github.com/hxx258456/ccgo@v0.0.5-0.20230213014102-48b35f46f66f/gmhttp/h2_bundle.go (about)

     1  //go:build !nethttpomithttp2
     2  // +build !nethttpomithttp2
     3  
     4  // Code generated by golang.org/x/tools/cmd/bundle. DO NOT EDIT.
     5  //   $ bundle -o=h2_bundle.go -prefix=http2 -tags=!nethttpomithttp2 golang.org/x/net/http2
     6  
     7  // Package http2 implements the HTTP/2 protocol.
     8  //
     9  // This package is low-level and intended to be used directly by very
    10  // few people. Most users will use it indirectly through the automatic
    11  // use by the net/http package (from Go 1.6 and later).
    12  // For use in earlier Go versions see ConfigureServer. (Transport support
    13  // requires Go 1.6 or later)
    14  //
    15  // See https://http2.github.io/ for more information on HTTP/2.
    16  //
    17  // See https://http2.golang.org/ for a test server running this code.
    18  //
    19  
    20  package gmhttp
    21  
    22  import (
    23  	"bufio"
    24  	"bytes"
    25  	"compress/gzip"
    26  	"context"
    27  	"crypto/rand"
    28  	"encoding/binary"
    29  	"errors"
    30  	"fmt"
    31  	"io"
    32  	"io/ioutil"
    33  	"log"
    34  	"math"
    35  	mathrand "math/rand"
    36  	"net"
    37  	"github.com/hxx258456/ccgo/gmhttp/httptrace"
    38  	"net/textproto"
    39  	"net/url"
    40  	"os"
    41  	"reflect"
    42  	"runtime"
    43  	"sort"
    44  	"strconv"
    45  	"strings"
    46  	"sync"
    47  	"sync/atomic"
    48  	"time"
    49  tls "github.com/hxx258456/ccgo/gmtls"
    50  	"golang.org/x/net/http/httpguts"
    51  	"golang.org/x/net/http2/hpack"
    52  	"golang.org/x/net/idna"
    53  )
    54  
    55  // asciiEqualFold is strings.EqualFold, ASCII only. It reports whether s and t
    56  // are equal, ASCII-case-insensitively.
    57  func http2asciiEqualFold(s, t string) bool {
    58  	if len(s) != len(t) {
    59  		return false
    60  	}
    61  	for i := 0; i < len(s); i++ {
    62  		if http2lower(s[i]) != http2lower(t[i]) {
    63  			return false
    64  		}
    65  	}
    66  	return true
    67  }
    68  
    69  // lower returns the ASCII lowercase version of b.
    70  func http2lower(b byte) byte {
    71  	if 'A' <= b && b <= 'Z' {
    72  		return b + ('a' - 'A')
    73  	}
    74  	return b
    75  }
    76  
    77  // isASCIIPrint returns whether s is ASCII and printable according to
    78  // https://tools.ietf.org/html/rfc20#section-4.2.
    79  func http2isASCIIPrint(s string) bool {
    80  	for i := 0; i < len(s); i++ {
    81  		if s[i] < ' ' || s[i] > '~' {
    82  			return false
    83  		}
    84  	}
    85  	return true
    86  }
    87  
    88  // asciiToLower returns the lowercase version of s if s is ASCII and printable,
    89  // and whether or not it was.
    90  func http2asciiToLower(s string) (lower string, ok bool) {
    91  	if !http2isASCIIPrint(s) {
    92  		return "", false
    93  	}
    94  	return strings.ToLower(s), true
    95  }
    96  
    97  // A list of the possible cipher suite ids. Taken from
    98  // https://www.iana.org/assignments/tls-parameters/tls-parameters.txt
    99  
   100  const (
   101  	http2cipher_TLS_NULL_WITH_NULL_NULL               uint16 = 0x0000
   102  	http2cipher_TLS_RSA_WITH_NULL_MD5                 uint16 = 0x0001
   103  	http2cipher_TLS_RSA_WITH_NULL_SHA                 uint16 = 0x0002
   104  	http2cipher_TLS_RSA_EXPORT_WITH_RC4_40_MD5        uint16 = 0x0003
   105  	http2cipher_TLS_RSA_WITH_RC4_128_MD5              uint16 = 0x0004
   106  	http2cipher_TLS_RSA_WITH_RC4_128_SHA              uint16 = 0x0005
   107  	http2cipher_TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5    uint16 = 0x0006
   108  	http2cipher_TLS_RSA_WITH_IDEA_CBC_SHA             uint16 = 0x0007
   109  	http2cipher_TLS_RSA_EXPORT_WITH_DES40_CBC_SHA     uint16 = 0x0008
   110  	http2cipher_TLS_RSA_WITH_DES_CBC_SHA              uint16 = 0x0009
   111  	http2cipher_TLS_RSA_WITH_3DES_EDE_CBC_SHA         uint16 = 0x000A
   112  	http2cipher_TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA  uint16 = 0x000B
   113  	http2cipher_TLS_DH_DSS_WITH_DES_CBC_SHA           uint16 = 0x000C
   114  	http2cipher_TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA      uint16 = 0x000D
   115  	http2cipher_TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA  uint16 = 0x000E
   116  	http2cipher_TLS_DH_RSA_WITH_DES_CBC_SHA           uint16 = 0x000F
   117  	http2cipher_TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA      uint16 = 0x0010
   118  	http2cipher_TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA uint16 = 0x0011
   119  	http2cipher_TLS_DHE_DSS_WITH_DES_CBC_SHA          uint16 = 0x0012
   120  	http2cipher_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA     uint16 = 0x0013
   121  	http2cipher_TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA uint16 = 0x0014
   122  	http2cipher_TLS_DHE_RSA_WITH_DES_CBC_SHA          uint16 = 0x0015
   123  	http2cipher_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA     uint16 = 0x0016
   124  	http2cipher_TLS_DH_anon_EXPORT_WITH_RC4_40_MD5    uint16 = 0x0017
   125  	http2cipher_TLS_DH_anon_WITH_RC4_128_MD5          uint16 = 0x0018
   126  	http2cipher_TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA uint16 = 0x0019
   127  	http2cipher_TLS_DH_anon_WITH_DES_CBC_SHA          uint16 = 0x001A
   128  	http2cipher_TLS_DH_anon_WITH_3DES_EDE_CBC_SHA     uint16 = 0x001B
   129  	// Reserved uint16 =  0x001C-1D
   130  	http2cipher_TLS_KRB5_WITH_DES_CBC_SHA             uint16 = 0x001E
   131  	http2cipher_TLS_KRB5_WITH_3DES_EDE_CBC_SHA        uint16 = 0x001F
   132  	http2cipher_TLS_KRB5_WITH_RC4_128_SHA             uint16 = 0x0020
   133  	http2cipher_TLS_KRB5_WITH_IDEA_CBC_SHA            uint16 = 0x0021
   134  	http2cipher_TLS_KRB5_WITH_DES_CBC_MD5             uint16 = 0x0022
   135  	http2cipher_TLS_KRB5_WITH_3DES_EDE_CBC_MD5        uint16 = 0x0023
   136  	http2cipher_TLS_KRB5_WITH_RC4_128_MD5             uint16 = 0x0024
   137  	http2cipher_TLS_KRB5_WITH_IDEA_CBC_MD5            uint16 = 0x0025
   138  	http2cipher_TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA   uint16 = 0x0026
   139  	http2cipher_TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA   uint16 = 0x0027
   140  	http2cipher_TLS_KRB5_EXPORT_WITH_RC4_40_SHA       uint16 = 0x0028
   141  	http2cipher_TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5   uint16 = 0x0029
   142  	http2cipher_TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5   uint16 = 0x002A
   143  	http2cipher_TLS_KRB5_EXPORT_WITH_RC4_40_MD5       uint16 = 0x002B
   144  	http2cipher_TLS_PSK_WITH_NULL_SHA                 uint16 = 0x002C
   145  	http2cipher_TLS_DHE_PSK_WITH_NULL_SHA             uint16 = 0x002D
   146  	http2cipher_TLS_RSA_PSK_WITH_NULL_SHA             uint16 = 0x002E
   147  	http2cipher_TLS_RSA_WITH_AES_128_CBC_SHA          uint16 = 0x002F
   148  	http2cipher_TLS_DH_DSS_WITH_AES_128_CBC_SHA       uint16 = 0x0030
   149  	http2cipher_TLS_DH_RSA_WITH_AES_128_CBC_SHA       uint16 = 0x0031
   150  	http2cipher_TLS_DHE_DSS_WITH_AES_128_CBC_SHA      uint16 = 0x0032
   151  	http2cipher_TLS_DHE_RSA_WITH_AES_128_CBC_SHA      uint16 = 0x0033
   152  	http2cipher_TLS_DH_anon_WITH_AES_128_CBC_SHA      uint16 = 0x0034
   153  	http2cipher_TLS_RSA_WITH_AES_256_CBC_SHA          uint16 = 0x0035
   154  	http2cipher_TLS_DH_DSS_WITH_AES_256_CBC_SHA       uint16 = 0x0036
   155  	http2cipher_TLS_DH_RSA_WITH_AES_256_CBC_SHA       uint16 = 0x0037
   156  	http2cipher_TLS_DHE_DSS_WITH_AES_256_CBC_SHA      uint16 = 0x0038
   157  	http2cipher_TLS_DHE_RSA_WITH_AES_256_CBC_SHA      uint16 = 0x0039
   158  	http2cipher_TLS_DH_anon_WITH_AES_256_CBC_SHA      uint16 = 0x003A
   159  	http2cipher_TLS_RSA_WITH_NULL_SHA256              uint16 = 0x003B
   160  	http2cipher_TLS_RSA_WITH_AES_128_CBC_SHA256       uint16 = 0x003C
   161  	http2cipher_TLS_RSA_WITH_AES_256_CBC_SHA256       uint16 = 0x003D
   162  	http2cipher_TLS_DH_DSS_WITH_AES_128_CBC_SHA256    uint16 = 0x003E
   163  	http2cipher_TLS_DH_RSA_WITH_AES_128_CBC_SHA256    uint16 = 0x003F
   164  	http2cipher_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256   uint16 = 0x0040
   165  	http2cipher_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA     uint16 = 0x0041
   166  	http2cipher_TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA  uint16 = 0x0042
   167  	http2cipher_TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA  uint16 = 0x0043
   168  	http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA uint16 = 0x0044
   169  	http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA uint16 = 0x0045
   170  	http2cipher_TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA uint16 = 0x0046
   171  	// Reserved uint16 =  0x0047-4F
   172  	// Reserved uint16 =  0x0050-58
   173  	// Reserved uint16 =  0x0059-5C
   174  	// Unassigned uint16 =  0x005D-5F
   175  	// Reserved uint16 =  0x0060-66
   176  	http2cipher_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x0067
   177  	http2cipher_TLS_DH_DSS_WITH_AES_256_CBC_SHA256  uint16 = 0x0068
   178  	http2cipher_TLS_DH_RSA_WITH_AES_256_CBC_SHA256  uint16 = 0x0069
   179  	http2cipher_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 uint16 = 0x006A
   180  	http2cipher_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 uint16 = 0x006B
   181  	http2cipher_TLS_DH_anon_WITH_AES_128_CBC_SHA256 uint16 = 0x006C
   182  	http2cipher_TLS_DH_anon_WITH_AES_256_CBC_SHA256 uint16 = 0x006D
   183  	// Unassigned uint16 =  0x006E-83
   184  	http2cipher_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA        uint16 = 0x0084
   185  	http2cipher_TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA     uint16 = 0x0085
   186  	http2cipher_TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA     uint16 = 0x0086
   187  	http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA    uint16 = 0x0087
   188  	http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA    uint16 = 0x0088
   189  	http2cipher_TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA    uint16 = 0x0089
   190  	http2cipher_TLS_PSK_WITH_RC4_128_SHA                 uint16 = 0x008A
   191  	http2cipher_TLS_PSK_WITH_3DES_EDE_CBC_SHA            uint16 = 0x008B
   192  	http2cipher_TLS_PSK_WITH_AES_128_CBC_SHA             uint16 = 0x008C
   193  	http2cipher_TLS_PSK_WITH_AES_256_CBC_SHA             uint16 = 0x008D
   194  	http2cipher_TLS_DHE_PSK_WITH_RC4_128_SHA             uint16 = 0x008E
   195  	http2cipher_TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA        uint16 = 0x008F
   196  	http2cipher_TLS_DHE_PSK_WITH_AES_128_CBC_SHA         uint16 = 0x0090
   197  	http2cipher_TLS_DHE_PSK_WITH_AES_256_CBC_SHA         uint16 = 0x0091
   198  	http2cipher_TLS_RSA_PSK_WITH_RC4_128_SHA             uint16 = 0x0092
   199  	http2cipher_TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA        uint16 = 0x0093
   200  	http2cipher_TLS_RSA_PSK_WITH_AES_128_CBC_SHA         uint16 = 0x0094
   201  	http2cipher_TLS_RSA_PSK_WITH_AES_256_CBC_SHA         uint16 = 0x0095
   202  	http2cipher_TLS_RSA_WITH_SEED_CBC_SHA                uint16 = 0x0096
   203  	http2cipher_TLS_DH_DSS_WITH_SEED_CBC_SHA             uint16 = 0x0097
   204  	http2cipher_TLS_DH_RSA_WITH_SEED_CBC_SHA             uint16 = 0x0098
   205  	http2cipher_TLS_DHE_DSS_WITH_SEED_CBC_SHA            uint16 = 0x0099
   206  	http2cipher_TLS_DHE_RSA_WITH_SEED_CBC_SHA            uint16 = 0x009A
   207  	http2cipher_TLS_DH_anon_WITH_SEED_CBC_SHA            uint16 = 0x009B
   208  	http2cipher_TLS_RSA_WITH_AES_128_GCM_SHA256          uint16 = 0x009C
   209  	http2cipher_TLS_RSA_WITH_AES_256_GCM_SHA384          uint16 = 0x009D
   210  	http2cipher_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256      uint16 = 0x009E
   211  	http2cipher_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384      uint16 = 0x009F
   212  	http2cipher_TLS_DH_RSA_WITH_AES_128_GCM_SHA256       uint16 = 0x00A0
   213  	http2cipher_TLS_DH_RSA_WITH_AES_256_GCM_SHA384       uint16 = 0x00A1
   214  	http2cipher_TLS_DHE_DSS_WITH_AES_128_GCM_SHA256      uint16 = 0x00A2
   215  	http2cipher_TLS_DHE_DSS_WITH_AES_256_GCM_SHA384      uint16 = 0x00A3
   216  	http2cipher_TLS_DH_DSS_WITH_AES_128_GCM_SHA256       uint16 = 0x00A4
   217  	http2cipher_TLS_DH_DSS_WITH_AES_256_GCM_SHA384       uint16 = 0x00A5
   218  	http2cipher_TLS_DH_anon_WITH_AES_128_GCM_SHA256      uint16 = 0x00A6
   219  	http2cipher_TLS_DH_anon_WITH_AES_256_GCM_SHA384      uint16 = 0x00A7
   220  	http2cipher_TLS_PSK_WITH_AES_128_GCM_SHA256          uint16 = 0x00A8
   221  	http2cipher_TLS_PSK_WITH_AES_256_GCM_SHA384          uint16 = 0x00A9
   222  	http2cipher_TLS_DHE_PSK_WITH_AES_128_GCM_SHA256      uint16 = 0x00AA
   223  	http2cipher_TLS_DHE_PSK_WITH_AES_256_GCM_SHA384      uint16 = 0x00AB
   224  	http2cipher_TLS_RSA_PSK_WITH_AES_128_GCM_SHA256      uint16 = 0x00AC
   225  	http2cipher_TLS_RSA_PSK_WITH_AES_256_GCM_SHA384      uint16 = 0x00AD
   226  	http2cipher_TLS_PSK_WITH_AES_128_CBC_SHA256          uint16 = 0x00AE
   227  	http2cipher_TLS_PSK_WITH_AES_256_CBC_SHA384          uint16 = 0x00AF
   228  	http2cipher_TLS_PSK_WITH_NULL_SHA256                 uint16 = 0x00B0
   229  	http2cipher_TLS_PSK_WITH_NULL_SHA384                 uint16 = 0x00B1
   230  	http2cipher_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256      uint16 = 0x00B2
   231  	http2cipher_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384      uint16 = 0x00B3
   232  	http2cipher_TLS_DHE_PSK_WITH_NULL_SHA256             uint16 = 0x00B4
   233  	http2cipher_TLS_DHE_PSK_WITH_NULL_SHA384             uint16 = 0x00B5
   234  	http2cipher_TLS_RSA_PSK_WITH_AES_128_CBC_SHA256      uint16 = 0x00B6
   235  	http2cipher_TLS_RSA_PSK_WITH_AES_256_CBC_SHA384      uint16 = 0x00B7
   236  	http2cipher_TLS_RSA_PSK_WITH_NULL_SHA256             uint16 = 0x00B8
   237  	http2cipher_TLS_RSA_PSK_WITH_NULL_SHA384             uint16 = 0x00B9
   238  	http2cipher_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256     uint16 = 0x00BA
   239  	http2cipher_TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256  uint16 = 0x00BB
   240  	http2cipher_TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256  uint16 = 0x00BC
   241  	http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0x00BD
   242  	http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0x00BE
   243  	http2cipher_TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0x00BF
   244  	http2cipher_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256     uint16 = 0x00C0
   245  	http2cipher_TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256  uint16 = 0x00C1
   246  	http2cipher_TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256  uint16 = 0x00C2
   247  	http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256 uint16 = 0x00C3
   248  	http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256 uint16 = 0x00C4
   249  	http2cipher_TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256 uint16 = 0x00C5
   250  	// Unassigned uint16 =  0x00C6-FE
   251  	http2cipher_TLS_EMPTY_RENEGOTIATION_INFO_SCSV uint16 = 0x00FF
   252  	// Unassigned uint16 =  0x01-55,*
   253  	http2cipher_TLS_FALLBACK_SCSV uint16 = 0x5600
   254  	// Unassigned                                   uint16 = 0x5601 - 0xC000
   255  	http2cipher_TLS_ECDH_ECDSA_WITH_NULL_SHA                 uint16 = 0xC001
   256  	http2cipher_TLS_ECDH_ECDSA_WITH_RC4_128_SHA              uint16 = 0xC002
   257  	http2cipher_TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA         uint16 = 0xC003
   258  	http2cipher_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA          uint16 = 0xC004
   259  	http2cipher_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA          uint16 = 0xC005
   260  	http2cipher_TLS_ECDHE_ECDSA_WITH_NULL_SHA                uint16 = 0xC006
   261  	http2cipher_TLS_ECDHE_ECDSA_WITH_RC4_128_SHA             uint16 = 0xC007
   262  	http2cipher_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA        uint16 = 0xC008
   263  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA         uint16 = 0xC009
   264  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA         uint16 = 0xC00A
   265  	http2cipher_TLS_ECDH_RSA_WITH_NULL_SHA                   uint16 = 0xC00B
   266  	http2cipher_TLS_ECDH_RSA_WITH_RC4_128_SHA                uint16 = 0xC00C
   267  	http2cipher_TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA           uint16 = 0xC00D
   268  	http2cipher_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA            uint16 = 0xC00E
   269  	http2cipher_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA            uint16 = 0xC00F
   270  	http2cipher_TLS_ECDHE_RSA_WITH_NULL_SHA                  uint16 = 0xC010
   271  	http2cipher_TLS_ECDHE_RSA_WITH_RC4_128_SHA               uint16 = 0xC011
   272  	http2cipher_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA          uint16 = 0xC012
   273  	http2cipher_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA           uint16 = 0xC013
   274  	http2cipher_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA           uint16 = 0xC014
   275  	http2cipher_TLS_ECDH_anon_WITH_NULL_SHA                  uint16 = 0xC015
   276  	http2cipher_TLS_ECDH_anon_WITH_RC4_128_SHA               uint16 = 0xC016
   277  	http2cipher_TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA          uint16 = 0xC017
   278  	http2cipher_TLS_ECDH_anon_WITH_AES_128_CBC_SHA           uint16 = 0xC018
   279  	http2cipher_TLS_ECDH_anon_WITH_AES_256_CBC_SHA           uint16 = 0xC019
   280  	http2cipher_TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA            uint16 = 0xC01A
   281  	http2cipher_TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA        uint16 = 0xC01B
   282  	http2cipher_TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA        uint16 = 0xC01C
   283  	http2cipher_TLS_SRP_SHA_WITH_AES_128_CBC_SHA             uint16 = 0xC01D
   284  	http2cipher_TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA         uint16 = 0xC01E
   285  	http2cipher_TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA         uint16 = 0xC01F
   286  	http2cipher_TLS_SRP_SHA_WITH_AES_256_CBC_SHA             uint16 = 0xC020
   287  	http2cipher_TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA         uint16 = 0xC021
   288  	http2cipher_TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA         uint16 = 0xC022
   289  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256      uint16 = 0xC023
   290  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384      uint16 = 0xC024
   291  	http2cipher_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256       uint16 = 0xC025
   292  	http2cipher_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384       uint16 = 0xC026
   293  	http2cipher_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256        uint16 = 0xC027
   294  	http2cipher_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384        uint16 = 0xC028
   295  	http2cipher_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256         uint16 = 0xC029
   296  	http2cipher_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384         uint16 = 0xC02A
   297  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256      uint16 = 0xC02B
   298  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384      uint16 = 0xC02C
   299  	http2cipher_TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256       uint16 = 0xC02D
   300  	http2cipher_TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384       uint16 = 0xC02E
   301  	http2cipher_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256        uint16 = 0xC02F
   302  	http2cipher_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384        uint16 = 0xC030
   303  	http2cipher_TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256         uint16 = 0xC031
   304  	http2cipher_TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384         uint16 = 0xC032
   305  	http2cipher_TLS_ECDHE_PSK_WITH_RC4_128_SHA               uint16 = 0xC033
   306  	http2cipher_TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA          uint16 = 0xC034
   307  	http2cipher_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA           uint16 = 0xC035
   308  	http2cipher_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA           uint16 = 0xC036
   309  	http2cipher_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256        uint16 = 0xC037
