.
   535  
   536  You can specify multiple  **-v** options to mount one or more mounts to a
   537  container. To use these same mounts in other containers, specify the
   538  **--volumes-from** option also.
   539  
   540  You can add `:ro` or `:rw` suffix to a volume to mount it  read-only or
   541  read-write mode, respectively. By default, the volumes are mounted read-write.
   542  See examples.
   543  
   544  Labeling systems like SELinux require that proper labels are placed on volume
   545  content mounted into a container. Without a label, the security system might
   546  prevent the processes running inside the container from using the content. By
   547  default, Docker does not change the labels set by the OS.
   548  
   549  To change a label in the container context, you can add either of two suffixes
   550  `:z` or `:Z` to the volume mount. These suffixes tell Docker to relabel file
   551  objects on the shared volumes. The `z` option tells Docker that two containers
   552  share the volume content. As a result, Docker labels the content with a shared
   553  content label. Shared volume labels allow all containers to read/write content.
   554  The `Z` option tells Docker to label the content with a private unshared label.
   555  Only the current container can use a private volume.
   556  
   557  By default bind mounted volumes are `private`. That means any mounts done
   558  inside container will not be visible on host and vice-a-versa. One can change
   559  this behavior by specifying a volume mount propagation property. Making a
   560  volume `shared` mounts done under that volume inside container will be
   561  visible on host and vice-a-versa. Making a volume `slave` enables only one
   562  way mount propagation and that is mounts done on host under that volume
   563  will be visible inside container but not the other way around.
   564  
   565  To control mount propagation property of volume one can use `:[r]shared`,
   566  `:[r]slave` or `:[r]private` propagation flag. Propagation property can
   567  be specified only for bind mounted volumes and not for internal volumes or
   568  named volumes. For mount propagation to work source mount point (mount point
   569  where source dir is mounted on) has to have right propagation properties. For
   570  shared volumes, source mount point has to be shared. And for slave volumes,
   571  source mount has to be either shared or slave.
   572  
   573  Use `df <source-dir>` to figure out the source mount and then use
   574  `findmnt -o TARGET,PROPAGATION <source-mount-dir>` to figure out propagation
   575  properties of source mount. If `findmnt` utility is not available, then one
   576  can look at mount entry for source mount point in `/proc/self/mountinfo`. Look
   577  at `optional fields` and see if any propagaion properties are specified.
   578  `shared:X` means mount is `shared`, `master:X` means mount is `slave` and if
   579  nothing is there that means mount is `private`.
   580  
   581  To change propagation properties of a mount point use `mount` command. For
   582  example, if one wants to bind mount source directory `/foo` one can do
   583  `mount --bind /foo /foo` and `mount --make-private --make-shared /foo`. This
   584  will convert /foo into a `shared` mount point. Alternatively one can directly
   585  change propagation properties of source mount. Say `/` is source mount for
   586  `/foo`, then use `mount --make-shared /` to convert `/` into a `shared` mount.
   587  
   588  > **Note**:
   589  > When using systemd to manage the Docker daemon's start and stop, in the systemd
   590  > unit file there is an option to control mount propagation for the Docker daemon
   591  > itself, called `MountFlags`. The value of this setting may cause Docker to not
   592  > see mount propagation changes made on the mount point. For example, if this value
   593  > is `slave`, you may not be able to use the `shared` or `rshared` propagation on
   594  > a volume.
   595  
   596  **--volume-driver**=""
   597     Container's volume driver. This driver creates volumes specified either from
   598     a Dockerfile's `VOLUME` instruction or from the `docker run -v` flag.
   599     See **docker-volume-create(1)** for full details.
   600  
   601  **--volumes-from**=[]
   602     Mount volumes from the specified container(s)
   603  
   604     Mounts already mounted volumes from a source container onto another
   605     container. You must supply the source's container-id. To share
   606     a volume, use the **--volumes-from** option when running
   607     the target container. You can share volumes even if the source container
   608     is not running.
   609  
   610     By default, Docker mounts the volumes in the same mode (read-write or
   611     read-only) as it is mounted in the source container. Optionally, you
   612     can change this by suffixing the container-id with either the `:ro` or
   613     `:rw ` keyword.
   614  
   615     If the location of the volume from the source container overlaps with
   616     data residing on a target container, then the volume hides
   617     that data on the target.