   310  	http2cipher_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384        uint16 = 0xC038
   311  	http2cipher_TLS_ECDHE_PSK_WITH_NULL_SHA                  uint16 = 0xC039
   312  	http2cipher_TLS_ECDHE_PSK_WITH_NULL_SHA256               uint16 = 0xC03A
   313  	http2cipher_TLS_ECDHE_PSK_WITH_NULL_SHA384               uint16 = 0xC03B
   314  	http2cipher_TLS_RSA_WITH_ARIA_128_CBC_SHA256             uint16 = 0xC03C
   315  	http2cipher_TLS_RSA_WITH_ARIA_256_CBC_SHA384             uint16 = 0xC03D
   316  	http2cipher_TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256          uint16 = 0xC03E
   317  	http2cipher_TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384          uint16 = 0xC03F
   318  	http2cipher_TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256          uint16 = 0xC040
   319  	http2cipher_TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384          uint16 = 0xC041
   320  	http2cipher_TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256         uint16 = 0xC042
   321  	http2cipher_TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384         uint16 = 0xC043
   322  	http2cipher_TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256         uint16 = 0xC044
   323  	http2cipher_TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384         uint16 = 0xC045
   324  	http2cipher_TLS_DH_anon_WITH_ARIA_128_CBC_SHA256         uint16 = 0xC046
   325  	http2cipher_TLS_DH_anon_WITH_ARIA_256_CBC_SHA384         uint16 = 0xC047
   326  	http2cipher_TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256     uint16 = 0xC048
   327  	http2cipher_TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384     uint16 = 0xC049
   328  	http2cipher_TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256      uint16 = 0xC04A
   329  	http2cipher_TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384      uint16 = 0xC04B
   330  	http2cipher_TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256       uint16 = 0xC04C
   331  	http2cipher_TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384       uint16 = 0xC04D
   332  	http2cipher_TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256        uint16 = 0xC04E
   333  	http2cipher_TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384        uint16 = 0xC04F
   334  	http2cipher_TLS_RSA_WITH_ARIA_128_GCM_SHA256             uint16 = 0xC050
   335  	http2cipher_TLS_RSA_WITH_ARIA_256_GCM_SHA384             uint16 = 0xC051
   336  	http2cipher_TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256         uint16 = 0xC052
   337  	http2cipher_TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384         uint16 = 0xC053
   338  	http2cipher_TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256          uint16 = 0xC054
   339  	http2cipher_TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384          uint16 = 0xC055
   340  	http2cipher_TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256         uint16 = 0xC056
   341  	http2cipher_TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384         uint16 = 0xC057
   342  	http2cipher_TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256          uint16 = 0xC058
   343  	http2cipher_TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384          uint16 = 0xC059
   344  	http2cipher_TLS_DH_anon_WITH_ARIA_128_GCM_SHA256         uint16 = 0xC05A
   345  	http2cipher_TLS_DH_anon_WITH_ARIA_256_GCM_SHA384         uint16 = 0xC05B
   346  	http2cipher_TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256     uint16 = 0xC05C
   347  	http2cipher_TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384     uint16 = 0xC05D
   348  	http2cipher_TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256      uint16 = 0xC05E
   349  	http2cipher_TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384      uint16 = 0xC05F
   350  	http2cipher_TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256       uint16 = 0xC060
   351  	http2cipher_TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384       uint16 = 0xC061
   352  	http2cipher_TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256        uint16 = 0xC062
   353  	http2cipher_TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384        uint16 = 0xC063
   354  	http2cipher_TLS_PSK_WITH_ARIA_128_CBC_SHA256             uint16 = 0xC064
   355  	http2cipher_TLS_PSK_WITH_ARIA_256_CBC_SHA384             uint16 = 0xC065
   356  	http2cipher_TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256         uint16 = 0xC066
   357  	http2cipher_TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384         uint16 = 0xC067
   358  	http2cipher_TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256         uint16 = 0xC068
   359  	http2cipher_TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384         uint16 = 0xC069
   360  	http2cipher_TLS_PSK_WITH_ARIA_128_GCM_SHA256             uint16 = 0xC06A
   361  	http2cipher_TLS_PSK_WITH_ARIA_256_GCM_SHA384             uint16 = 0xC06B
   362  	http2cipher_TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256         uint16 = 0xC06C
   363  	http2cipher_TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384         uint16 = 0xC06D
   364  	http2cipher_TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256         uint16 = 0xC06E
   365  	http2cipher_TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384         uint16 = 0xC06F
   366  	http2cipher_TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256       uint16 = 0xC070
   367  	http2cipher_TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384       uint16 = 0xC071
   368  	http2cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0xC072
   369  	http2cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 uint16 = 0xC073
   370  	http2cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256  uint16 = 0xC074
   371  	http2cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384  uint16 = 0xC075
   372  	http2cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256   uint16 = 0xC076
   373  	http2cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384   uint16 = 0xC077
   374  	http2cipher_TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256    uint16 = 0xC078
   375  	http2cipher_TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384    uint16 = 0xC079
   376  	http2cipher_TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256         uint16 = 0xC07A
   377  	http2cipher_TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384         uint16 = 0xC07B
   378  	http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256     uint16 = 0xC07C
   379  	http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384     uint16 = 0xC07D
   380  	http2cipher_TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256      uint16 = 0xC07E
   381  	http2cipher_TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384      uint16 = 0xC07F
   382  	http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256     uint16 = 0xC080
   383  	http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384     uint16 = 0xC081
   384  	http2cipher_TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256      uint16 = 0xC082
   385  	http2cipher_TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384      uint16 = 0xC083
   386  	http2cipher_TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256     uint16 = 0xC084
   387  	http2cipher_TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384     uint16 = 0xC085
   388  	http2cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC086
   389  	http2cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC087
   390  	http2cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256  uint16 = 0xC088
   391  	http2cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384  uint16 = 0xC089
   392  	http2cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256   uint16 = 0xC08A
   393  	http2cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384   uint16 = 0xC08B
   394  	http2cipher_TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256    uint16 = 0xC08C
   395  	http2cipher_TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384    uint16 = 0xC08D
   396  	http2cipher_TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256         uint16 = 0xC08E
   397  	http2cipher_TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384         uint16 = 0xC08F
   398  	http2cipher_TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256     uint16 = 0xC090
   399  	http2cipher_TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384     uint16 = 0xC091
   400  	http2cipher_TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256     uint16 = 0xC092
   401  	http2cipher_TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384     uint16 = 0xC093
   402  	http2cipher_TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256         uint16 = 0xC094
   403  	http2cipher_TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384         uint16 = 0xC095
   404  	http2cipher_TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256     uint16 = 0xC096
   405  	http2cipher_TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384     uint16 = 0xC097
   406  	http2cipher_TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256     uint16 = 0xC098
   407  	http2cipher_TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384     uint16 = 0xC099
   408  	http2cipher_TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256   uint16 = 0xC09A
   409  	http2cipher_TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384   uint16 = 0xC09B
   410  	http2cipher_TLS_RSA_WITH_AES_128_CCM                     uint16 = 0xC09C
   411  	http2cipher_TLS_RSA_WITH_AES_256_CCM                     uint16 = 0xC09D
   412  	http2cipher_TLS_DHE_RSA_WITH_AES_128_CCM                 uint16 = 0xC09E
   413  	http2cipher_TLS_DHE_RSA_WITH_AES_256_CCM                 uint16 = 0xC09F
   414  	http2cipher_TLS_RSA_WITH_AES_128_CCM_8                   uint16 = 0xC0A0
   415  	http2cipher_TLS_RSA_WITH_AES_256_CCM_8                   uint16 = 0xC0A1
   416  	http2cipher_TLS_DHE_RSA_WITH_AES_128_CCM_8               uint16 = 0xC0A2
   417  	http2cipher_TLS_DHE_RSA_WITH_AES_256_CCM_8               uint16 = 0xC0A3
   418  	http2cipher_TLS_PSK_WITH_AES_128_CCM                     uint16 = 0xC0A4
   419  	http2cipher_TLS_PSK_WITH_AES_256_CCM                     uint16 = 0xC0A5
   420  	http2cipher_TLS_DHE_PSK_WITH_AES_128_CCM                 uint16 = 0xC0A6
   421  	http2cipher_TLS_DHE_PSK_WITH_AES_256_CCM                 uint16 = 0xC0A7
   422  	http2cipher_TLS_PSK_WITH_AES_128_CCM_8                   uint16 = 0xC0A8
   423  	http2cipher_TLS_PSK_WITH_AES_256_CCM_8                   uint16 = 0xC0A9
   424  	http2cipher_TLS_PSK_DHE_WITH_AES_128_CCM_8               uint16 = 0xC0AA
   425  	http2cipher_TLS_PSK_DHE_WITH_AES_256_CCM_8               uint16 = 0xC0AB
   426  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CCM             uint16 = 0xC0AC
   427  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CCM             uint16 = 0xC0AD
   428  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8           uint16 = 0xC0AE
   429  	http2cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8           uint16 = 0xC0AF
   430  	// Unassigned uint16 =  0xC0B0-FF
   431  	// Unassigned uint16 =  0xC1-CB,*
   432  	// Unassigned uint16 =  0xCC00-A7
   433  	http2cipher_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256   uint16 = 0xCCA8
   434  	http2cipher_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xCCA9
   435  	http2cipher_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256     uint16 = 0xCCAA
   436  	http2cipher_TLS_PSK_WITH_CHACHA20_POLY1305_SHA256         uint16 = 0xCCAB
   437  	http2cipher_TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256   uint16 = 0xCCAC
   438  	http2cipher_TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256     uint16 = 0xCCAD
   439  	http2cipher_TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256     uint16 = 0xCCAE
   440  )
   441  
   442  // isBadCipher reports whether the cipher is blacklisted by the HTTP/2 spec.
   443  // References:
   444  // https://tools.ietf.org/html/rfc7540#appendix-A
   445  // Reject cipher suites from Appendix A.
   446  // "This list includes those cipher suites that do not
   447  // offer an ephemeral key exchange and those that are
   448  // based on the TLS null, stream or block cipher type"
   449  func http2isBadCipher(cipher uint16) bool {
   450  	switch cipher {
   451  	case http2cipher_TLS_NULL_WITH_NULL_NULL,
   452  		http2cipher_TLS_RSA_WITH_NULL_MD5,
   453  		http2cipher_TLS_RSA_WITH_NULL_SHA,
   454  		http2cipher_TLS_RSA_EXPORT_WITH_RC4_40_MD5,
   455  		http2cipher_TLS_RSA_WITH_RC4_128_MD5,
   456  		http2cipher_TLS_RSA_WITH_RC4_128_SHA,
   457  		http2cipher_TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5,
   458  		http2cipher_TLS_RSA_WITH_IDEA_CBC_SHA,
   459  		http2cipher_TLS_RSA_EXPORT_WITH_DES40_CBC_SHA,
   460  		http2cipher_TLS_RSA_WITH_DES_CBC_SHA,
   461  		http2cipher_TLS_RSA_WITH_3DES_EDE_CBC_SHA,
   462  		http2cipher_TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA,
   463  		http2cipher_TLS_DH_DSS_WITH_DES_CBC_SHA,
   464  		http2cipher_TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA,
   465  		http2cipher_TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA,
   466  		http2cipher_TLS_DH_RSA_WITH_DES_CBC_SHA,
   467  		http2cipher_TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA,
   468  		http2cipher_TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA,
   469  		http2cipher_TLS_DHE_DSS_WITH_DES_CBC_SHA,
   470  		http2cipher_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
   471  		http2cipher_TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA,
   472  		http2cipher_TLS_DHE_RSA_WITH_DES_CBC_SHA,
   473  		http2cipher_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
   474  		http2cipher_TLS_DH_anon_EXPORT_WITH_RC4_40_MD5,
   475  		http2cipher_TLS_DH_anon_WITH_RC4_128_MD5,
   476  		http2cipher_TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA,
   477  		http2cipher_TLS_DH_anon_WITH_DES_CBC_SHA,
   478  		http2cipher_TLS_DH_anon_WITH_3DES_EDE_CBC_SHA,
   479  		http2cipher_TLS_KRB5_WITH_DES_CBC_SHA,
   480  		http2cipher_TLS_KRB5_WITH_3DES_EDE_CBC_SHA,
   481  		http2cipher_TLS_KRB5_WITH_RC4_128_SHA,
   482  		http2cipher_TLS_KRB5_WITH_IDEA_CBC_SHA,
   483  		http2cipher_TLS_KRB5_WITH_DES_CBC_MD5,
   484  		http2cipher_TLS_KRB5_WITH_3DES_EDE_CBC_MD5,
   485  		http2cipher_TLS_KRB5_WITH_RC4_128_MD5,
   486  		http2cipher_TLS_KRB5_WITH_IDEA_CBC_MD5,
   487  		http2cipher_TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA,
   488  		http2cipher_TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA,
   489  		http2cipher_TLS_KRB5_EXPORT_WITH_RC4_40_SHA,
   490  		http2cipher_TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5,
   491  		http2cipher_TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5,
   492  		http2cipher_TLS_KRB5_EXPORT_WITH_RC4_40_MD5,
   493  		http2cipher_TLS_PSK_WITH_NULL_SHA,
   494  		http2cipher_TLS_DHE_PSK_WITH_NULL_SHA,
   495  		http2cipher_TLS_RSA_PSK_WITH_NULL_SHA,
   496  		http2cipher_TLS_RSA_WITH_AES_128_CBC_SHA,
   497  		http2cipher_TLS_DH_DSS_WITH_AES_128_CBC_SHA,
   498  		http2cipher_TLS_DH_RSA_WITH_AES_128_CBC_SHA,
   499  		http2cipher_TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
   500  		http2cipher_TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
   501  		http2cipher_TLS_DH_anon_WITH_AES_128_CBC_SHA,
   502  		http2cipher_TLS_RSA_WITH_AES_256_CBC_SHA,
   503  		http2cipher_TLS_DH_DSS_WITH_AES_256_CBC_SHA,
   504  		http2cipher_TLS_DH_RSA_WITH_AES_256_CBC_SHA,
   505  		http2cipher_TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
   506  		http2cipher_TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
   507  		http2cipher_TLS_DH_anon_WITH_AES_256_CBC_SHA,
   508  		http2cipher_TLS_RSA_WITH_NULL_SHA256,
   509  		http2cipher_TLS_RSA_WITH_AES_128_CBC_SHA256,
   510  		http2cipher_TLS_RSA_WITH_AES_256_CBC_SHA256,
   511  		http2cipher_TLS_DH_DSS_WITH_AES_128_CBC_SHA256,
   512  		http2cipher_TLS_DH_RSA_WITH_AES_128_CBC_SHA256,
   513  		http2cipher_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,
   514  		http2cipher_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA,
   515  		http2cipher_TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA,
   516  		http2cipher_TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA,
   517  		http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA,
   518  		http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA,
   519  		http2cipher_TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA,
   520  		http2cipher_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
   521  		http2cipher_TLS_DH_DSS_WITH_AES_256_CBC_SHA256,
   522  		http2cipher_TLS_DH_RSA_WITH_AES_256_CBC_SHA256,
   523  		http2cipher_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,
   524  		http2cipher_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
   525  		http2cipher_TLS_DH_anon_WITH_AES_128_CBC_SHA256,
   526  		http2cipher_TLS_DH_anon_WITH_AES_256_CBC_SHA256,
   527  		http2cipher_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA,
   528  		http2cipher_TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA,
   529  		http2cipher_TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA,
   530  		http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA,
   531  		http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA,
   532  		http2cipher_TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA,
   533  		http2cipher_TLS_PSK_WITH_RC4_128_SHA,
   534  		http2cipher_TLS_PSK_WITH_3DES_EDE_CBC_SHA,
   535  		http2cipher_TLS_PSK_WITH_AES_128_CBC_SHA,
   536  		http2cipher_TLS_PSK_WITH_AES_256_CBC_SHA,
   537  		http2cipher_TLS_DHE_PSK_WITH_RC4_128_SHA,
   538  		http2cipher_TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA,
   539  		http2cipher_TLS_DHE_PSK_WITH_AES_128_CBC_SHA,
   540  		http2cipher_TLS_DHE_PSK_WITH_AES_256_CBC_SHA,
   541  		http2cipher_TLS_RSA_PSK_WITH_RC4_128_SHA,
   542  		http2cipher_TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA,
   543  		http2cipher_TLS_RSA_PSK_WITH_AES_128_CBC_SHA,
   544  		http2cipher_TLS_RSA_PSK_WITH_AES_256_CBC_SHA,
   545  		http2cipher_TLS_RSA_WITH_SEED_CBC_SHA,
   546  		http2cipher_TLS_DH_DSS_WITH_SEED_CBC_SHA,
   547  		http2cipher_TLS_DH_RSA_WITH_SEED_CBC_SHA,
   548  		http2cipher_TLS_DHE_DSS_WITH_SEED_CBC_SHA,
   549  		http2cipher_TLS_DHE_RSA_WITH_SEED_CBC_SHA,
   550  		http2cipher_TLS_DH_anon_WITH_SEED_CBC_SHA,
   551  		http2cipher_TLS_RSA_WITH_AES_128_GCM_SHA256,
   552  		http2cipher_TLS_RSA_WITH_AES_256_GCM_SHA384,
   553  		http2cipher_TLS_DH_RSA_WITH_AES_128_GCM_SHA256,
   554  		http2cipher_TLS_DH_RSA_WITH_AES_256_GCM_SHA384,
   555  		http2cipher_TLS_DH_DSS_WITH_AES_128_GCM_SHA256,
   556  		http2cipher_TLS_DH_DSS_WITH_AES_256_GCM_SHA384,
   557  		http2cipher_TLS_DH_anon_WITH_AES_128_GCM_SHA256,
   558  		http2cipher_TLS_DH_anon_WITH_AES_256_GCM_SHA384,
   559  		http2cipher_TLS_PSK_WITH_AES_128_GCM_SHA256,
   560  		http2cipher_TLS_PSK_WITH_AES_256_GCM_SHA384,
   561  		http2cipher_TLS_RSA_PSK_WITH_AES_128_GCM_SHA256,
   562  		http2cipher_TLS_RSA_PSK_WITH_AES_256_GCM_SHA384,
   563  		http2cipher_TLS_PSK_WITH_AES_128_CBC_SHA256,
   564  		http2cipher_TLS_PSK_WITH_AES_256_CBC_SHA384,
   565  		http2cipher_TLS_PSK_WITH_NULL_SHA256,
   566  		http2cipher_TLS_PSK_WITH_NULL_SHA384,
   567  		http2cipher_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256,
   568  		http2cipher_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384,
   569  		http2cipher_TLS_DHE_PSK_WITH_NULL_SHA256,
   570  		http2cipher_TLS_DHE_PSK_WITH_NULL_SHA384,
   571  		http2cipher_TLS_RSA_PSK_WITH_AES_128_CBC_SHA256,
   572  		http2cipher_TLS_RSA_PSK_WITH_AES_256_CBC_SHA384,
   573  		http2cipher_TLS_RSA_PSK_WITH_NULL_SHA256,
   574  		http2cipher_TLS_RSA_PSK_WITH_NULL_SHA384,
   575  		http2cipher_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256,
   576  		http2cipher_TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256,
   577  		http2cipher_TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256,
   578  		http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256,
   579  		http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256,
   580  		http2cipher_TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256,
   581  		http2cipher_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256,
   582  		http2cipher_TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256,
   583  		http2cipher_TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256,
   584  		http2cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256,
   585  		http2cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256,
   586  		http2cipher_TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256,
   587  		http2cipher_TLS_EMPTY_RENEGOTIATION_INFO_SCSV,
   588  		http2cipher_TLS_ECDH_ECDSA_WITH_NULL_SHA,
   589  		http2cipher_TLS_ECDH_ECDSA_WITH_RC4_128_SHA,
   590  		http2cipher_TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
   591  		http2cipher_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
   592  		http2cipher_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
   593  		http2cipher_TLS_ECDHE_ECDSA_WITH_NULL_SHA,
   594  		http2cipher_TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
   595  		http2cipher_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
   596  		http2cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
   597  		http2cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
   598  		http2cipher_TLS_ECDH_RSA_WITH_NULL_SHA,
   599  		http2cipher_TLS_ECDH_RSA_WITH_RC4_128_SHA,
   600  		http2cipher_TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
   601  		http2cipher_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
   602  		http2cipher_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
   603  		http2cipher_TLS_ECDHE_RSA_WITH_NULL_SHA,
   604  		http2cipher_TLS_ECDHE_RSA_WITH_RC4_128_SHA,
   605  		http2cipher_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
   606  		http2cipher_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
   607  		http2cipher_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
   608  		http2cipher_TLS_ECDH_anon_WITH_NULL_SHA,
   609  		http2cipher_TLS_ECDH_anon_WITH_RC4_128_SHA,
   610  		http2cipher_TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA,
   611  		http2cipher_TLS_ECDH_anon_WITH_AES_128_CBC_SHA,
   612  		http2cipher_TLS_ECDH_anon_WITH_AES_256_CBC_SHA,
   613  		http2cipher_TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA,
   614  		http2cipher_TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA,
   615  		http2cipher_TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA,
   616  		http2cipher_TLS_SRP_SHA_WITH_AES_128_CBC_SHA,
   617  		http2cipher_TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA,
   618  		http2cipher_TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA,
   619  		http2cipher_TLS_SRP_SHA_WITH_AES_256_CBC_SHA,
   620  		http2cipher_TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA,
   621  		http2cipher_TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA,
   622  		http2cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
   623  		http2cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
   624  		http2cipher_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,
   625  		http2cipher_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,
   626  		http2cipher_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
   627  		http2cipher_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
   628  		http2cipher_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,
   629  		http2cipher_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,
   630  		http2cipher_TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,
   631  		http2cipher_TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,
   632  		http2cipher_TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,
   633  		http2cipher_TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,
   634  		http2cipher_TLS_ECDHE_PSK_WITH_RC4_128_SHA,
   635  		http2cipher_TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA,
   636  		http2cipher_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA,
   637  		http2cipher_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA,
   638  		http2cipher_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256,
   639  		http2cipher_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384,
   640  		http2cipher_TLS_ECDHE_PSK_WITH_NULL_SHA,
   641  		http2cipher_TLS_ECDHE_PSK_WITH_NULL_SHA256,
   642  		http2cipher_TLS_ECDHE_PSK_WITH_NULL_SHA384,
   643  		http2cipher_TLS_RSA_WITH_ARIA_128_CBC_SHA256,
   644  		http2cipher_TLS_RSA_WITH_ARIA_256_CBC_SHA384,
   645  		http2cipher_TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256,
   646  		http2cipher_TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384,
   647  		http2cipher_TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256,
   648  		http2cipher_TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384,
   649  		http2cipher_TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256,
   650  		http2cipher_TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384,
   651  		http2cipher_TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256,
   652  		http2cipher_TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384,
   653  		http2cipher_TLS_DH_anon_WITH_ARIA_128_CBC_SHA256,
   654  		http2cipher_TLS_DH_anon_WITH_ARIA_256_CBC_SHA384,
   655  		http2cipher_TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256,
   656  		http2cipher_TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384,
   657  		http2cipher_TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256,
   658  		http2cipher_TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384,
   659  		http2cipher_TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256,
   660  		http2cipher_TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384,
   661  		http2cipher_TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256,
   662  		http2cipher_TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384,
   663  		http2cipher_TLS_RSA_WITH_ARIA_128_GCM_SHA256,
   664  		http2cipher_TLS_RSA_WITH_ARIA_256_GCM_SHA384,
   665  		http2cipher_TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256,
   666  		http2cipher_TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384,
   667  		http2cipher_TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256,
   668  		http2cipher_TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384,
   669  		http2cipher_TLS_DH_anon_WITH_ARIA_128_GCM_SHA256,
   670  		http2cipher_TLS_DH_anon_WITH_ARIA_256_GCM_SHA384,
   671  		http2cipher_TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256,
   672  		http2cipher_TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384,
   673  		http2cipher_TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256,
   674  		http2cipher_TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384,
   675  		http2cipher_TLS_PSK_WITH_ARIA_128_CBC_SHA256,
   676  		http2cipher_TLS_PSK_WITH_ARIA_256_CBC_SHA384,
   677  		http2cipher_TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256,
   678  		http2cipher_TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384,
   679  		http2cipher_TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256,
   680  		http2cipher_TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384,
   681  		http2cipher_TLS_PSK_WITH_ARIA_128_GCM_SHA256,
   682  		http2cipher_TLS_PSK_WITH_ARIA_256_GCM_SHA384,
   683  		http2cipher_TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256,
   684  		http2cipher_TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384,
   685  		http2cipher_TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256,
   686  		http2cipher_TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384,
   687  		http2cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256,
   688  		http2cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384,
   689  		http2cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256,
   690  		http2cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384,
   691  		http2cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256,
   692  		http2cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384,
   693  		http2cipher_TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256,
   694  		http2cipher_TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384,
   695  		http2cipher_TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256,
   696  		http2cipher_TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384,
   697  		http2cipher_TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256,
   698  		http2cipher_TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384,
   699  		http2cipher_TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256,
   700  		http2cipher_TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384,
   701  		http2cipher_TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256,
   702  		http2cipher_TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384,
   703  		http2cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256,
   704  		http2cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384,
   705  		http2cipher_TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256,
   706  		http2cipher_TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384,
   707  		http2cipher_TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256,
   708  		http2cipher_TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384,
   709  		http2cipher_TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256,
   710  		http2cipher_TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384,
   711  		http2cipher_TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256,
   712  		http2cipher_TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384,
   713  		http2cipher_TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256,
   714  		http2cipher_TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384,
   715  		http2cipher_TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256,
   716  		http2cipher_TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384,
   717  		http2cipher_TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256,
   718  		http2cipher_TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384,
   719  		http2cipher_TLS_RSA_WITH_AES_128_CCM,
   720  		http2cipher_TLS_RSA_WITH_AES_256_CCM,
   721  		http2cipher_TLS_RSA_WITH_AES_128_CCM_8,
   722  		http2cipher_TLS_RSA_WITH_AES_256_CCM_8,
   723  		http2cipher_TLS_PSK_WITH_AES_128_CCM,
   724  		http2cipher_TLS_PSK_WITH_AES_256_CCM,
   725  		http2cipher_TLS_PSK_WITH_AES_128_CCM_8,
   726  		http2cipher_TLS_PSK_WITH_AES_256_CCM_8:
   727  		return true
   728  	default:
   729  		return false
   730  	}
   731  }
   732  
   733  // ClientConnPool manages a pool of HTTP/2 client connections.
   734  type http2ClientConnPool interface {
   735  	// GetClientConn returns a specific HTTP/2 connection (usually
   736  	// a TLS-TCP connection) to an HTTP/2 server. On success, the
   737  	// returned ClientConn accounts for the upcoming RoundTrip
   738  	// call, so the caller should not omit it. If the caller needs
   739  	// to, ClientConn.RoundTrip can be called with a bogus
   740  	// new(http.Request) to release the stream reservation.
   741  	GetClientConn(req *Request, addr string) (*http2ClientConn, error)
   742  	MarkDead(*http2ClientConn)
   743  }
   744  
   745  // clientConnPoolIdleCloser is the interface implemented by ClientConnPool
   746  // implementations which can close their idle connections.
   747  type http2clientConnPoolIdleCloser interface {
   748  	http2ClientConnPool
   749  	closeIdleConnections()
   750  }
   751  
   752  var (
   753  	_ http2clientConnPoolIdleCloser = (*http2clientConnPool)(nil)
   754  	_ http2clientConnPoolIdleCloser = http2noDialClientConnPool{}
   755  )
   756  
   757  // TODO: use singleflight for dialing and addConnCalls?
   758  type http2clientConnPool struct {
   759  	t *http2Transport
   760  
   761  	mu sync.Mutex // TODO: maybe switch to RWMutex
   762  	// TODO: add support for sharing conns based on cert names
   763  	// (e.g. share conn for googleapis.com and appspot.com)
   764  	conns        map[string][]*http2ClientConn // key is host:port
   765  	dialing      map[string]*http2dialCall     // currently in-flight dials
   766  	keys         map[*http2ClientConn][]string
   767  	addConnCalls map[string]*http2addConnCall // in-flight addConnIfNeeded calls
   768  }
   769  
   770  func (p *http2clientConnPool) GetClientConn(req *Request, addr string) (*http2ClientConn, error) {
   771  	return p.getClientConn(req, addr, http2dialOnMiss)
   772  }
   773  
   774  const (
   775  	http2dialOnMiss   = true
   776  	http2noDialOnMiss = false
   777  )
   778  
   779  func (p *http2clientConnPool) getClientConn(req *Request, addr string, dialOnMiss bool) (*http2ClientConn, error) {
   780  	// TODO(dneil): Dial a new connection when t.DisableKeepAlives is set?
   781  	if http2isConnectionCloseRequest(req) && dialOnMiss {
   782  		// It gets its own connection.
   783  		http2traceGetConn(req, addr)
   784  		const singleUse = true
   785  		cc, err := p.t.dialClientConn(req.Context(), addr, singleUse)
   786  		if err != nil {
   787  			return nil, err
   788  		}
   789  		return cc, nil
   790  	}
   791  	for {
   792  		p.mu.Lock()
   793  		for _, cc := range p.conns[addr] {
   794  			if cc.ReserveNewRequest() {
   795  				// When a connection is presented to us by the net/http package,
   796  				// the GetConn hook has already been called.
   797  				// Don't call it a second time here.
   798  				if !cc.getConnCalled {
   799  					http2traceGetConn(req, addr)
   800  				}
   801  				cc.getConnCalled = false
   802  				p.mu.Unlock()
   803  				return cc, nil
   804  			}
   805  		}
   806  		if !dialOnMiss {
   807  			p.mu.Unlock()
   808  			return nil, http2ErrNoCachedConn
   809  		}
   810  		http2traceGetConn(req, addr)
   811  		call := p.getStartDialLocked(req.Context(), addr)
   812  		p.mu.Unlock()
   813  		<-call.done
   814  		if http2shouldRetryDial(call, req) {
   815  			continue
   816  		}
   817  		cc, err := call.res, call.err
   818  		if err != nil {
   819  			return nil, err
   820  		}
   821  		if cc.ReserveNewRequest() {
   822  			return cc, nil
   823  		}
   824  	}
   825  }
   826  
   827  // dialCall is an in-flight Transport dial call to a host.
   828  type http2dialCall struct {
   829  	_ http2incomparable
   830  	p *http2clientConnPool
   831  	// the context associated with the request
   832  	// that created this dialCall
   833  	ctx  context.Context
   834  	done chan struct{}    // closed when done
   835  	res  *http2ClientConn // valid after done is closed
   836  	err  error            // valid after done is closed
   837  }
   838  
   839  // requires p.mu is held.
   840  func (p *http2clientConnPool) getStartDialLocked(ctx context.Context, addr string) *http2dialCall {
   841  	if call, ok := p.dialing[addr]; ok {
   842  		// A dial is already in-flight. Don't start another.
   843  		return call
   844  	}
   845  	call := &http2dialCall{p: p, done: make(chan struct{}), ctx: ctx}
   846  	if p.dialing == nil {
   847  		p.dialing = make(map[string]*http2dialCall)
   848  	}
   849  	p.dialing[addr] = call
   850  	go call.dial(call.ctx, addr)
   851  	return call
   852  }
   853  
   854  // run in its own goroutine.
   855  func (c *http2dialCall) dial(ctx context.Context, addr string) {
   856  	const singleUse = false // shared conn
   857  	c.res, c.err = c.p.t.dialClientConn(ctx, addr, singleUse)
   858  	close(c.done)
   859  
   860  	c.p.mu.Lock()
   861  	delete(c.p.dialing, addr)
   862  	if c.err == nil {
   863  		c.p.addConnLocked(addr, c.res)
   864  	}
   865  	c.p.mu.Unlock()
   866  }
   867  
   868  // addConnIfNeeded makes a NewClientConn out of c if a connection for key doesn't
   869  // already exist. It coalesces concurrent calls with the same key.
   870  // This is used by the http1 Transport code when it creates a new connection. Because
   871  // the http1 Transport doesn't de-dup TCP dials to outbound hosts (because it doesn't know
   872  // the protocol), it can get into a situation where it has multiple TLS connections.
   873  // This code decides which ones live or die.
   874  // The return value used is whether c was used.
   875  // c is never closed.
   876  func (p *http2clientConnPool) addConnIfNeeded(key string, t *http2Transport, c *tls.Conn) (used bool, err error) {
   877  	p.mu.Lock()
   878  	for _, cc := range p.conns[key] {
   879  		if cc.CanTakeNewRequest() {
   880  			p.mu.Unlock()
   881  			return false, nil
   882  		}
   883  	}
   884  	call, dup := p.addConnCalls[key]
   885  	if !dup {
   886  		if p.addConnCalls == nil {
   887  			p.addConnCalls = make(map[string]*http2addConnCall)
   888  		}
   889  		call = &http2addConnCall{
   890  			p:    p,
   891  			done: make(chan struct{}),
   892  		}
   893  		p.addConnCalls[key] = call
   894  		go call.run(t, key, c)
   895  	}
   896  	p.mu.Unlock()
   897  
   898  	<-call.done
   899  	if call.err != nil {
   900  		return false, call.err
   901  	}
   902  	return !dup, nil
   903  }
   904  
   905  type http2addConnCall struct {
   906  	_    http2incomparable
   907  	p    *http2clientConnPool
   908  	done chan struct{} // closed when done
   909  	err  error
   910  }
   911  
   912  func (c *http2addConnCall) run(t *http2Transport, key string, tc *tls.Conn) {
   913  	cc, err := t.NewClientConn(tc)
   914  
   915  	p := c.p
   916  	p.mu.Lock()
   917  	if err != nil {
   918  		c.err = err
   919  	} else {
   920  		cc.getConnCalled = true // already called by the net/http package
   921  		p.addConnLocked(key, cc)
   922  	}
   923  	delete(p.addConnCalls, key)
   924  	p.mu.Unlock()
   925  	close(c.done)
   926  }
   927  
   928  // p.mu must be held
   929  func (p *http2clientConnPool) addConnLocked(key string, cc *http2ClientConn) {
   930  	for _, v := range p.conns[key] {
   931  		if v == cc {
   932  			return
   933  		}
   934  	}
   935  	if p.conns == nil {
   936  		p.conns = make(map[string][]*http2ClientConn)
   937  	}
   938  	if p.keys == nil {
   939  		p.keys = make(map[*http2ClientConn][]string)
   940  	}
   941  	p.conns[key] = append(p.conns[key], cc)
   942  	p.keys[cc] = append(p.keys[cc], key)
   943  }
   944  
   945  func (p *http2clientConnPool) MarkDead(cc *http2ClientConn) {
   946  	p.mu.Lock()
   947  	defer p.mu.Unlock()
   948  	for _, key := range p.keys[cc] {
   949  		vv, ok := p.conns[key]
   950  		if !ok {
   951  			continue
   952  		}
   953  		newList := http2filterOutClientConn(vv, cc)
   954  		if len(newList) > 0 {
   955  			p.conns[key] = newList
   956  		} else {
   957  			delete(p.conns, key)
   958  		}
   959  	}
   960  	delete(p.keys, cc)
   961  }
   962  
   963  func (p *http2clientConnPool) closeIdleConnections() {
   964  	p.mu.Lock()
   965  	defer p.mu.Unlock()
   966  	// TODO: don't close a cc if it was just added to the pool
   967  	// milliseconds ago and has never been used. There's currently
   968  	// a small race window with the HTTP/1 Transport's integration
   969  	// where it can add an idle conn just before using it, and
   970  	// somebody else can concurrently call CloseIdleConns and
   971  	// break some caller's RoundTrip.
   972  	for _, vv := range p.conns {
   973  		for _, cc := range vv {
   974  			cc.closeIfIdle()
   975  		}
   976  	}
   977  }
   978  
   979  func http2filterOutClientConn(in []*http2ClientConn, exclude *http2ClientConn) []*http2ClientConn {
   980  	out := in[:0]
   981  	for _, v := range in {
   982  		if v != exclude {
   983  			out = append(out, v)
   984  		}
   985  	}
   986  	// If we filtered it out, zero out the last item to prevent
   987  	// the GC from seeing it.
   988  	if len(in) != len(out) {
   989  		in[len(in)-1] = nil
   990  	}
   991  	return out
   992  }
   993  
   994  // noDialClientConnPool is an implementation of http2.ClientConnPool
   995  // which never dials. We let the HTTP/1.1 client dial and use its TLS
   996  // connection instead.
   997  type http2noDialClientConnPool struct{ *http2clientConnPool }
   998  
   999  func (p http2noDialClientConnPool) GetClientConn(req *Request, addr string) (*http2ClientConn, error) {
  1000  	return p.getClientConn(req, addr, http2noDialOnMiss)
  1001  }
  1002  
  1003  // shouldRetryDial reports whether the current request should
  1004  // retry dialing after the call finished unsuccessfully, for example
  1005  // if the dial was canceled because of a context cancellation or
  1006  // deadline expiry.