   618  
   619  **-w**, **--workdir**=""
   620     Working directory inside the container
   621  
   622     The default working directory for
   623  running binaries within a container is the root directory (/). The developer can
   624  set a different default with the Dockerfile WORKDIR instruction. The operator
   625  can override the working directory by using the **-w** option.
   626  
   627  # Exit Status
   628  
   629  The exit code from `docker run` gives information about why the container
   630  failed to run or why it exited.  When `docker run` exits with a non-zero code,
   631  the exit codes follow the `chroot` standard, see below:
   632  
   633  **_125_** if the error is with Docker daemon **_itself_** 
   634  
   635      $ docker run --foo busybox; echo $?
   636      # flag provided but not defined: --foo
   637        See 'docker run --help'.
   638        125
   639  
   640  **_126_** if the **_contained command_** cannot be invoked
   641  
   642      $ docker run busybox /etc; echo $?
   643      # exec: "/etc": permission denied
   644        docker: Error response from daemon: Contained command could not be invoked
   645        126
   646  
   647  **_127_** if the **_contained command_** cannot be found
   648  
   649      $ docker run busybox foo; echo $?
   650      # exec: "foo": executable file not found in $PATH
   651        docker: Error response from daemon: Contained command not found or does not exist
   652        127
   653  
   654  **_Exit code_** of **_contained command_** otherwise 
   655      
   656      $ docker run busybox /bin/sh -c 'exit 3' 
   657      # 3
   658  
   659  # EXAMPLES
   660  
   661  ## Running container in read-only mode
   662  
   663  During container image development, containers often need to write to the image
   664  content.  Installing packages into /usr, for example.  In production,
   665  applications seldom need to write to the image.  Container applications write
   666  to volumes if they need to write to file systems at all.  Applications can be
   667  made more secure by running them in read-only mode using the --read-only switch.
   668  This protects the containers image from modification. Read only containers may
   669  still need to write temporary data.  The best way to handle this is to mount
   670  tmpfs directories on /run and /tmp.
   671  
   672      # docker run --read-only --tmpfs /run --tmpfs /tmp -i -t fedora /bin/bash
   673  
   674  ## Exposing log messages from the container to the host's log
   675  
   676  If you want messages that are logged in your container to show up in the host's
   677  syslog/journal then you should bind mount the /dev/log directory as follows.
   678  
   679      # docker run -v /dev/log:/dev/log -i -t fedora /bin/bash
   680  
   681  From inside the container you can test this by sending a message to the log.
   682  
   683      (bash)# logger "Hello from my container"
   684  
   685  Then exit and check the journal.
   686  
   687      # exit
   688  
   689      # journalctl -b | grep Hello
   690  
   691  This should list the message sent to logger.
   692  
   693  ## Attaching to one or more from STDIN, STDOUT, STDERR
   694  
   695  If you do not specify -a then Docker will attach everything (stdin,stdout,stderr)
   696  . You can specify to which of the three standard streams (stdin, stdout, stderr)
   697  you’d like to connect instead, as in:
   698  
   699      # docker run -a stdin -a stdout -i -t fedora /bin/bash
   700  
   701  ## Sharing IPC between containers
   702  
   703  Using shm_server.c available here: https://www.cs.cf.ac.uk/Dave/C/node27.html
   704  
   705  Testing `--ipc=host` mode:
   706  
   707  Host shows a shared memory segment with 7 pids attached, happens to be from httpd:
   708  
   709  ```
   710   $ sudo ipcs -m
   711  
   712   ------ Shared Memory Segments --------
   713   key        shmid      owner      perms      bytes      nattch     status      
   714   0x01128e25 0          root       600        1000       7                       
   715  ```
   716  
   717  Now run a regular container, and it correctly does NOT see the shared memory segment from the host:
   718  
   719  ```
   720   $ docker run -it shm ipcs -m
   721  
   722   ------ Shared Memory Segments --------
   723   key        shmid      owner      perms      bytes      nattch     status      
   724  ```
   725  
   726  Run a container with the new `--ipc=host` option, and it now sees the shared memory segment from the host httpd:
   727  
   728   ```
   729   $ docker run -it --ipc=host shm ipcs -m
   730  
   731   ------ Shared Memory Segments --------
   732   key        shmid      owner      perms      bytes      nattch     status      
   733   0x01128e25 0          root       600        1000       7                   
   734  ```
   735  Testing `--ipc=container:CONTAINERID` mode:
   736  
   737  Start a container with a program to create a shared memory segment:
   738  ```
   739   $ docker run -it shm bash
   740   $ sudo shm/shm_server &
   741   $ sudo ipcs -m
   742  
   743   ------ Shared Memory Segments --------
   744   key        shmid      owner      perms      bytes      nattch     status      