  1007  func http2shouldRetryDial(call *http2dialCall, req *Request) bool {
  1008  	if call.err == nil {
  1009  		// No error, no need to retry
  1010  		return false
  1011  	}
  1012  	if call.ctx == req.Context() {
  1013  		// If the call has the same context as the request, the dial
  1014  		// should not be retried, since any cancellation will have come
  1015  		// from this request.
  1016  		return false
  1017  	}
  1018  	if !errors.Is(call.err, context.Canceled) && !errors.Is(call.err, context.DeadlineExceeded) {
  1019  		// If the call error is not because of a context cancellation or a deadline expiry,
  1020  		// the dial should not be retried.
  1021  		return false
  1022  	}
  1023  	// Only retry if the error is a context cancellation error or deadline expiry
  1024  	// and the context associated with the call was canceled or expired.
  1025  	return call.ctx.Err() != nil
  1026  }
  1027  
  1028  // Buffer chunks are allocated from a pool to reduce pressure on GC.
  1029  // The maximum wasted space per dataBuffer is 2x the largest size class,
  1030  // which happens when the dataBuffer has multiple chunks and there is
  1031  // one unread byte in both the first and last chunks. We use a few size
  1032  // classes to minimize overheads for servers that typically receive very
  1033  // small request bodies.
  1034  //
  1035  // TODO: Benchmark to determine if the pools are necessary. The GC may have
  1036  // improved enough that we can instead allocate chunks like this:
  1037  // make([]byte, max(16<<10, expectedBytesRemaining))
  1038  var (
  1039  	http2dataChunkSizeClasses = []int{
  1040  		1 << 10,
  1041  		2 << 10,
  1042  		4 << 10,
  1043  		8 << 10,
  1044  		16 << 10,
  1045  	}
  1046  	http2dataChunkPools = [...]sync.Pool{
  1047  		{New: func() interface{} { return make([]byte, 1<<10) }},
  1048  		{New: func() interface{} { return make([]byte, 2<<10) }},
  1049  		{New: func() interface{} { return make([]byte, 4<<10) }},
  1050  		{New: func() interface{} { return make([]byte, 8<<10) }},
  1051  		{New: func() interface{} { return make([]byte, 16<<10) }},
  1052  	}
  1053  )
  1054  
  1055  func http2getDataBufferChunk(size int64) []byte {
  1056  	i := 0
  1057  	for ; i < len(http2dataChunkSizeClasses)-1; i++ {
  1058  		if size <= int64(http2dataChunkSizeClasses[i]) {
  1059  			break
  1060  		}
  1061  	}
  1062  	return http2dataChunkPools[i].Get().([]byte)
  1063  }
  1064  
  1065  func http2putDataBufferChunk(p []byte) {
  1066  	for i, n := range http2dataChunkSizeClasses {
  1067  		if len(p) == n {
  1068  			http2dataChunkPools[i].Put(p)
  1069  			return
  1070  		}
  1071  	}
  1072  	panic(fmt.Sprintf("unexpected buffer len=%v", len(p)))
  1073  }
  1074  
  1075  // dataBuffer is an io.ReadWriter backed by a list of data chunks.
  1076  // Each dataBuffer is used to read DATA frames on a single stream.
  1077  // The buffer is divided into chunks so the server can limit the
  1078  // total memory used by a single connection without limiting the
  1079  // request body size on any single stream.
  1080  type http2dataBuffer struct {
  1081  	chunks   [][]byte
  1082  	r        int   // next byte to read is chunks[0][r]
  1083  	w        int   // next byte to write is chunks[len(chunks)-1][w]
  1084  	size     int   // total buffered bytes
  1085  	expected int64 // we expect at least this many bytes in future Write calls (ignored if <= 0)
  1086  }
  1087  
  1088  var http2errReadEmpty = errors.New("read from empty dataBuffer")
  1089  
  1090  // Read copies bytes from the buffer into p.
  1091  // It is an error to read when no data is available.
  1092  func (b *http2dataBuffer) Read(p []byte) (int, error) {
  1093  	if b.size == 0 {
  1094  		return 0, http2errReadEmpty
  1095  	}
  1096  	var ntotal int
  1097  	for len(p) > 0 && b.size > 0 {
  1098  		readFrom := b.bytesFromFirstChunk()
  1099  		n := copy(p, readFrom)
  1100  		p = p[n:]
  1101  		ntotal += n
  1102  		b.r += n
  1103  		b.size -= n
  1104  		// If the first chunk has been consumed, advance to the next chunk.
  1105  		if b.r == len(b.chunks[0]) {
  1106  			http2putDataBufferChunk(b.chunks[0])
  1107  			end := len(b.chunks) - 1
  1108  			copy(b.chunks[:end], b.chunks[1:])
  1109  			b.chunks[end] = nil
  1110  			b.chunks = b.chunks[:end]
  1111  			b.r = 0
  1112  		}
  1113  	}
  1114  	return ntotal, nil
  1115  }
  1116  
  1117  func (b *http2dataBuffer) bytesFromFirstChunk() []byte {
  1118  	if len(b.chunks) == 1 {
  1119  		return b.chunks[0][b.r:b.w]
  1120  	}
  1121  	return b.chunks[0][b.r:]
  1122  }
  1123  
  1124  // Len returns the number of bytes of the unread portion of the buffer.
  1125  func (b *http2dataBuffer) Len() int {
  1126  	return b.size
  1127  }
  1128  
  1129  // Write appends p to the buffer.
  1130  func (b *http2dataBuffer) Write(p []byte) (int, error) {
  1131  	ntotal := len(p)
  1132  	for len(p) > 0 {
  1133  		// If the last chunk is empty, allocate a new chunk. Try to allocate
  1134  		// enough to fully copy p plus any additional bytes we expect to
  1135  		// receive. However, this may allocate less than len(p).
  1136  		want := int64(len(p))
  1137  		if b.expected > want {
  1138  			want = b.expected
  1139  		}
  1140  		chunk := b.lastChunkOrAlloc(want)
  1141  		n := copy(chunk[b.w:], p)
  1142  		p = p[n:]
  1143  		b.w += n
  1144  		b.size += n
  1145  		b.expected -= int64(n)
  1146  	}
  1147  	return ntotal, nil
  1148  }
  1149  
  1150  func (b *http2dataBuffer) lastChunkOrAlloc(want int64) []byte {
  1151  	if len(b.chunks) != 0 {
  1152  		last := b.chunks[len(b.chunks)-1]
  1153  		if b.w < len(last) {
  1154  			return last
  1155  		}
  1156  	}
  1157  	chunk := http2getDataBufferChunk(want)
  1158  	b.chunks = append(b.chunks, chunk)
  1159  	b.w = 0
  1160  	return chunk
  1161  }
  1162  
  1163  // An ErrCode is an unsigned 32-bit error code as defined in the HTTP/2 spec.
  1164  type http2ErrCode uint32
  1165  
  1166  const (
  1167  	http2ErrCodeNo                 http2ErrCode = 0x0
  1168  	http2ErrCodeProtocol           http2ErrCode = 0x1
  1169  	http2ErrCodeInternal           http2ErrCode = 0x2
  1170  	http2ErrCodeFlowControl        http2ErrCode = 0x3
  1171  	http2ErrCodeSettingsTimeout    http2ErrCode = 0x4
  1172  	http2ErrCodeStreamClosed       http2ErrCode = 0x5
  1173  	http2ErrCodeFrameSize          http2ErrCode = 0x6
  1174  	http2ErrCodeRefusedStream      http2ErrCode = 0x7
  1175  	http2ErrCodeCancel             http2ErrCode = 0x8
  1176  	http2ErrCodeCompression        http2ErrCode = 0x9
  1177  	http2ErrCodeConnect            http2ErrCode = 0xa
  1178  	http2ErrCodeEnhanceYourCalm    http2ErrCode = 0xb
  1179  	http2ErrCodeInadequateSecurity http2ErrCode = 0xc
  1180  	http2ErrCodeHTTP11Required     http2ErrCode = 0xd
  1181  )
  1182  
  1183  var http2errCodeName = map[http2ErrCode]string{
  1184  	http2ErrCodeNo:                 "NO_ERROR",
  1185  	http2ErrCodeProtocol:           "PROTOCOL_ERROR",
  1186  	http2ErrCodeInternal:           "INTERNAL_ERROR",
  1187  	http2ErrCodeFlowControl:        "FLOW_CONTROL_ERROR",
  1188  	http2ErrCodeSettingsTimeout:    "SETTINGS_TIMEOUT",
  1189  	http2ErrCodeStreamClosed:       "STREAM_CLOSED",
  1190  	http2ErrCodeFrameSize:          "FRAME_SIZE_ERROR",
  1191  	http2ErrCodeRefusedStream:      "REFUSED_STREAM",
  1192  	http2ErrCodeCancel:             "CANCEL",
  1193  	http2ErrCodeCompression:        "COMPRESSION_ERROR",
  1194  	http2ErrCodeConnect:            "CONNECT_ERROR",
  1195  	http2ErrCodeEnhanceYourCalm:    "ENHANCE_YOUR_CALM",
  1196  	http2ErrCodeInadequateSecurity: "INADEQUATE_SECURITY",
  1197  	http2ErrCodeHTTP11Required:     "HTTP_1_1_REQUIRED",
  1198  }
  1199  
  1200  func (e http2ErrCode) String() string {
  1201  	if s, ok := http2errCodeName[e]; ok {
  1202  		return s
  1203  	}
  1204  	return fmt.Sprintf("unknown error code 0x%x", uint32(e))
  1205  }
  1206  
  1207  // ConnectionError is an error that results in the termination of the
  1208  // entire connection.
  1209  type http2ConnectionError http2ErrCode
  1210  
  1211  func (e http2ConnectionError) Error() string {
  1212  	return fmt.Sprintf("connection error: %s", http2ErrCode(e))
  1213  }
  1214  
  1215  // StreamError is an error that only affects one stream within an
  1216  // HTTP/2 connection.
  1217  type http2StreamError struct {
  1218  	StreamID uint32
  1219  	Code     http2ErrCode
  1220  	Cause    error // optional additional detail
  1221  }
  1222  
  1223  // errFromPeer is a sentinel error value for StreamError.Cause to
  1224  // indicate that the StreamError was sent from the peer over the wire
  1225  // and wasn't locally generated in the Transport.
  1226  var http2errFromPeer = errors.New("received from peer")
  1227  
  1228  func http2streamError(id uint32, code http2ErrCode) http2StreamError {
  1229  	return http2StreamError{StreamID: id, Code: code}
  1230  }
  1231  
  1232  func (e http2StreamError) Error() string {
  1233  	if e.Cause != nil {
  1234  		return fmt.Sprintf("stream error: stream ID %d; %v; %v", e.StreamID, e.Code, e.Cause)
  1235  	}
  1236  	return fmt.Sprintf("stream error: stream ID %d; %v", e.StreamID, e.Code)
  1237  }
  1238  
  1239  // 6.9.1 The Flow Control Window
  1240  // "If a sender receives a WINDOW_UPDATE that causes a flow control
  1241  // window to exceed this maximum it MUST terminate either the stream
  1242  // or the connection, as appropriate. For streams, [...]; for the
  1243  // connection, a GOAWAY frame with a FLOW_CONTROL_ERROR code."
  1244  type http2goAwayFlowError struct{}
  1245  
  1246  func (http2goAwayFlowError) Error() string { return "connection exceeded flow control window size" }
  1247  
  1248  // connError represents an HTTP/2 ConnectionError error code, along
  1249  // with a string (for debugging) explaining why.
  1250  //
  1251  // Errors of this type are only returned by the frame parser functions
  1252  // and converted into ConnectionError(Code), after stashing away
  1253  // the Reason into the Framer's errDetail field, accessible via
  1254  // the (*Framer).ErrorDetail method.
  1255  type http2connError struct {
  1256  	Code   http2ErrCode // the ConnectionError error code
  1257  	Reason string       // additional reason
  1258  }
  1259  
  1260  func (e http2connError) Error() string {
  1261  	return fmt.Sprintf("http2: connection error: %v: %v", e.Code, e.Reason)
  1262  }
  1263  
  1264  type http2pseudoHeaderError string
  1265  
  1266  func (e http2pseudoHeaderError) Error() string {
  1267  	return fmt.Sprintf("invalid pseudo-header %q", string(e))
  1268  }
  1269  
  1270  type http2duplicatePseudoHeaderError string
  1271  
  1272  func (e http2duplicatePseudoHeaderError) Error() string {
  1273  	return fmt.Sprintf("duplicate pseudo-header %q", string(e))
  1274  }
  1275  
  1276  type http2headerFieldNameError string
  1277  
  1278  func (e http2headerFieldNameError) Error() string {
  1279  	return fmt.Sprintf("invalid header field name %q", string(e))
  1280  }
  1281  
  1282  type http2headerFieldValueError string
  1283  
  1284  func (e http2headerFieldValueError) Error() string {
  1285  	return fmt.Sprintf("invalid header field value %q", string(e))
  1286  }
  1287  
  1288  var (
  1289  	http2errMixPseudoHeaderTypes = errors.New("mix of request and response pseudo headers")
  1290  	http2errPseudoAfterRegular   = errors.New("pseudo header field after regular")
  1291  )
  1292  
  1293  // flow is the flow control window's size.
  1294  type http2flow struct {
  1295  	_ http2incomparable
  1296  
  1297  	// n is the number of DATA bytes we're allowed to send.
  1298  	// A flow is kept both on a conn and a per-stream.
  1299  	n int32
  1300  
  1301  	// conn points to the shared connection-level flow that is
  1302  	// shared by all streams on that conn. It is nil for the flow
  1303  	// that's on the conn directly.
  1304  	conn *http2flow
  1305  }
  1306  
  1307  func (f *http2flow) setConnFlow(cf *http2flow) { f.conn = cf }
  1308  
  1309  func (f *http2flow) available() int32 {
  1310  	n := f.n
  1311  	if f.conn != nil && f.conn.n < n {
  1312  		n = f.conn.n
  1313  	}
  1314  	return n
  1315  }
  1316  
  1317  func (f *http2flow) take(n int32) {
  1318  	if n > f.available() {
  1319  		panic("internal error: took too much")
  1320  	}
  1321  	f.n -= n
  1322  	if f.conn != nil {
  1323  		f.conn.n -= n
  1324  	}
  1325  }
  1326  
  1327  // add adds n bytes (positive or negative) to the flow control window.
  1328  // It returns false if the sum would exceed 2^31-1.
  1329  func (f *http2flow) add(n int32) bool {
  1330  	sum := f.n + n
  1331  	if (sum > n) == (f.n > 0) {
  1332  		f.n = sum
  1333  		return true
  1334  	}
  1335  	return false
  1336  }
  1337  
  1338  const http2frameHeaderLen = 9
  1339  
  1340  var http2padZeros = make([]byte, 255) // zeros for padding
  1341  
  1342  // A FrameType is a registered frame type as defined in
  1343  // http://http2.github.io/http2-spec/#rfc.section.11.2
  1344  type http2FrameType uint8
  1345  
  1346  const (
  1347  	http2FrameData         http2FrameType = 0x0
  1348  	http2FrameHeaders      http2FrameType = 0x1
  1349  	http2FramePriority     http2FrameType = 0x2
  1350  	http2FrameRSTStream    http2FrameType = 0x3
  1351  	http2FrameSettings     http2FrameType = 0x4
  1352  	http2FramePushPromise  http2FrameType = 0x5
  1353  	http2FramePing         http2FrameType = 0x6
  1354  	http2FrameGoAway       http2FrameType = 0x7
  1355  	http2FrameWindowUpdate http2FrameType = 0x8
  1356  	http2FrameContinuation http2FrameType = 0x9
  1357  )
  1358  
  1359  var http2frameName = map[http2FrameType]string{
  1360  	http2FrameData:         "DATA",
  1361  	http2FrameHeaders:      "HEADERS",
  1362  	http2FramePriority:     "PRIORITY",
  1363  	http2FrameRSTStream:    "RST_STREAM",
  1364  	http2FrameSettings:     "SETTINGS",
  1365  	http2FramePushPromise:  "PUSH_PROMISE",
  1366  	http2FramePing:         "PING",
  1367  	http2FrameGoAway:       "GOAWAY",
  1368  	http2FrameWindowUpdate: "WINDOW_UPDATE",
  1369  	http2FrameContinuation: "CONTINUATION",
  1370  }
  1371  
  1372  func (t http2FrameType) String() string {
  1373  	if s, ok := http2frameName[t]; ok {
  1374  		return s
  1375  	}
  1376  	return fmt.Sprintf("UNKNOWN_FRAME_TYPE_%d", uint8(t))
  1377  }
  1378  
  1379  // Flags is a bitmask of HTTP/2 flags.
  1380  // The meaning of flags varies depending on the frame type.
  1381  type http2Flags uint8
  1382  
  1383  // Has reports whether f contains all (0 or more) flags in v.
  1384  func (f http2Flags) Has(v http2Flags) bool {
  1385  	return (f & v) == v
  1386  }
  1387  
  1388  // Frame-specific FrameHeader flag bits.
  1389  const (
  1390  	// Data Frame
  1391  	http2FlagDataEndStream http2Flags = 0x1
  1392  	http2FlagDataPadded    http2Flags = 0x8
  1393  
  1394  	// Headers Frame
  1395  	http2FlagHeadersEndStream  http2Flags = 0x1
  1396  	http2FlagHeadersEndHeaders http2Flags = 0x4
  1397  	http2FlagHeadersPadded     http2Flags = 0x8
  1398  	http2FlagHeadersPriority   http2Flags = 0x20
  1399  
  1400  	// Settings Frame
  1401  	http2FlagSettingsAck http2Flags = 0x1
  1402  
  1403  	// Ping Frame
  1404  	http2FlagPingAck http2Flags = 0x1
  1405  
  1406  	// Continuation Frame
  1407  	http2FlagContinuationEndHeaders http2Flags = 0x4
  1408  
  1409  	http2FlagPushPromiseEndHeaders http2Flags = 0x4
  1410  	http2FlagPushPromisePadded     http2Flags = 0x8
  1411  )
  1412  
  1413  var http2flagName = map[http2FrameType]map[http2Flags]string{
  1414  	http2FrameData: {
  1415  		http2FlagDataEndStream: "END_STREAM",
  1416  		http2FlagDataPadded:    "PADDED",
  1417  	},
  1418  	http2FrameHeaders: {
  1419  		http2FlagHeadersEndStream:  "END_STREAM",
  1420  		http2FlagHeadersEndHeaders: "END_HEADERS",
  1421  		http2FlagHeadersPadded:     "PADDED",
  1422  		http2FlagHeadersPriority:   "PRIORITY",
  1423  	},
  1424  	http2FrameSettings: {
  1425  		http2FlagSettingsAck: "ACK",
  1426  	},
  1427  	http2FramePing: {
  1428  		http2FlagPingAck: "ACK",
  1429  	},
  1430  	http2FrameContinuation: {
  1431  		http2FlagContinuationEndHeaders: "END_HEADERS",
  1432  	},
  1433  	http2FramePushPromise: {
  1434  		http2FlagPushPromiseEndHeaders: "END_HEADERS",
  1435  		http2FlagPushPromisePadded:     "PADDED",
  1436  	},
  1437  }
  1438  
  1439  // a frameParser parses a frame given its FrameHeader and payload
  1440  // bytes. The length of payload will always equal fh.Length (which
  1441  // might be 0).
  1442  type http2frameParser func(fc *http2frameCache, fh http2FrameHeader, payload []byte) (http2Frame, error)
  1443  
  1444  var http2frameParsers = map[http2FrameType]http2frameParser{
  1445  	http2FrameData:         http2parseDataFrame,
  1446  	http2FrameHeaders:      http2parseHeadersFrame,
  1447  	http2FramePriority:     http2parsePriorityFrame,
  1448  	http2FrameRSTStream:    http2parseRSTStreamFrame,
  1449  	http2FrameSettings:     http2parseSettingsFrame,
  1450  	http2FramePushPromise:  http2parsePushPromise,
  1451  	http2FramePing:         http2parsePingFrame,
  1452  	http2FrameGoAway:       http2parseGoAwayFrame,
  1453  	http2FrameWindowUpdate: http2parseWindowUpdateFrame,
  1454  	http2FrameContinuation: http2parseContinuationFrame,
  1455  }
  1456  
  1457  func http2typeFrameParser(t http2FrameType) http2frameParser {
  1458  	if f := http2frameParsers[t]; f != nil {
  1459  		return f
  1460  	}
  1461  	return http2parseUnknownFrame
  1462  }
  1463  
  1464  // A FrameHeader is the 9 byte header of all HTTP/2 frames.
  1465  //
  1466  // See http://http2.github.io/http2-spec/#FrameHeader
  1467  type http2FrameHeader struct {
  1468  	valid bool // caller can access []byte fields in the Frame
  1469  
  1470  	// Type is the 1 byte frame type. There are ten standard frame
  1471  	// types, but extension frame types may be written by WriteRawFrame
  1472  	// and will be returned by ReadFrame (as UnknownFrame).
  1473  	Type http2FrameType
  1474  
  1475  	// Flags are the 1 byte of 8 potential bit flags per frame.
  1476  	// They are specific to the frame type.
  1477  	Flags http2Flags
  1478  
  1479  	// Length is the length of the frame, not including the 9 byte header.
  1480  	// The maximum size is one byte less than 16MB (uint24), but only
  1481  	// frames up to 16KB are allowed without peer agreement.
  1482  	Length uint32
  1483  
  1484  	// StreamID is which stream this frame is for. Certain frames
  1485  	// are not stream-specific, in which case this field is 0.
  1486  	StreamID uint32
  1487  }
  1488  
  1489  // Header returns h. It exists so FrameHeaders can be embedded in other
  1490  // specific frame types and implement the Frame interface.
  1491  func (h http2FrameHeader) Header() http2FrameHeader { return h }
  1492  
  1493  func (h http2FrameHeader) String() string {
  1494  	var buf bytes.Buffer
  1495  	buf.WriteString("[FrameHeader ")
  1496  	h.writeDebug(&buf)
  1497  	buf.WriteByte(']')
  1498  	return buf.String()
  1499  }
  1500  
  1501  func (h http2FrameHeader) writeDebug(buf *bytes.Buffer) {
  1502  	buf.WriteString(h.Type.String())
  1503  	if h.Flags != 0 {
  1504  		buf.WriteString(" flags=")
  1505  		set := 0
  1506  		for i := uint8(0); i < 8; i++ {
  1507  			if h.Flags&(1<<i) == 0 {
  1508  				continue
  1509  			}
  1510  			set++
  1511  			if set > 1 {
  1512  				buf.WriteByte('|')
  1513  			}
  1514  			name := http2flagName[h.Type][http2Flags(1<<i)]
  1515  			if name != "" {
  1516  				buf.WriteString(name)
  1517  			} else {
  1518  				fmt.Fprintf(buf, "0x%x", 1<<i)
  1519  			}
  1520  		}
  1521  	}
  1522  	if h.StreamID != 0 {
  1523  		fmt.Fprintf(buf, " stream=%d", h.StreamID)
  1524  	}
  1525  	fmt.Fprintf(buf, " len=%d", h.Length)
  1526  }
  1527  
  1528  func (h *http2FrameHeader) checkValid() {
  1529  	if !h.valid {
  1530  		panic("Frame accessor called on non-owned Frame")
  1531  	}
  1532  }
  1533  
  1534  func (h *http2FrameHeader) invalidate() { h.valid = false }
  1535  
  1536  // frame header bytes.
  1537  // Used only by ReadFrameHeader.
  1538  var http2fhBytes = sync.Pool{
  1539  	New: func() interface{} {
  1540  		buf := make([]byte, http2frameHeaderLen)
  1541  		return &buf
  1542  	},
  1543  }
  1544  
  1545  // ReadFrameHeader reads 9 bytes from r and returns a FrameHeader.
  1546  // Most users should use Framer.ReadFrame instead.
  1547  func http2ReadFrameHeader(r io.Reader) (http2FrameHeader, error) {
  1548  	bufp := http2fhBytes.Get().(*[]byte)
  1549  	defer http2fhBytes.Put(bufp)
  1550  	return http2readFrameHeader(*bufp, r)
  1551  }
  1552  
  1553  func http2readFrameHeader(buf []byte, r io.Reader) (http2FrameHeader, error) {
  1554  	_, err := io.ReadFull(r, buf[:http2frameHeaderLen])
  1555  	if err != nil {
  1556  		return http2FrameHeader{}, err
  1557  	}
  1558  	return http2FrameHeader{
  1559  		Length:   (uint32(buf[0])<<16 | uint32(buf[1])<<8 | uint32(buf[2])),
  1560  		Type:     http2FrameType(buf[3]),
  1561  		Flags:    http2Flags(buf[4]),
  1562  		StreamID: binary.BigEndian.Uint32(buf[5:]) & (1<<31 - 1),
  1563  		valid:    true,
  1564  	}, nil
  1565  }
  1566  
  1567  // A Frame is the base interface implemented by all frame types.
  1568  // Callers will generally type-assert the specific frame type:
  1569  // *HeadersFrame, *SettingsFrame, *WindowUpdateFrame, etc.
  1570  //
  1571  // Frames are only valid until the next call to Framer.ReadFrame.
  1572  type http2Frame interface {
  1573  	Header() http2FrameHeader
  1574  
  1575  	// invalidate is called by Framer.ReadFrame to make this
  1576  	// frame's buffers as being invalid, since the subsequent
  1577  	// frame will reuse them.
  1578  	invalidate()
  1579  }
  1580  
  1581  // A Framer reads and writes Frames.
  1582  type http2Framer struct {
  1583  	r         io.Reader
  1584  	lastFrame http2Frame
  1585  	errDetail error
  1586  
  1587  	// lastHeaderStream is non-zero if the last frame was an
  1588  	// unfinished HEADERS/CONTINUATION.
  1589  	lastHeaderStream uint32
  1590  
  1591  	maxReadSize uint32
  1592  	headerBuf   [http2frameHeaderLen]byte
  1593  
  1594  	// TODO: let getReadBuf be configurable, and use a less memory-pinning
  1595  	// allocator in server.go to minimize memory pinned for many idle conns.
  1596  	// Will probably also need to make frame invalidation have a hook too.
  1597  	getReadBuf func(size uint32) []byte
  1598  	readBuf    []byte // cache for default getReadBuf
  1599  
  1600  	maxWriteSize uint32 // zero means unlimited; TODO: implement
  1601  
  1602  	w    io.Writer
  1603  	wbuf []byte
  1604  
  1605  	// AllowIllegalWrites permits the Framer's Write methods to
  1606  	// write frames that do not conform to the HTTP/2 spec. This
  1607  	// permits using the Framer to test other HTTP/2
  1608  	// implementations' conformance to the spec.
  1609  	// If false, the Write methods will prefer to return an error
  1610  	// rather than comply.
  1611  	AllowIllegalWrites bool
  1612  
  1613  	// AllowIllegalReads permits the Framer's ReadFrame method
  1614  	// to return non-compliant frames or frame orders.
  1615  	// This is for testing and permits using the Framer to test
  1616  	// other HTTP/2 implementations' conformance to the spec.
  1617  	// It is not compatible with ReadMetaHeaders.
  1618  	AllowIllegalReads bool
  1619  
  1620  	// ReadMetaHeaders if non-nil causes ReadFrame to merge
  1621  	// HEADERS and CONTINUATION frames together and return
  1622  	// MetaHeadersFrame instead.
  1623  	ReadMetaHeaders *hpack.Decoder
  1624  
  1625  	// MaxHeaderListSize is the http2 MAX_HEADER_LIST_SIZE.
  1626  	// It's used only if ReadMetaHeaders is set; 0 means a sane default
  1627  	// (currently 16MB)
  1628  	// If the limit is hit, MetaHeadersFrame.Truncated is set true.
  1629  	MaxHeaderListSize uint32
  1630  
  1631  	// TODO: track which type of frame & with which flags was sent
  1632  	// last. Then return an error (unless AllowIllegalWrites) if
  1633  	// we're in the middle of a header block and a
  1634  	// non-Continuation or Continuation on a different stream is
  1635  	// attempted to be written.
  1636  
  1637  	logReads, logWrites bool
  1638  
  1639  	debugFramer       *http2Framer // only use for logging written writes
  1640  	debugFramerBuf    *bytes.Buffer
  1641  	debugReadLoggerf  func(string, ...interface{})
  1642  	debugWriteLoggerf func(string, ...interface{})
  1643  
  1644  	frameCache *http2frameCache // nil if frames aren't reused (default)
  1645  }
  1646  
  1647  func (fr *http2Framer) maxHeaderListSize() uint32 {
  1648  	if fr.MaxHeaderListSize == 0 {
  1649  		return 16 << 20 // sane default, per docs
  1650  	}
  1651  	return fr.MaxHeaderListSize
  1652  }
  1653  
  1654  func (f *http2Framer) startWrite(ftype http2FrameType, flags http2Flags, streamID uint32) {
  1655  	// Write the FrameHeader.
  1656  	f.wbuf = append(f.wbuf[:0],
  1657  		0, // 3 bytes of length, filled in in endWrite
  1658  		0,
  1659  		0,
  1660  		byte(ftype),
  1661  		byte(flags),
  1662  		byte(streamID>>24),
  1663  		byte(streamID>>16),
  1664  		byte(streamID>>8),
  1665  		byte(streamID))
  1666  }
  1667  
  1668  func (f *http2Framer) endWrite() error {
  1669  	// Now that we know the final size, fill in the FrameHeader in
  1670  	// the space previously reserved for it. Abuse append.
  1671  	length := len(f.wbuf) - http2frameHeaderLen
  1672  	if length >= (1 << 24) {
  1673  		return http2ErrFrameTooLarge
  1674  	}
  1675  	_ = append(f.wbuf[:0],
  1676  		byte(length>>16),
  1677  		byte(length>>8),
  1678  		byte(length))
  1679  	if f.logWrites {
  1680  		f.logWrite()
  1681  	}
  1682  
  1683  	n, err := f.w.Write(f.wbuf)
  1684  	if err == nil && n != len(f.wbuf) {
  1685  		err = io.ErrShortWrite
  1686  	}
  1687  	return err
  1688  }
  1689  
  1690  func (f *http2Framer) logWrite() {
  1691  	if f.debugFramer == nil {
  1692  		f.debugFramerBuf = new(bytes.Buffer)
  1693  		f.debugFramer = http2NewFramer(nil, f.debugFramerBuf)
  1694  		f.debugFramer.logReads = false // we log it ourselves, saying "wrote" below
  1695  		// Let us read anything, even if we accidentally wrote it
  1696  		// in the wrong order:
  1697  		f.debugFramer.AllowIllegalReads = true
  1698  	}
  1699  	f.debugFramerBuf.Write(f.wbuf)
  1700  	fr, err := f.debugFramer.ReadFrame()
  1701  	if err != nil {
  1702  		f.debugWriteLoggerf("http2: Framer %p: failed to decode just-written frame", f)
  1703  		return
  1704  	}
  1705  	f.debugWriteLoggerf("http2: Framer %p: wrote %v", f, http2summarizeFrame(fr))
  1706  }
  1707  
  1708  func (f *http2Framer) writeByte(v byte) { f.wbuf = append(f.wbuf, v) }
  1709  
  1710  func (f *http2Framer) writeBytes(v []byte) { f.wbuf = append(f.wbuf, v...) }
  1711  
  1712  func (f *http2Framer) writeUint16(v uint16) { f.wbuf = append(f.wbuf, byte(v>>8), byte(v)) }
  1713  
  1714  func (f *http2Framer) writeUint32(v uint32) {
  1715  	f.wbuf = append(f.wbuf, byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
  1716  }
  1717  
  1718  const (
  1719  	http2minMaxFrameSize = 1 << 14
  1720  	http2maxFrameSize    = 1<<24 - 1
  1721  )
  1722  
  1723  // SetReuseFrames allows the Framer to reuse Frames.
  1724  // If called on a Framer, Frames returned by calls to ReadFrame are only
  1725  // valid until the next call to ReadFrame.
  1726  func (fr *http2Framer) SetReuseFrames() {
  1727  	if fr.frameCache != nil {
  1728  		return
  1729  	}
  1730  	fr.frameCache = &http2frameCache{}
  1731  }
  1732  
  1733  type http2frameCache struct {
  1734  	dataFrame http2DataFrame
  1735  }
  1736  
  1737  func (fc *http2frameCache) getDataFrame() *http2DataFrame {
  1738  	if fc == nil {
  1739  		return &http2DataFrame{}
  1740  	}
  1741  	return &fc.dataFrame
  1742  }
  1743  
  1744  // NewFramer returns a Framer that writes frames to w and reads them from r.
  1745  func http2NewFramer(w io.Writer, r io.Reader) *http2Framer {
  1746  	fr := &http2Framer{
  1747  		w:                 w,
  1748  		r:                 r,
  1749  		logReads:          http2logFrameReads,
  1750  		logWrites:         http2logFrameWrites,
  1751  		debugReadLoggerf:  log.Printf,
  1752  		debugWriteLoggerf: log.Printf,
  1753  	}
  1754  	fr.getReadBuf = func(size uint32) []byte {
  1755  		if cap(fr.readBuf) >= int(size) {
  1756  			return fr.readBuf[:size]
  1757  		}
  1758  		fr.readBuf = make([]byte, size)
  1759  		return fr.readBuf
  1760  	}
  1761  	fr.SetMaxReadFrameSize(http2maxFrameSize)
  1762  	return fr
  1763  }
  1764  
  1765  // SetMaxReadFrameSize sets the maximum size of a frame
  1766  // that will be read by a subsequent call to ReadFrame.
  1767  // It is the caller's responsibility to advertise this
  1768  // limit with a SETTINGS frame.
  1769  func (fr *http2Framer) SetMaxReadFrameSize(v uint32) {
  1770  	if v > http2maxFrameSize {
  1771  		v = http2maxFrameSize
  1772  	}
  1773  	fr.maxReadSize = v
  1774  }
  1775  
  1776  // ErrorDetail returns a more detailed error of the last error
  1777  // returned by Framer.ReadFrame. For instance, if ReadFrame
  1778  // returns a StreamError with code PROTOCOL_ERROR, ErrorDetail
  1779  // will say exactly what was invalid. ErrorDetail is not guaranteed
  1780  // to return a non-nil value and like the rest of the http2 package,
  1781  // its return value is not protected by an API compatibility promise.
  1782  // ErrorDetail is reset after the next call to ReadFrame.
  1783  func (fr *http2Framer) ErrorDetail() error {
  1784  	return fr.errDetail
  1785  }
  1786  
  1787  // ErrFrameTooLarge is returned from Framer.ReadFrame when the peer
  1788  // sends a frame that is larger than declared with SetMaxReadFrameSize.
  1789  var http2ErrFrameTooLarge = errors.New("http2: frame too large")
  1790  
  1791  // terminalReadFrameError reports whether err is an unrecoverable
  1792  // error from ReadFrame and no other frames should be read.
  1793  func http2terminalReadFrameError(err error) bool {
  1794  	if _, ok := err.(http2StreamError); ok {
  1795  		return false
  1796  	}
  1797  	return err != nil
  1798  }
  1799  
  1800  // ReadFrame reads a single frame. The returned Frame is only valid
  1801  // until the next call to ReadFrame.
  1802  //
  1803  // If the frame is larger than previously set with SetMaxReadFrameSize, the
  1804  // returned error is ErrFrameTooLarge. Other errors may be of type
  1805  // ConnectionError, StreamError, or anything else from the underlying
  1806  // reader.
  1807  func (fr *http2Framer) ReadFrame() (http2Frame, error) {
  1808  	fr.errDetail = nil
  1809  	if fr.lastFrame != nil {
  1810  		fr.lastFrame.invalidate()
  1811  	}
  1812  	fh, err := http2readFrameHeader(fr.headerBuf[:], fr.r)
  1813  	if err != nil {
  1814  		return nil, err
  1815  	}
  1816  	if fh.Length > fr.maxReadSize {
  1817  		return nil, http2ErrFrameTooLarge
  1818  	}
  1819  	payload := fr.getReadBuf(fh.Length)
  1820  	if _, err := io.ReadFull(fr.r, payload); err != nil {
  1821  		return nil, err
  1822  	}
  1823  	f, err := http2typeFrameParser(fh.Type)(fr.frameCache, fh, payload)
  1824  	if err != nil {
  1825  		if ce, ok := err.(http2connError); ok {
  1826  			return nil, fr.connError(ce.Code, ce.Reason)
  1827  		}
  1828  		return nil, err
  1829  	}
  1830  	if err := fr.checkFrameOrder(f); err != nil {
  1831  		return nil, err
  1832  	}
  1833  	if fr.logReads {
  1834  		fr.debugReadLoggerf("http2: Framer %p: read %v", fr, http2summarizeFrame(f))
  1835  	}
  1836  	if fh.Type == http2FrameHeaders && fr.ReadMetaHeaders != nil {
  1837  		return fr.readMetaFrame(f.(*http2HeadersFrame))
  1838  	}
  1839  	return f, nil
  1840  }
  1841  
  1842  // connError returns ConnectionError(code) but first
  1843  // stashes away a public reason to the caller can optionally relay it
  1844  // to the peer before hanging up on them. This might help others debug
  1845  // their implementations.
  1846  func (fr *http2Framer) connError(code http2ErrCode, reason string) error {
  1847  	fr.errDetail = errors.New(reason)
  1848  	return http2ConnectionError(code)
  1849  }
  1850  
  1851  // checkFrameOrder reports an error if f is an invalid frame to return
  1852  // next from ReadFrame. Mostly it checks whether HEADERS and
  1853  // CONTINUATION frames are contiguous.
  1854  func (fr *http2Framer) checkFrameOrder(f http2Frame) error {
  1855  	last := fr.lastFrame
  1856  	fr.lastFrame = f
  1857  	if fr.AllowIllegalReads {
  1858  		return nil
  1859  	}
  1860  
  1861  	fh := f.Header()
  1862  	if fr.lastHeaderStream != 0 {
  1863  		if fh.Type != http2FrameContinuation {
  1864  			return fr.connError(http2ErrCodeProtocol,
  1865  				fmt.Sprintf("got %s for stream %d; expected CONTINUATION following %s for stream %d",
  1866  					fh.Type, fh.StreamID,
  1867  					last.Header().Type, fr.lastHeaderStream))
  1868  		}
  1869  		if fh.StreamID != fr.lastHeaderStream {
  1870  			return fr.connError(http2ErrCodeProtocol,
  1871  				fmt.Sprintf("got CONTINUATION for stream %d; expected stream %d",
  1872  					fh.StreamID, fr.lastHeaderStream))
  1873  		}
  1874  	} else if fh.Type == http2FrameContinuation {
  1875  		return fr.connError(http2ErrCodeProtocol, fmt.Sprintf("unexpected CONTINUATION for stream %d", fh.StreamID))
  1876  	}
  1877  
  1878  	switch fh.Type {
  1879  	case http2FrameHeaders, http2FrameContinuation:
  1880  		if fh.Flags.Has(http2FlagHeadersEndHeaders) {
  1881  			fr.lastHeaderStream = 0
  1882  		} else {
  1883  			fr.lastHeaderStream = fh.StreamID
  1884  		}
  1885  	}
  1886  
  1887  	return nil
  1888  }
  1889  
  1890  // A DataFrame conveys arbitrary, variable-length sequences of octets
  1891  // associated with a stream.