   745   0x0000162e 0          root       666        27         1                       
   746  ```
   747  Create a 2nd container correctly shows no shared memory segment from 1st container:
   748  ```
   749   $ docker run shm ipcs -m
   750  
   751   ------ Shared Memory Segments --------
   752   key        shmid      owner      perms      bytes      nattch     status      
   753  ```
   754  
   755  Create a 3rd container using the new --ipc=container:CONTAINERID option, now it shows the shared memory segment from the first:
   756  
   757  ```
   758   $ docker run -it --ipc=container:ed735b2264ac shm ipcs -m
   759   $ sudo ipcs -m
   760  
   761   ------ Shared Memory Segments --------
   762   key        shmid      owner      perms      bytes      nattch     status      
   763   0x0000162e 0          root       666        27         1
   764  ```
   765  
   766  ## Linking Containers
   767  
   768  > **Note**: This section describes linking between containers on the
   769  > default (bridge) network, also known as "legacy links". Using `--link`
   770  > on user-defined networks uses the DNS-based discovery, which does not add
   771  > entries to `/etc/hosts`, and does not set environment variables for
   772  > discovery.
   773  
   774  The link feature allows multiple containers to communicate with each other. For
   775  example, a container whose Dockerfile has exposed port 80 can be run and named
   776  as follows:
   777  
   778      # docker run --name=link-test -d -i -t fedora/httpd
   779  
   780  A second container, in this case called linker, can communicate with the httpd
   781  container, named link-test, by running with the **--link=<name>:<alias>**
   782  
   783      # docker run -t -i --link=link-test:lt --name=linker fedora /bin/bash
   784  
   785  Now the container linker is linked to container link-test with the alias lt.
   786  Running the **env** command in the linker container shows environment variables
   787   with the LT (alias) context (**LT_**)
   788  
   789      # env
   790      HOSTNAME=668231cb0978
   791      TERM=xterm
   792      LT_PORT_80_TCP=tcp://172.17.0.3:80
   793      LT_PORT_80_TCP_PORT=80
   794      LT_PORT_80_TCP_PROTO=tcp
   795      LT_PORT=tcp://172.17.0.3:80
   796      PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
   797      PWD=/
   798      LT_NAME=/linker/lt
   799      SHLVL=1
   800      HOME=/
   801      LT_PORT_80_TCP_ADDR=172.17.0.3
   802      _=/usr/bin/env
   803  
   804  When linking two containers Docker will use the exposed ports of the container
   805  to create a secure tunnel for the parent to access.
   806  
   807  If a container is connected to the default bridge network and `linked`
   808  with other containers, then the container's `/etc/hosts` file is updated
   809  with the linked container's name.
   810  
   811  > **Note** Since Docker may live update the container’s `/etc/hosts` file, there
   812  may be situations when processes inside the container can end up reading an
   813  empty or incomplete `/etc/hosts` file. In most cases, retrying the read again
   814  should fix the problem.
   815  
   816  
   817  ## Mapping Ports for External Usage
   818  
   819  The exposed port of an application can be mapped to a host port using the **-p**
   820  flag. For example, a httpd port 80 can be mapped to the host port 8080 using the
   821  following:
   822  
   823      # docker run -p 8080:80 -d -i -t fedora/httpd
   824  
   825  ## Creating and Mounting a Data Volume Container
   826  
   827  Many applications require the sharing of persistent data across several
   828  containers. Docker allows you to create a Data Volume Container that other
   829  containers can mount from. For example, create a named container that contains
   830  directories /var/volume1 and /tmp/volume2. The image will need to contain these
   831  directories so a couple of RUN mkdir instructions might be required for you
   832  fedora-data image:
   833  
   834      # docker run --name=data -v /var/volume1 -v /tmp/volume2 -i -t fedora-data true
   835      # docker run --volumes-from=data --name=fedora-container1 -i -t fedora bash
   836  
   837  Multiple --volumes-from parameters will bring together multiple data volumes from
   838  multiple containers. And it's possible to mount the volumes that came from the
   839  DATA container in yet another container via the fedora-container1 intermediary
   840  container, allowing to abstract the actual data source from users of that data:
   841  
   842      # docker run --volumes-from=fedora-container1 --name=fedora-container2 -i -t fedora bash
   843  
   844  ## Mounting External Volumes
   845  
   846  To mount a host directory as a container volume, specify the absolute path to
   847  the directory and the absolute path for the container directory separated by a
   848  colon:
   849  
   850      # docker run -v /var/db:/data1 -i -t fedora bash
   851  
   852  When using SELinux, be aware that the host has no knowledge of container SELinux
   853  policy. Therefore, in the above example, if SELinux policy is enforced, the
   854  `/var/db` directory is not writable to the container. A "Permission Denied"
   855  message will occur and an avc: message in the host's syslog.