  1892  // See http://http2.github.io/http2-spec/#rfc.section.6.1
  1893  type http2DataFrame struct {
  1894  	http2FrameHeader
  1895  	data []byte
  1896  }
  1897  
  1898  func (f *http2DataFrame) StreamEnded() bool {
  1899  	return f.http2FrameHeader.Flags.Has(http2FlagDataEndStream)
  1900  }
  1901  
  1902  // Data returns the frame's data octets, not including any padding
  1903  // size byte or padding suffix bytes.
  1904  // The caller must not retain the returned memory past the next
  1905  // call to ReadFrame.
  1906  func (f *http2DataFrame) Data() []byte {
  1907  	f.checkValid()
  1908  	return f.data
  1909  }
  1910  
  1911  func http2parseDataFrame(fc *http2frameCache, fh http2FrameHeader, payload []byte) (http2Frame, error) {
  1912  	if fh.StreamID == 0 {
  1913  		// DATA frames MUST be associated with a stream. If a
  1914  		// DATA frame is received whose stream identifier
  1915  		// field is 0x0, the recipient MUST respond with a
  1916  		// connection error (Section 5.4.1) of type
  1917  		// PROTOCOL_ERROR.
  1918  		return nil, http2connError{http2ErrCodeProtocol, "DATA frame with stream ID 0"}
  1919  	}
  1920  	f := fc.getDataFrame()
  1921  	f.http2FrameHeader = fh
  1922  
  1923  	var padSize byte
  1924  	if fh.Flags.Has(http2FlagDataPadded) {
  1925  		var err error
  1926  		payload, padSize, err = http2readByte(payload)
  1927  		if err != nil {
  1928  			return nil, err
  1929  		}
  1930  	}
  1931  	if int(padSize) > len(payload) {
  1932  		// If the length of the padding is greater than the
  1933  		// length of the frame payload, the recipient MUST
  1934  		// treat this as a connection error.
  1935  		// Filed: https://github.com/http2/http2-spec/issues/610
  1936  		return nil, http2connError{http2ErrCodeProtocol, "pad size larger than data payload"}
  1937  	}
  1938  	f.data = payload[:len(payload)-int(padSize)]
  1939  	return f, nil
  1940  }
  1941  
  1942  var (
  1943  	http2errStreamID    = errors.New("invalid stream ID")
  1944  	http2errDepStreamID = errors.New("invalid dependent stream ID")
  1945  	http2errPadLength   = errors.New("pad length too large")
  1946  	http2errPadBytes    = errors.New("padding bytes must all be zeros unless AllowIllegalWrites is enabled")
  1947  )
  1948  
  1949  func http2validStreamIDOrZero(streamID uint32) bool {
  1950  	return streamID&(1<<31) == 0
  1951  }
  1952  
  1953  func http2validStreamID(streamID uint32) bool {
  1954  	return streamID != 0 && streamID&(1<<31) == 0
  1955  }
  1956  
  1957  // WriteData writes a DATA frame.
  1958  //
  1959  // It will perform exactly one Write to the underlying Writer.
  1960  // It is the caller's responsibility not to violate the maximum frame size
  1961  // and to not call other Write methods concurrently.
  1962  func (f *http2Framer) WriteData(streamID uint32, endStream bool, data []byte) error {
  1963  	return f.WriteDataPadded(streamID, endStream, data, nil)
  1964  }
  1965  
  1966  // WriteDataPadded writes a DATA frame with optional padding.
  1967  //
  1968  // If pad is nil, the padding bit is not sent.
  1969  // The length of pad must not exceed 255 bytes.
  1970  // The bytes of pad must all be zero, unless f.AllowIllegalWrites is set.
  1971  //
  1972  // It will perform exactly one Write to the underlying Writer.
  1973  // It is the caller's responsibility not to violate the maximum frame size
  1974  // and to not call other Write methods concurrently.
  1975  func (f *http2Framer) WriteDataPadded(streamID uint32, endStream bool, data, pad []byte) error {
  1976  	if !http2validStreamID(streamID) && !f.AllowIllegalWrites {
  1977  		return http2errStreamID
  1978  	}
  1979  	if len(pad) > 0 {
  1980  		if len(pad) > 255 {
  1981  			return http2errPadLength
  1982  		}
  1983  		if !f.AllowIllegalWrites {
  1984  			for _, b := range pad {
  1985  				if b != 0 {
  1986  					// "Padding octets MUST be set to zero when sending."
  1987  					return http2errPadBytes
  1988  				}
  1989  			}
  1990  		}
  1991  	}
  1992  	var flags http2Flags
  1993  	if endStream {
  1994  		flags |= http2FlagDataEndStream
  1995  	}
  1996  	if pad != nil {
  1997  		flags |= http2FlagDataPadded
  1998  	}
  1999  	f.startWrite(http2FrameData, flags, streamID)
  2000  	if pad != nil {
  2001  		f.wbuf = append(f.wbuf, byte(len(pad)))
  2002  	}
  2003  	f.wbuf = append(f.wbuf, data...)
  2004  	f.wbuf = append(f.wbuf, pad...)
  2005  	return f.endWrite()
  2006  }
  2007  
  2008  // A SettingsFrame conveys configuration parameters that affect how
  2009  // endpoints communicate, such as preferences and constraints on peer
  2010  // behavior.
  2011  //
  2012  // See http://http2.github.io/http2-spec/#SETTINGS
  2013  type http2SettingsFrame struct {
  2014  	http2FrameHeader
  2015  	p []byte
  2016  }
  2017  
  2018  func http2parseSettingsFrame(_ *http2frameCache, fh http2FrameHeader, p []byte) (http2Frame, error) {
  2019  	if fh.Flags.Has(http2FlagSettingsAck) && fh.Length > 0 {
  2020  		// When this (ACK 0x1) bit is set, the payload of the
  2021  		// SETTINGS frame MUST be empty. Receipt of a
  2022  		// SETTINGS frame with the ACK flag set and a length
  2023  		// field value other than 0 MUST be treated as a
  2024  		// connection error (Section 5.4.1) of type
  2025  		// FRAME_SIZE_ERROR.
  2026  		return nil, http2ConnectionError(http2ErrCodeFrameSize)
  2027  	}
  2028  	if fh.StreamID != 0 {
  2029  		// SETTINGS frames always apply to a connection,
  2030  		// never a single stream. The stream identifier for a
  2031  		// SETTINGS frame MUST be zero (0x0).  If an endpoint
  2032  		// receives a SETTINGS frame whose stream identifier
  2033  		// field is anything other than 0x0, the endpoint MUST
  2034  		// respond with a connection error (Section 5.4.1) of
  2035  		// type PROTOCOL_ERROR.
  2036  		return nil, http2ConnectionError(http2ErrCodeProtocol)
  2037  	}
  2038  	if len(p)%6 != 0 {
  2039  		// Expecting even number of 6 byte settings.
  2040  		return nil, http2ConnectionError(http2ErrCodeFrameSize)
  2041  	}
  2042  	f := &http2SettingsFrame{http2FrameHeader: fh, p: p}
  2043  	if v, ok := f.Value(http2SettingInitialWindowSize); ok && v > (1<<31)-1 {
  2044  		// Values above the maximum flow control window size of 2^31 - 1 MUST
  2045  		// be treated as a connection error (Section 5.4.1) of type
  2046  		// FLOW_CONTROL_ERROR.
  2047  		return nil, http2ConnectionError(http2ErrCodeFlowControl)
  2048  	}
  2049  	return f, nil
  2050  }
  2051  
  2052  func (f *http2SettingsFrame) IsAck() bool {
  2053  	return f.http2FrameHeader.Flags.Has(http2FlagSettingsAck)
  2054  }
  2055  
  2056  func (f *http2SettingsFrame) Value(id http2SettingID) (v uint32, ok bool) {
  2057  	f.checkValid()
  2058  	for i := 0; i < f.NumSettings(); i++ {
  2059  		if s := f.Setting(i); s.ID == id {
  2060  			return s.Val, true
  2061  		}
  2062  	}
  2063  	return 0, false
  2064  }
  2065  
  2066  // Setting returns the setting from the frame at the given 0-based index.
  2067  // The index must be >= 0 and less than f.NumSettings().
  2068  func (f *http2SettingsFrame) Setting(i int) http2Setting {
  2069  	buf := f.p
  2070  	return http2Setting{
  2071  		ID:  http2SettingID(binary.BigEndian.Uint16(buf[i*6 : i*6+2])),
  2072  		Val: binary.BigEndian.Uint32(buf[i*6+2 : i*6+6]),
  2073  	}
  2074  }
  2075  
  2076  func (f *http2SettingsFrame) NumSettings() int { return len(f.p) / 6 }
  2077  
  2078  // HasDuplicates reports whether f contains any duplicate setting IDs.
  2079  func (f *http2SettingsFrame) HasDuplicates() bool {
  2080  	num := f.NumSettings()
  2081  	if num == 0 {
  2082  		return false
  2083  	}
  2084  	// If it's small enough (the common case), just do the n^2
  2085  	// thing and avoid a map allocation.
  2086  	if num < 10 {
  2087  		for i := 0; i < num; i++ {
  2088  			idi := f.Setting(i).ID
  2089  			for j := i + 1; j < num; j++ {
  2090  				idj := f.Setting(j).ID
  2091  				if idi == idj {
  2092  					return true
  2093  				}
  2094  			}
  2095  		}
  2096  		return false
  2097  	}
  2098  	seen := map[http2SettingID]bool{}
  2099  	for i := 0; i < num; i++ {
  2100  		id := f.Setting(i).ID
  2101  		if seen[id] {
  2102  			return true
  2103  		}
  2104  		seen[id] = true
  2105  	}
  2106  	return false
  2107  }
  2108  
  2109  // ForeachSetting runs fn for each setting.
  2110  // It stops and returns the first error.
  2111  func (f *http2SettingsFrame) ForeachSetting(fn func(http2Setting) error) error {
  2112  	f.checkValid()
  2113  	for i := 0; i < f.NumSettings(); i++ {
  2114  		if err := fn(f.Setting(i)); err != nil {
  2115  			return err
  2116  		}
  2117  	}
  2118  	return nil
  2119  }
  2120  
  2121  // WriteSettings writes a SETTINGS frame with zero or more settings
  2122  // specified and the ACK bit not set.
  2123  //
  2124  // It will perform exactly one Write to the underlying Writer.
  2125  // It is the caller's responsibility to not call other Write methods concurrently.
  2126  func (f *http2Framer) WriteSettings(settings ...http2Setting) error {
  2127  	f.startWrite(http2FrameSettings, 0, 0)
  2128  	for _, s := range settings {
  2129  		f.writeUint16(uint16(s.ID))
  2130  		f.writeUint32(s.Val)
  2131  	}
  2132  	return f.endWrite()
  2133  }
  2134  
  2135  // WriteSettingsAck writes an empty SETTINGS frame with the ACK bit set.
  2136  //
  2137  // It will perform exactly one Write to the underlying Writer.
  2138  // It is the caller's responsibility to not call other Write methods concurrently.
  2139  func (f *http2Framer) WriteSettingsAck() error {
  2140  	f.startWrite(http2FrameSettings, http2FlagSettingsAck, 0)
  2141  	return f.endWrite()
  2142  }
  2143  
  2144  // A PingFrame is a mechanism for measuring a minimal round trip time
  2145  // from the sender, as well as determining whether an idle connection
  2146  // is still functional.
  2147  // See http://http2.github.io/http2-spec/#rfc.section.6.7
  2148  type http2PingFrame struct {
  2149  	http2FrameHeader
  2150  	Data [8]byte
  2151  }
  2152  
  2153  func (f *http2PingFrame) IsAck() bool { return f.Flags.Has(http2FlagPingAck) }
  2154  
  2155  func http2parsePingFrame(_ *http2frameCache, fh http2FrameHeader, payload []byte) (http2Frame, error) {
  2156  	if len(payload) != 8 {
  2157  		return nil, http2ConnectionError(http2ErrCodeFrameSize)
  2158  	}
  2159  	if fh.StreamID != 0 {
  2160  		return nil, http2ConnectionError(http2ErrCodeProtocol)
  2161  	}
  2162  	f := &http2PingFrame{http2FrameHeader: fh}
  2163  	copy(f.Data[:], payload)
  2164  	return f, nil
  2165  }
  2166  
  2167  func (f *http2Framer) WritePing(ack bool, data [8]byte) error {
  2168  	var flags http2Flags
  2169  	if ack {
  2170  		flags = http2FlagPingAck
  2171  	}
  2172  	f.startWrite(http2FramePing, flags, 0)
  2173  	f.writeBytes(data[:])
  2174  	return f.endWrite()
  2175  }
  2176  
  2177  // A GoAwayFrame informs the remote peer to stop creating streams on this connection.
  2178  // See http://http2.github.io/http2-spec/#rfc.section.6.8
  2179  type http2GoAwayFrame struct {
  2180  	http2FrameHeader
  2181  	LastStreamID uint32
  2182  	ErrCode      http2ErrCode
  2183  	debugData    []byte
  2184  }
  2185  
  2186  // DebugData returns any debug data in the GOAWAY frame. Its contents
  2187  // are not defined.
  2188  // The caller must not retain the returned memory past the next
  2189  // call to ReadFrame.
  2190  func (f *http2GoAwayFrame) DebugData() []byte {
  2191  	f.checkValid()
  2192  	return f.debugData
  2193  }
  2194  
  2195  func http2parseGoAwayFrame(_ *http2frameCache, fh http2FrameHeader, p []byte) (http2Frame, error) {
  2196  	if fh.StreamID != 0 {
  2197  		return nil, http2ConnectionError(http2ErrCodeProtocol)
  2198  	}
  2199  	if len(p) < 8 {
  2200  		return nil, http2ConnectionError(http2ErrCodeFrameSize)
  2201  	}
  2202  	return &http2GoAwayFrame{
  2203  		http2FrameHeader: fh,
  2204  		LastStreamID:     binary.BigEndian.Uint32(p[:4]) & (1<<31 - 1),
  2205  		ErrCode:          http2ErrCode(binary.BigEndian.Uint32(p[4:8])),
  2206  		debugData:        p[8:],
  2207  	}, nil
  2208  }
  2209  
  2210  func (f *http2Framer) WriteGoAway(maxStreamID uint32, code http2ErrCode, debugData []byte) error {
  2211  	f.startWrite(http2FrameGoAway, 0, 0)
  2212  	f.writeUint32(maxStreamID & (1<<31 - 1))
  2213  	f.writeUint32(uint32(code))
  2214  	f.writeBytes(debugData)
  2215  	return f.endWrite()
  2216  }
  2217  
  2218  // An UnknownFrame is the frame type returned when the frame type is unknown
  2219  // or no specific frame type parser exists.
  2220  type http2UnknownFrame struct {
  2221  	http2FrameHeader
  2222  	p []byte
  2223  }
  2224  
  2225  // Payload returns the frame's payload (after the header).  It is not
  2226  // valid to call this method after a subsequent call to
  2227  // Framer.ReadFrame, nor is it valid to retain the returned slice.
  2228  // The memory is owned by the Framer and is invalidated when the next
  2229  // frame is read.
  2230  func (f *http2UnknownFrame) Payload() []byte {
  2231  	f.checkValid()
  2232  	return f.p
  2233  }
  2234  
  2235  func http2parseUnknownFrame(_ *http2frameCache, fh http2FrameHeader, p []byte) (http2Frame, error) {
  2236  	return &http2UnknownFrame{fh, p}, nil
  2237  }
  2238  
  2239  // A WindowUpdateFrame is used to implement flow control.
  2240  // See http://http2.github.io/http2-spec/#rfc.section.6.9
  2241  type http2WindowUpdateFrame struct {
  2242  	http2FrameHeader
  2243  	Increment uint32 // never read with high bit set
  2244  }
  2245  
  2246  func http2parseWindowUpdateFrame(_ *http2frameCache, fh http2FrameHeader, p []byte) (http2Frame, error) {
  2247  	if len(p) != 4 {
  2248  		return nil, http2ConnectionError(http2ErrCodeFrameSize)
  2249  	}
  2250  	inc := binary.BigEndian.Uint32(p[:4]) & 0x7fffffff // mask off high reserved bit
  2251  	if inc == 0 {
  2252  		// A receiver MUST treat the receipt of a
  2253  		// WINDOW_UPDATE frame with an flow control window
  2254  		// increment of 0 as a stream error (Section 5.4.2) of
  2255  		// type PROTOCOL_ERROR; errors on the connection flow
  2256  		// control window MUST be treated as a connection
  2257  		// error (Section 5.4.1).
  2258  		if fh.StreamID == 0 {
  2259  			return nil, http2ConnectionError(http2ErrCodeProtocol)
  2260  		}
  2261  		return nil, http2streamError(fh.StreamID, http2ErrCodeProtocol)
  2262  	}
  2263  	return &http2WindowUpdateFrame{
  2264  		http2FrameHeader: fh,
  2265  		Increment:        inc,
  2266  	}, nil
  2267  }
  2268  
  2269  // WriteWindowUpdate writes a WINDOW_UPDATE frame.
  2270  // The increment value must be between 1 and 2,147,483,647, inclusive.
  2271  // If the Stream ID is zero, the window update applies to the
  2272  // connection as a whole.
  2273  func (f *http2Framer) WriteWindowUpdate(streamID, incr uint32) error {
  2274  	// "The legal range for the increment to the flow control window is 1 to 2^31-1 (2,147,483,647) octets."
  2275  	if (incr < 1 || incr > 2147483647) && !f.AllowIllegalWrites {
  2276  		return errors.New("illegal window increment value")
  2277  	}
  2278  	f.startWrite(http2FrameWindowUpdate, 0, streamID)
  2279  	f.writeUint32(incr)
  2280  	return f.endWrite()
  2281  }
  2282  
  2283  // A HeadersFrame is used to open a stream and additionally carries a
  2284  // header block fragment.
  2285  type http2HeadersFrame struct {
  2286  	http2FrameHeader
  2287  
  2288  	// Priority is set if FlagHeadersPriority is set in the FrameHeader.
  2289  	Priority http2PriorityParam
  2290  
  2291  	headerFragBuf []byte // not owned
  2292  }
  2293  
  2294  func (f *http2HeadersFrame) HeaderBlockFragment() []byte {
  2295  	f.checkValid()
  2296  	return f.headerFragBuf
  2297  }
  2298  
  2299  func (f *http2HeadersFrame) HeadersEnded() bool {
  2300  	return f.http2FrameHeader.Flags.Has(http2FlagHeadersEndHeaders)
  2301  }
  2302  
  2303  func (f *http2HeadersFrame) StreamEnded() bool {
  2304  	return f.http2FrameHeader.Flags.Has(http2FlagHeadersEndStream)
  2305  }
  2306  
  2307  func (f *http2HeadersFrame) HasPriority() bool {
  2308  	return f.http2FrameHeader.Flags.Has(http2FlagHeadersPriority)
  2309  }
  2310  
  2311  func http2parseHeadersFrame(_ *http2frameCache, fh http2FrameHeader, p []byte) (_ http2Frame, err error) {
  2312  	hf := &http2HeadersFrame{
  2313  		http2FrameHeader: fh,
  2314  	}
  2315  	if fh.StreamID == 0 {
  2316  		// HEADERS frames MUST be associated with a stream. If a HEADERS frame
  2317  		// is received whose stream identifier field is 0x0, the recipient MUST
  2318  		// respond with a connection error (Section 5.4.1) of type
  2319  		// PROTOCOL_ERROR.