   856  
   857  
   858  To work around this, at time of writing this man page, the following command
   859  needs to be run in order for the proper SELinux policy type label to be attached
   860  to the host directory:
   861  
   862      # chcon -Rt svirt_sandbox_file_t /var/db
   863  
   864  
   865  Now, writing to the /data1 volume in the container will be allowed and the
   866  changes will also be reflected on the host in /var/db.
   867  
   868  ## Using alternative security labeling
   869  
   870  You can override the default labeling scheme for each container by specifying
   871  the `--security-opt` flag. For example, you can specify the MCS/MLS level, a
   872  requirement for MLS systems. Specifying the level in the following command
   873  allows you to share the same content between containers.
   874  
   875      # docker run --security-opt label:level:s0:c100,c200 -i -t fedora bash
   876  
   877  An MLS example might be:
   878  
   879      # docker run --security-opt label:level:TopSecret -i -t rhel7 bash
   880  
   881  To disable the security labeling for this container versus running with the
   882  `--permissive` flag, use the following command:
   883  
   884      # docker run --security-opt label:disable -i -t fedora bash
   885  
   886  If you want a tighter security policy on the processes within a container,
   887  you can specify an alternate type for the container. You could run a container
   888  that is only allowed to listen on Apache ports by executing the following
   889  command:
   890  
   891      # docker run --security-opt label:type:svirt_apache_t -i -t centos bash
   892  
   893  Note:
   894  
   895  You would have to write policy defining a `svirt_apache_t` type.
   896  
   897  ## Setting device weight
   898  
   899  If you want to set `/dev/sda` device weight to `200`, you can specify the device
   900  weight by `--blkio-weight-device` flag. Use the following command:
   901  
   902     # docker run -it --blkio-weight-device "/dev/sda:200" ubuntu
   903  
   904  ## Specify isolation technology for container (--isolation)
   905  
   906  This option is useful in situations where you are running Docker containers on
   907  Microsoft Windows. The `--isolation <value>` option sets a container's isolation
   908  technology. On Linux, the only supported is the `default` option which uses
   909  Linux namespaces. These two commands are equivalent on Linux:
   910  
   911  ```
   912  $ docker run -d busybox top
   913  $ docker run -d --isolation default busybox top
   914  ```
   915  
   916  On Microsoft Windows, can take any of these values:
   917  
   918  * `default`: Use the value specified by the Docker daemon's `--exec-opt` . If the `daemon` does not specify an isolation technology, Microsoft Windows uses `process` as its default value.
   919  * `process`: Namespace isolation only.
   920  * `hyperv`: Hyper-V hypervisor partition-based isolation.
   921  
   922  In practice, when running on Microsoft Windows without a `daemon` option set,  these two commands are equivalent:
   923  
   924  ```
   925  $ docker run -d --isolation default busybox top
   926  $ docker run -d --isolation process busybox top
   927  ```
   928  
   929  If you have set the `--exec-opt isolation=hyperv` option on the Docker `daemon`, any of these commands also result in `hyperv` isolation:
   930  
   931  ```
   932  $ docker run -d --isolation default busybox top
   933  $ docker run -d --isolation hyperv busybox top
   934  ```
   935  
   936  # HISTORY
   937  April 2014, Originally compiled by William Henry (whenry at redhat dot com)
   938  based on docker.com source material and internal work.
   939  June 2014, updated by Sven Dowideit <SvenDowideit@home.org.au>
   940  July 2014, updated by Sven Dowideit <SvenDowideit@home.org.au>
   941  November 2015, updated by Sally O'Malley <somalley@redhat.com>