  2320  		return nil, http2connError{http2ErrCodeProtocol, "HEADERS frame with stream ID 0"}
  2321  	}
  2322  	var padLength uint8
  2323  	if fh.Flags.Has(http2FlagHeadersPadded) {
  2324  		if p, padLength, err = http2readByte(p); err != nil {
  2325  			return
  2326  		}
  2327  	}
  2328  	if fh.Flags.Has(http2FlagHeadersPriority) {
  2329  		var v uint32
  2330  		p, v, err = http2readUint32(p)
  2331  		if err != nil {
  2332  			return nil, err
  2333  		}
  2334  		hf.Priority.StreamDep = v & 0x7fffffff
  2335  		hf.Priority.Exclusive = (v != hf.Priority.StreamDep) // high bit was set
  2336  		p, hf.Priority.Weight, err = http2readByte(p)
  2337  		if err != nil {
  2338  			return nil, err
  2339  		}
  2340  	}
  2341  	if len(p)-int(padLength) < 0 {
  2342  		return nil, http2streamError(fh.StreamID, http2ErrCodeProtocol)
  2343  	}
  2344  	hf.headerFragBuf = p[:len(p)-int(padLength)]
  2345  	return hf, nil
  2346  }
  2347  
  2348  // HeadersFrameParam are the parameters for writing a HEADERS frame.
  2349  type http2HeadersFrameParam struct {
  2350  	// StreamID is the required Stream ID to initiate.
  2351  	StreamID uint32
  2352  	// BlockFragment is part (or all) of a Header Block.
  2353  	BlockFragment []byte
  2354  
  2355  	// EndStream indicates that the header block is the last that
  2356  	// the endpoint will send for the identified stream. Setting
  2357  	// this flag causes the stream to enter one of "half closed"
  2358  	// states.
  2359  	EndStream bool
  2360  
  2361  	// EndHeaders indicates that this frame contains an entire
  2362  	// header block and is not followed by any
  2363  	// CONTINUATION frames.
  2364  	EndHeaders bool
  2365  
  2366  	// PadLength is the optional number of bytes of zeros to add
  2367  	// to this frame.
  2368  	PadLength uint8
  2369  
  2370  	// Priority, if non-zero, includes stream priority information
  2371  	// in the HEADER frame.
  2372  	Priority http2PriorityParam
  2373  }
  2374  
  2375  // WriteHeaders writes a single HEADERS frame.
  2376  //
  2377  // This is a low-level header writing method. Encoding headers and
  2378  // splitting them into any necessary CONTINUATION frames is handled
  2379  // elsewhere.
  2380  //
  2381  // It will perform exactly one Write to the underlying Writer.
  2382  // It is the caller's responsibility to not call other Write methods concurrently.
  2383  func (f *http2Framer) WriteHeaders(p http2HeadersFrameParam) error {
  2384  	if !http2validStreamID(p.StreamID) && !f.AllowIllegalWrites {
  2385  		return http2errStreamID
  2386  	}
  2387  	var flags http2Flags
  2388  	if p.PadLength != 0 {
  2389  		flags |= http2FlagHeadersPadded
  2390  	}
  2391  	if p.EndStream {
  2392  		flags |= http2FlagHeadersEndStream
  2393  	}
  2394  	if p.EndHeaders {
  2395  		flags |= http2FlagHeadersEndHeaders
  2396  	}
  2397  	if !p.Priority.IsZero() {
  2398  		flags |= http2FlagHeadersPriority
  2399  	}
  2400  	f.startWrite(http2FrameHeaders, flags, p.StreamID)
  2401  	if p.PadLength != 0 {
  2402  		f.writeByte(p.PadLength)
  2403  	}
  2404  	if !p.Priority.IsZero() {
  2405  		v := p.Priority.StreamDep
  2406  		if !http2validStreamIDOrZero(v) && !f.AllowIllegalWrites {
  2407  			return http2errDepStreamID
  2408  		}
  2409  		if p.Priority.Exclusive {
  2410  			v |= 1 << 31
  2411  		}
  2412  		f.writeUint32(v)
  2413  		f.writeByte(p.Priority.Weight)
  2414  	}
  2415  	f.wbuf = append(f.wbuf, p.BlockFragment...)
  2416  	f.wbuf = append(f.wbuf, http2padZeros[:p.PadLength]...)
  2417  	return f.endWrite()
  2418  }
  2419  
  2420  // A PriorityFrame specifies the sender-advised priority of a stream.
  2421  // See http://http2.github.io/http2-spec/#rfc.section.6.3
  2422  type http2PriorityFrame struct {
  2423  	http2FrameHeader
  2424  	http2PriorityParam
  2425  }
  2426  
  2427  // PriorityParam are the stream prioritzation parameters.
  2428  type http2PriorityParam struct {
  2429  	// StreamDep is a 31-bit stream identifier for the
  2430  	// stream that this stream depends on. Zero means no
  2431  	// dependency.
  2432  	StreamDep uint32
  2433  
  2434  	// Exclusive is whether the dependency is exclusive.
  2435  	Exclusive bool
  2436  
  2437  	// Weight is the stream's zero-indexed weight. It should be
  2438  	// set together with StreamDep, or neither should be set. Per
  2439  	// the spec, "Add one to the value to obtain a weight between
  2440  	// 1 and 256."
  2441  	Weight uint8
  2442  }
  2443  
  2444  func (p http2PriorityParam) IsZero() bool {
  2445  	return p == http2PriorityParam{}
  2446  }
  2447  
  2448  func http2parsePriorityFrame(_ *http2frameCache, fh http2FrameHeader, payload []byte) (http2Frame, error) {
  2449  	if fh.StreamID == 0 {
  2450  		return nil, http2connError{http2ErrCodeProtocol, "PRIORITY frame with stream ID 0"}
  2451  	}
  2452  	if len(payload) != 5 {
  2453  		return nil, http2connError{http2ErrCodeFrameSize, fmt.Sprintf("PRIORITY frame payload size was %d; want 5", len(payload))}
  2454  	}
  2455  	v := binary.BigEndian.Uint32(payload[:4])
  2456  	streamID := v & 0x7fffffff // mask off high bit
  2457  	return &http2PriorityFrame{
  2458  		http2FrameHeader: fh,
  2459  		http2PriorityParam: http2PriorityParam{
  2460  			Weight:    payload[4],
  2461  			StreamDep: streamID,
  2462  			Exclusive: streamID != v, // was high bit set?
  2463  		},
  2464  	}, nil
  2465  }
  2466  
  2467  // WritePriority writes a PRIORITY frame.
  2468  //
  2469  // It will perform exactly one Write to the underlying Writer.
  2470  // It is the caller's responsibility to not call other Write methods concurrently.
  2471  func (f *http2Framer) WritePriority(streamID uint32, p http2PriorityParam) error {
  2472  	if !http2validStreamID(streamID) && !f.AllowIllegalWrites {
  2473  		return http2errStreamID
  2474  	}
  2475  	if !http2validStreamIDOrZero(p.StreamDep) {
  2476  		return http2errDepStreamID
  2477  	}
  2478  	f.startWrite(http2FramePriority, 0, streamID)
  2479  	v := p.StreamDep
  2480  	if p.Exclusive {
  2481  		v |= 1 << 31
  2482  	}
  2483  	f.writeUint32(v)
  2484  	f.writeByte(p.Weight)
  2485  	return f.endWrite()
  2486  }
  2487  
  2488  // A RSTStreamFrame allows for abnormal termination of a stream.
  2489  // See http://http2.github.io/http2-spec/#rfc.section.6.4
  2490  type http2RSTStreamFrame struct {
  2491  	http2FrameHeader
  2492  	ErrCode http2ErrCode
  2493  }
  2494  
  2495  func http2parseRSTStreamFrame(_ *http2frameCache, fh http2FrameHeader, p []byte) (http2Frame, error) {
  2496  	if len(p) != 4 {
  2497  		return nil, http2ConnectionError(http2ErrCodeFrameSize)
  2498  	}
  2499  	if fh.StreamID == 0 {
  2500  		return nil, http2ConnectionError(http2ErrCodeProtocol)
  2501  	}
  2502  	return &http2RSTStreamFrame{fh, http2ErrCode(binary.BigEndian.Uint32(p[:4]))}, nil
  2503  }
  2504  
  2505  // WriteRSTStream writes a RST_STREAM frame.
  2506  //
  2507  // It will perform exactly one Write to the underlying Writer.
  2508  // It is the caller's responsibility to not call other Write methods concurrently.
  2509  func (f *http2Framer) WriteRSTStream(streamID uint32, code http2ErrCode) error {
  2510  	if !http2validStreamID(streamID) && !f.AllowIllegalWrites {
  2511  		return http2errStreamID
  2512  	}
  2513  	f.startWrite(http2FrameRSTStream, 0, streamID)
  2514  	f.writeUint32(uint32(code))
  2515  	return f.endWrite()
  2516  }
  2517  
  2518  // A ContinuationFrame is used to continue a sequence of header block fragments.
  2519  // See http://http2.github.io/http2-spec/#rfc.section.6.10
  2520  type http2ContinuationFrame struct {
  2521  	http2FrameHeader
  2522  	headerFragBuf []byte
  2523  }
  2524  
  2525  func http2parseContinuationFrame(_ *http2frameCache, fh http2FrameHeader, p []byte) (http2Frame, error) {
  2526  	if fh.StreamID == 0 {
  2527  		return nil, http2connError{http2ErrCodeProtocol, "CONTINUATION frame with stream ID 0"}
  2528  	}
  2529  	return &http2ContinuationFrame{fh, p}, nil
  2530  }
  2531  
  2532  func (f *http2ContinuationFrame) HeaderBlockFragment() []byte {
  2533  	f.checkValid()
  2534  	return f.headerFragBuf
  2535  }
  2536  
  2537  func (f *http2ContinuationFrame) HeadersEnded() bool {
  2538  	return f.http2FrameHeader.Flags.Has(http2FlagContinuationEndHeaders)
  2539  }
  2540  
  2541  // WriteContinuation writes a CONTINUATION frame.
  2542  //
  2543  // It will perform exactly one Write to the underlying Writer.
  2544  // It is the caller's responsibility to not call other Write methods concurrently.
  2545  func (f *http2Framer) WriteContinuation(streamID uint32, endHeaders bool, headerBlockFragment []byte) error {
  2546  	if !http2validStreamID(streamID) && !f.AllowIllegalWrites {
  2547  		return http2errStreamID
  2548  	}
  2549  	var flags http2Flags
  2550  	if endHeaders {
  2551  		flags |= http2FlagContinuationEndHeaders
  2552  	}
  2553  	f.startWrite(http2FrameContinuation, flags, streamID)
  2554  	f.wbuf = append(f.wbuf, headerBlockFragment...)
  2555  	return f.endWrite()
  2556  }
  2557  
  2558  // A PushPromiseFrame is used to initiate a server stream.
  2559  // See http://http2.github.io/http2-spec/#rfc.section.6.6
  2560  type http2PushPromiseFrame struct {
  2561  	http2FrameHeader
  2562  	PromiseID     uint32
  2563  	headerFragBuf []byte // not owned
  2564  }
  2565  
  2566  func (f *http2PushPromiseFrame) HeaderBlockFragment() []byte {
  2567  	f.checkValid()
  2568  	return f.headerFragBuf
  2569  }
  2570  
  2571  func (f *http2PushPromiseFrame) HeadersEnded() bool {
  2572  	return f.http2FrameHeader.Flags.Has(http2FlagPushPromiseEndHeaders)
  2573  }
  2574  
  2575  func http2parsePushPromise(_ *http2frameCache, fh http2FrameHeader, p []byte) (_ http2Frame, err error) {
  2576  	pp := &http2PushPromiseFrame{
  2577  		http2FrameHeader: fh,
  2578  	}
  2579  	if pp.StreamID == 0 {
  2580  		// PUSH_PROMISE frames MUST be associated with an existing,
  2581  		// peer-initiated stream. The stream identifier of a
  2582  		// PUSH_PROMISE frame indicates the stream it is associated
  2583  		// with. If the stream identifier field specifies the value
  2584  		// 0x0, a recipient MUST respond with a connection error
  2585  		// (Section 5.4.1) of type PROTOCOL_ERROR.
  2586  		return nil, http2ConnectionError(http2ErrCodeProtocol)
  2587  	}
  2588  	// The PUSH_PROMISE frame includes optional padding.
  2589  	// Padding fields and flags are identical to those defined for DATA frames
  2590  	var padLength uint8
  2591  	if fh.Flags.Has(http2FlagPushPromisePadded) {
  2592  		if p, padLength, err = http2readByte(p); err != nil {
  2593  			return
  2594  		}
  2595  	}
  2596  
  2597  	p, pp.PromiseID, err = http2readUint32(p)
  2598  	if err != nil {
  2599  		return
  2600  	}
  2601  	pp.PromiseID = pp.PromiseID & (1<<31 - 1)
  2602  
  2603  	if int(padLength) > len(p) {
  2604  		// like the DATA frame, error out if padding is longer than the body.
  2605  		return nil, http2ConnectionError(http2ErrCodeProtocol)
  2606  	}
  2607  	pp.headerFragBuf = p[:len(p)-int(padLength)]
  2608  	return pp, nil
  2609  }
  2610  
  2611  // PushPromiseParam are the parameters for writing a PUSH_PROMISE frame.
  2612  type http2PushPromiseParam struct {
  2613  	// StreamID is the required Stream ID to initiate.
  2614  	StreamID uint32
  2615  
  2616  	// PromiseID is the required Stream ID which this
  2617  	// Push Promises
  2618  	PromiseID uint32
  2619  
  2620  	// BlockFragment is part (or all) of a Header Block.
  2621  	BlockFragment []byte
  2622  
  2623  	// EndHeaders indicates that this frame contains an entire
  2624  	// header block and is not followed by any
  2625  	// CONTINUATION frames.
  2626  	EndHeaders bool
  2627  
  2628  	// PadLength is the optional number of bytes of zeros to add
  2629  	// to this frame.
  2630  	PadLength uint8
  2631  }
  2632  
  2633  // WritePushPromise writes a single PushPromise Frame.
  2634  //
  2635  // As with Header Frames, This is the low level call for writing
  2636  // individual frames. Continuation frames are handled elsewhere.
  2637  //
  2638  // It will perform exactly one Write to the underlying Writer.
  2639  // It is the caller's responsibility to not call other Write methods concurrently.
  2640  func (f *http2Framer) WritePushPromise(p http2PushPromiseParam) error {
  2641  	if !http2validStreamID(p.StreamID) && !f.AllowIllegalWrites {
  2642  		return http2errStreamID
  2643  	}
  2644  	var flags http2Flags
  2645  	if p.PadLength != 0 {
  2646  		flags |= http2FlagPushPromisePadded
  2647  	}
  2648  	if p.EndHeaders {
  2649  		flags |= http2FlagPushPromiseEndHeaders
  2650  	}
  2651  	f.startWrite(http2FramePushPromise, flags, p.StreamID)
  2652  	if p.PadLength != 0 {
  2653  		f.writeByte(p.PadLength)
  2654  	}
  2655  	if !http2validStreamID(p.PromiseID) && !f.AllowIllegalWrites {
  2656  		return http2errStreamID
  2657  	}
  2658  	f.writeUint32(p.PromiseID)
  2659  	f.wbuf = append(f.wbuf, p.BlockFragment...)
  2660  	f.wbuf = append(f.wbuf, http2padZeros[:p.PadLength]...)
  2661  	return f.endWrite()
  2662  }
  2663  
  2664  // WriteRawFrame writes a raw frame. This can be used to write
  2665  // extension frames unknown to this package.
  2666  func (f *http2Framer) WriteRawFrame(t http2FrameType, flags http2Flags, streamID uint32, payload []byte) error {
  2667  	f.startWrite(t, flags, streamID)
  2668  	f.writeBytes(payload)
  2669  	return f.endWrite()
  2670  }
  2671  
  2672  func http2readByte(p []byte) (remain []byte, b byte, err error) {
  2673  	if len(p) == 0 {
  2674  		return nil, 0, io.ErrUnexpectedEOF
  2675  	}
  2676  	return p[1:], p[0], nil
  2677  }
  2678  
  2679  func http2readUint32(p []byte) (remain []byte, v uint32, err error) {
  2680  	if len(p) < 4 {
  2681  		return nil, 0, io.ErrUnexpectedEOF
  2682  	}
  2683  	return p[4:], binary.BigEndian.Uint32(p[:4]), nil
  2684  }
  2685  
  2686  type http2streamEnder interface {
  2687  	StreamEnded() bool
  2688  }
  2689  
  2690  type http2headersEnder interface {
  2691  	HeadersEnded() bool
  2692  }
  2693  
  2694  type http2headersOrContinuation interface {
  2695  	http2headersEnder
  2696  	HeaderBlockFragment() []byte
  2697  }
  2698  
  2699  // A MetaHeadersFrame is the representation of one HEADERS frame and
  2700  // zero or more contiguous CONTINUATION frames and the decoding of
  2701  // their HPACK-encoded contents.
  2702  //
  2703  // This type of frame does not appear on the wire and is only returned
  2704  // by the Framer when Framer.ReadMetaHeaders is set.
  2705  type http2MetaHeadersFrame struct {
  2706  	*http2HeadersFrame
  2707  
  2708  	// Fields are the fields contained in the HEADERS and
  2709  	// CONTINUATION frames. The underlying slice is owned by the
  2710  	// Framer and must not be retained after the next call to
  2711  	// ReadFrame.
  2712  	//
  2713  	// Fields are guaranteed to be in the correct http2 order and
  2714  	// not have unknown pseudo header fields or invalid header
  2715  	// field names or values. Required pseudo header fields may be
  2716  	// missing, however. Use the MetaHeadersFrame.Pseudo accessor
  2717  	// method access pseudo headers.
  2718  	Fields []hpack.HeaderField
  2719  
  2720  	// Truncated is whether the max header list size limit was hit
  2721  	// and Fields is incomplete. The hpack decoder state is still
  2722  	// valid, however.
  2723  	Truncated bool
  2724  }
  2725  
  2726  // PseudoValue returns the given pseudo header field's value.
  2727  // The provided pseudo field should not contain the leading colon.
  2728  func (mh *http2MetaHeadersFrame) PseudoValue(pseudo string) string {
  2729  	for _, hf := range mh.Fields {
  2730  		if !hf.IsPseudo() {
  2731  			return ""
  2732  		}
  2733  		if hf.Name[1:] == pseudo {
  2734  			return hf.Value
  2735  		}
  2736  	}
  2737  	return ""
  2738  }
  2739  
  2740  // RegularFields returns the regular (non-pseudo) header fields of mh.
  2741  // The caller does not own the returned slice.
  2742  func (mh *http2MetaHeadersFrame) RegularFields() []hpack.HeaderField {
  2743  	for i, hf := range mh.Fields {
  2744  		if !hf.IsPseudo() {
  2745  			return mh.Fields[i:]
  2746  		}
  2747  	}
  2748  	return nil
  2749  }
  2750  
  2751  // PseudoFields returns the pseudo header fields of mh.
  2752  // The caller does not own the returned slice.
  2753  func (mh *http2MetaHeadersFrame) PseudoFields() []hpack.HeaderField {
  2754  	for i, hf := range mh.Fields {
  2755  		if !hf.IsPseudo() {
  2756  			return mh.Fields[:i]
  2757  		}
  2758  	}
  2759  	return mh.Fields
  2760  }
  2761  
  2762  func (mh *http2MetaHeadersFrame) checkPseudos() error {
  2763  	var isRequest, isResponse bool
  2764  	pf := mh.PseudoFields()
  2765  	for i, hf := range pf {
  2766  		switch hf.Name {
  2767  		case ":method", ":path", ":scheme", ":authority":
  2768  			isRequest = true
  2769  		case ":status":
  2770  			isResponse = true
  2771  		default:
  2772  			return http2pseudoHeaderError(hf.Name)
  2773  		}
  2774  		// Check for duplicates.
  2775  		// This would be a bad algorithm, but N is 4.
  2776  		// And this doesn't allocate.
  2777  		for _, hf2 := range pf[:i] {
  2778  			if hf.Name == hf2.Name {
  2779  				return http2duplicatePseudoHeaderError(hf.Name)
  2780  			}
  2781  		}
  2782  	}
  2783  	if isRequest && isResponse {
  2784  		return http2errMixPseudoHeaderTypes
  2785  	}
  2786  	return nil
  2787  }
  2788  
  2789  func (fr *http2Framer) maxHeaderStringLen() int {
  2790  	v := fr.maxHeaderListSize()
  2791  	if uint32(int(v)) == v {
  2792  		return int(v)
  2793  	}
  2794  	// They had a crazy big number for MaxHeaderBytes anyway,
  2795  	// so give them unlimited header lengths:
  2796  	return 0
  2797  }
  2798  
  2799  // readMetaFrame returns 0 or more CONTINUATION frames from fr and
  2800  // merge them into the provided hf and returns a MetaHeadersFrame
  2801  // with the decoded hpack values.
  2802  func (fr *http2Framer) readMetaFrame(hf *http2HeadersFrame) (*http2MetaHeadersFrame, error) {
  2803  	if fr.AllowIllegalReads {
  2804  		return nil, errors.New("illegal use of AllowIllegalReads with ReadMetaHeaders")
  2805  	}
  2806  	mh := &http2MetaHeadersFrame{
  2807  		http2HeadersFrame: hf,
  2808  	}
  2809  	var remainSize = fr.maxHeaderListSize()
  2810  	var sawRegular bool
  2811  
  2812  	var invalid error // pseudo header field errors
  2813  	hdec := fr.ReadMetaHeaders
  2814  	hdec.SetEmitEnabled(true)
  2815  	hdec.SetMaxStringLength(fr.maxHeaderStringLen())
  2816  	hdec.SetEmitFunc(func(hf hpack.HeaderField) {
  2817  		if http2VerboseLogs && fr.logReads {
  2818  			fr.debugReadLoggerf("http2: decoded hpack field %+v", hf)
  2819  		}
  2820  		if !httpguts.ValidHeaderFieldValue(hf.Value) {
  2821  			invalid = http2headerFieldValueError(hf.Value)
  2822  		}
  2823  		isPseudo := strings.HasPrefix(hf.Name, ":")
  2824  		if isPseudo {
  2825  			if sawRegular {
  2826  				invalid = http2errPseudoAfterRegular
  2827  			}
  2828  		} else {
  2829  			sawRegular = true
  2830  			if !http2validWireHeaderFieldName(hf.Name) {
  2831  				invalid = http2headerFieldNameError(hf.Name)
  2832  			}
  2833  		}
  2834  
  2835  		if invalid != nil {
  2836  			hdec.SetEmitEnabled(false)
  2837  			return
  2838  		}
  2839  
  2840  		size := hf.Size()
  2841  		if size > remainSize {
  2842  			hdec.SetEmitEnabled(false)
  2843  			mh.Truncated = true
  2844  			return
  2845  		}
  2846  		remainSize -= size
  2847  
  2848  		mh.Fields = append(mh.Fields, hf)
  2849  	})
  2850  	// Lose reference to MetaHeadersFrame:
  2851  	defer hdec.SetEmitFunc(func(hf hpack.HeaderField) {})
  2852  
  2853  	var hc http2headersOrContinuation = hf
  2854  	for {
  2855  		frag := hc.HeaderBlockFragment()
  2856  		if _, err := hdec.Write(frag); err != nil {
  2857  			return nil, http2ConnectionError(http2ErrCodeCompression)
  2858  		}
  2859  
  2860  		if hc.HeadersEnded() {
  2861  			break
  2862  		}
  2863  		if f, err := fr.ReadFrame(); err != nil {
  2864  			return nil, err
  2865  		} else {
  2866  			hc = f.(*http2ContinuationFrame) // guaranteed by checkFrameOrder
  2867  		}
  2868  	}
  2869  
  2870  	mh.http2HeadersFrame.headerFragBuf = nil
  2871  	mh.http2HeadersFrame.invalidate()
  2872  
  2873  	if err := hdec.Close(); err != nil {
  2874  		return nil, http2ConnectionError(http2ErrCodeCompression)
  2875  	}
  2876  	if invalid != nil {
  2877  		fr.errDetail = invalid
  2878  		if http2VerboseLogs {
  2879  			log.Printf("http2: invalid header: %v", invalid)
  2880  		}
  2881  		return nil, http2StreamError{mh.StreamID, http2ErrCodeProtocol, invalid}
  2882  	}
  2883  	if err := mh.checkPseudos(); err != nil {
  2884  		fr.errDetail = err
  2885  		if http2VerboseLogs {
  2886  			log.Printf("http2: invalid pseudo headers: %v", err)
  2887  		}
  2888  		return nil, http2StreamError{mh.StreamID, http2ErrCodeProtocol, err}
  2889  	}
  2890  	return mh, nil
  2891  }
  2892  
  2893  func http2summarizeFrame(f http2Frame) string {
  2894  	var buf bytes.Buffer
  2895  	f.Header().writeDebug(&buf)
  2896  	switch f := f.(type) {
  2897  	case *http2SettingsFrame:
  2898  		n := 0
  2899  		f.ForeachSetting(func(s http2Setting) error {
  2900  			n++
  2901  			if n == 1 {
  2902  				buf.WriteString(", settings:")
  2903  			}
  2904  			fmt.Fprintf(&buf, " %v=%v,", s.ID, s.Val)
  2905  			return nil
  2906  		})
  2907  		if n > 0 {
  2908  			buf.Truncate(buf.Len() - 1) // remove trailing comma
  2909  		}
  2910  	case *http2DataFrame:
  2911  		data := f.Data()
  2912  		const max = 256
  2913  		if len(data) > max {
  2914  			data = data[:max]
  2915  		}
  2916  		fmt.Fprintf(&buf, " data=%q", data)
  2917  		if len(f.Data()) > max {
  2918  			fmt.Fprintf(&buf, " (%d bytes omitted)", len(f.Data())-max)
  2919  		}
  2920  	case *http2WindowUpdateFrame:
  2921  		if f.StreamID == 0 {
  2922  			buf.WriteString(" (conn)")
  2923  		}
  2924  		fmt.Fprintf(&buf, " incr=%v", f.Increment)
  2925  	case *http2PingFrame:
  2926  		fmt.Fprintf(&buf, " ping=%q", f.Data[:])
  2927  	case *http2GoAwayFrame:
  2928  		fmt.Fprintf(&buf, " LastStreamID=%v ErrCode=%v Debug=%q",
  2929  			f.LastStreamID, f.ErrCode, f.debugData)
  2930  	case *http2RSTStreamFrame:
  2931  		fmt.Fprintf(&buf, " ErrCode=%v", f.ErrCode)
  2932  	}
  2933  	return buf.String()
  2934  }
  2935  
  2936  func http2traceHasWroteHeaderField(trace *httptrace.ClientTrace) bool {
  2937  	return trace != nil && trace.WroteHeaderField != nil
  2938  }
  2939  
  2940  func http2traceWroteHeaderField(trace *httptrace.ClientTrace, k, v string) {
  2941  	if trace != nil && trace.WroteHeaderField != nil {
  2942  		trace.WroteHeaderField(k, []string{v})
  2943  	}
  2944  }
  2945  
  2946  func http2traceGot1xxResponseFunc(trace *httptrace.ClientTrace) func(int, textproto.MIMEHeader) error {
  2947  	if trace != nil {
  2948  		return trace.Got1xxResponse
  2949  	}
  2950  	return nil
  2951  }
  2952  
  2953  // dialTLSWithContext uses tls.Dialer, added in Go 1.15, to open a TLS
  2954  // connection.
  2955  func (t *http2Transport) dialTLSWithContext(ctx context.Context, network, addr string, cfg *tls.Config) (*tls.Conn, error) {
  2956  	dialer := &tls.Dialer{
  2957  		Config: cfg,
  2958  	}
  2959  	cn, err := dialer.DialContext(ctx, network, addr)
  2960  	if err != nil {
  2961  		return nil, err
  2962  	}
  2963  	tlsCn := cn.(*tls.Conn) // DialContext comment promises this will always succeed
  2964  	return tlsCn, nil
  2965  }
  2966  
  2967  var http2DebugGoroutines = os.Getenv("DEBUG_HTTP2_GOROUTINES") == "1"
  2968  
  2969  type http2goroutineLock uint64
  2970  
  2971  func http2newGoroutineLock() http2goroutineLock {
  2972  	if !http2DebugGoroutines {
  2973  		return 0
  2974  	}
  2975  	return http2goroutineLock(http2curGoroutineID())
  2976  }
  2977  
  2978  func (g http2goroutineLock) check() {
  2979  	if !http2DebugGoroutines {
  2980  		return
  2981  	}
  2982  	if http2curGoroutineID() != uint64(g) {
  2983  		panic("running on the wrong goroutine")
  2984  	}
  2985  }
  2986  
  2987  func (g http2goroutineLock) checkNotOn() {
  2988  	if !http2DebugGoroutines {
  2989  		return
  2990  	}
  2991  	if http2curGoroutineID() == uint64(g) {
  2992  		panic("running on the wrong goroutine")
  2993  	}
  2994  }
  2995  
  2996  var http2goroutineSpace = []byte("goroutine ")
  2997  
  2998  func http2curGoroutineID() uint64 {
  2999  	bp := http2littleBuf.Get().(*[]byte)
  3000  	defer http2littleBuf.Put(bp)
  3001  	b := *bp
  3002  	b = b[:runtime.Stack(b, false)]
  3003  	// Parse the 4707 out of "goroutine 4707 ["
  3004  	b = bytes.TrimPrefix(b, http2goroutineSpace)
  3005  	i := bytes.IndexByte(b, ' ')
  3006  	if i < 0 {
  3007  		panic(fmt.Sprintf("No space found in %q", b))
  3008  	}
  3009  	b = b[:i]
  3010  	n, err := http2parseUintBytes(b, 10, 64)
  3011  	if err != nil {
  3012  		panic(fmt.Sprintf("Failed to parse goroutine ID out of %q: %v", b, err))
  3013  	}
  3014  	return n
  3015  }
  3016  
  3017  var http2littleBuf = sync.Pool{
  3018  	New: func() interface{} {
  3019  		buf := make([]byte, 64)
  3020  		return &buf
  3021  	},
  3022  }
  3023  
  3024  // parseUintBytes is like strconv.ParseUint, but using a []byte.
  3025  func http2parseUintBytes(s []byte, base int, bitSize int) (n uint64, err error) {
  3026  	var cutoff, maxVal uint64
  3027  
  3028  	if bitSize == 0 {
  3029  		bitSize = int(strconv.IntSize)
  3030  	}
  3031  
  3032  	s0 := s
  3033  	switch {
  3034  	case len(s) < 1:
  3035  		err = strconv.ErrSyntax
  3036  		goto Error
  3037  
  3038  	case 2 <= base && base <= 36:
  3039  		// valid base; nothing to do
  3040  
  3041  	case base == 0:
  3042  		// Look for octal, hex prefix.
  3043  		switch {
  3044  		case s[0] == '0' && len(s) > 1 && (s[1] == 'x' || s[1] == 'X'):
  3045  			base = 16
  3046  			s = s[2:]
  3047  			if len(s) < 1 {
  3048  				err = strconv.ErrSyntax
  3049  				goto Error
  3050  			}
  3051  		case s[0] == '0':
  3052  			base = 8
  3053  		default:
  3054  			base = 10
  3055  		}
  3056  
  3057  	default:
  3058  		err = errors.New("invalid base " + strconv.Itoa(base))
  3059  		goto Error
  3060  	}
  3061  
  3062  	n = 0
  3063  	cutoff = http2cutoff64(base)
  3064  	maxVal = 1<<uint(bitSize) - 1
  3065  
  3066  	for i := 0; i < len(s); i++ {
  3067  		var v byte
  3068  		d := s[i]
  3069  		switch {
  3070  		case '0' <= d && d <= '9':
  3071  			v = d - '0'
  3072  		case 'a' <= d && d <= 'z':
  3073  			v = d - 'a' + 10
  3074  		case 'A' <= d && d <= 'Z':
  3075  			v = d - 'A' + 10
  3076  		default:
  3077  			n = 0
  3078  			err = strconv.ErrSyntax
  3079  			goto Error
  3080  		}
  3081  		if int(v) >= base {
  3082  			n = 0
  3083  			err = strconv.ErrSyntax
  3084  			goto Error
  3085  		}
  3086  
  3087  		if n >= cutoff {
  3088  			// n*base overflows
  3089  			n = 1<<64 - 1
  3090  			err = strconv.ErrRange
  3091  			goto Error
  3092  		}
  3093  		n *= uint64(base)
  3094  
  3095  		n1 := n + uint64(v)
  3096  		if n1 < n || n1 > maxVal {
  3097  			// n+v overflows
  3098  			n = 1<<64 - 1
  3099  			err = strconv.ErrRange
  3100  			goto Error
  3101  		}
  3102  		n = n1
  3103  	}
  3104  
  3105  	return n, nil
  3106  
  3107  Error:
  3108  	return n, &strconv.NumError{Func: "ParseUint", Num: string(s0), Err: err}
  3109  }
  3110  
  3111  // Return the first number n such that n*base >= 1<<64.
  3112  func http2cutoff64(base int) uint64 {
  3113  	if base < 2 {
  3114  		return 0
  3115  	}
  3116  	return (1<<64-1)/uint64(base) + 1
  3117  }
  3118  
  3119  var (
  3120  	http2commonBuildOnce   sync.Once
  3121  	http2commonLowerHeader map[string]string // Go-Canonical-Case -> lower-case
  3122  	http2commonCanonHeader map[string]string // lower-case -> Go-Canonical-Case
  3123  )
  3124  
  3125  func http2buildCommonHeaderMapsOnce() {
  3126  	http2commonBuildOnce.Do(http2buildCommonHeaderMaps)
  3127  }
  3128  
  3129  func http2buildCommonHeaderMaps() {
  3130  	common := []string{
  3131  		"accept",
  3132  		"accept-charset",
  3133  		"accept-encoding",
  3134  		"accept-language",
  3135  		"accept-ranges",
  3136  		"age",
  3137  		"access-control-allow-origin",
  3138  		"allow",
  3139  		"authorization",
  3140  		"cache-control",
  3141  		"content-disposition",
  3142  		"content-encoding",
  3143  		"content-language",
  3144  		"content-length",
  3145  		"content-location",
  3146  		"content-range",
  3147  		"content-type",
  3148  		"cookie",
  3149  		"date",
  3150  		"etag",
  3151  		"expect",
  3152  		"expires",
  3153  		"from",
  3154  		"host",
  3155  		"if-match",
  3156  		"if-modified-since",
  3157  		"if-none-match",
  3158  		"if-unmodified-since",
  3159  		"last-modified",
  3160  		"link",
  3161  		"location",
  3162  		"max-forwards",
  3163  		"proxy-authenticate",
  3164  		"proxy-authorization",
  3165  		"range",
  3166  		"referer",
  3167  		"refresh",
  3168  		"retry-after",
  3169  		"server",
  3170  		"set-cookie",
  3171  		"strict-transport-security",
  3172  		"trailer",
  3173  		"transfer-encoding",
  3174  		"user-agent",
  3175  		"vary",
  3176  		"via",
  3177  		"www-authenticate",
  3178  	}
  3179  	http2commonLowerHeader = make(map[string]string, len(common))
  3180  	http2commonCanonHeader = make(map[string]string, len(common))
  3181  	for _, v := range common {
  3182  		chk := CanonicalHeaderKey(v)
  3183  		http2commonLowerHeader[chk] = v
  3184  		http2commonCanonHeader[v] = chk
  3185  	}
  3186  }
  3187  
  3188  func http2lowerHeader(v string) (lower string, ascii bool) {
  3189  	http2buildCommonHeaderMapsOnce()
  3190  	if s, ok := http2commonLowerHeader[v]; ok {
  3191  		return s, true
  3192  	}
  3193  	return http2asciiToLower(v)
  3194  }
  3195  
  3196  var (
  3197  	http2VerboseLogs    bool
  3198  	http2logFrameWrites bool
  3199  	http2logFrameReads  bool
  3200  	http2inTests        bool
  3201  )
  3202  
  3203  func init() {
  3204  	e := os.Getenv("GODEBUG")
  3205  	if strings.Contains(e, "http2debug=1") {
  3206  		http2VerboseLogs = true
  3207  	}
  3208  	if strings.Contains(e, "http2debug=2") {
  3209  		http2VerboseLogs = true
  3210  		http2logFrameWrites = true
  3211  		http2logFrameReads = true
  3212  	}
  3213  }
  3214  
  3215  const (
  3216  	// ClientPreface is the string that must be sent by new
  3217  	// connections from clients.
  3218  	http2ClientPreface = "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
  3219  
  3220  	// SETTINGS_MAX_FRAME_SIZE default
  3221  	// http://http2.github.io/http2-spec/#rfc.section.6.5.2
  3222  	http2initialMaxFrameSize = 16384
  3223  
  3224  	// NextProtoTLS is the NPN/ALPN protocol negotiated during
  3225  	// HTTP/2's TLS setup.
  3226  	http2NextProtoTLS = "h2"
  3227  
  3228  	// http://http2.github.io/http2-spec/#SettingValues
  3229  	http2initialHeaderTableSize = 4096
  3230  
  3231  	http2initialWindowSize = 65535 // 6.9.2 Initial Flow Control Window Size
  3232  
  3233  	http2defaultMaxReadFrameSize = 1 << 20
  3234  )
  3235  
  3236  var (
  3237  	http2clientPreface = []byte(http2ClientPreface)
  3238  )
  3239  
  3240  type http2streamState int
  3241  
  3242  // HTTP/2 stream states.
  3243  //
  3244  // See http://tools.ietf.org/html/rfc7540#section-5.1.
  3245  //
  3246  // For simplicity, the server code merges "reserved (local)" into
  3247  // "half-closed (remote)". This is one less state transition to track.
  3248  // The only downside is that we send PUSH_PROMISEs slightly less
  3249  // liberally than allowable. More discussion here:
  3250  // https://lists.w3.org/Archives/Public/ietf-http-wg/2016JulSep/0599.html
  3251  //
  3252  // "reserved (remote)" is omitted since the client code does not
  3253  // support server push.
  3254  const (
  3255  	http2stateIdle http2streamState = iota
  3256  	http2stateOpen
  3257  	http2stateHalfClosedLocal
  3258  	http2stateHalfClosedRemote
  3259  	http2stateClosed
  3260  )
  3261  
  3262  var http2stateName = [...]string{
  3263  	http2stateIdle:             "Idle",
  3264  	http2stateOpen:             "Open",
  3265  	http2stateHalfClosedLocal:  "HalfClosedLocal",
  3266  	http2stateHalfClosedRemote: "HalfClosedRemote",
  3267  	http2stateClosed:           "Closed",
  3268  }
  3269  
  3270  func (st http2streamState) String() string {
  3271  	return http2stateName[st]
  3272  }
  3273  
  3274  // Setting is a setting parameter: which setting it is, and its value.
  3275  type http2Setting struct {
  3276  	// ID is which setting is being set.
  3277  	// See http://http2.github.io/http2-spec/#SettingValues
  3278  	ID http2SettingID
  3279  
  3280  	// Val is the value.
  3281  	Val uint32
  3282  }
  3283  
  3284  func (s http2Setting) String() string {
  3285  	return fmt.Sprintf("[%v = %d]", s.ID, s.Val)
  3286  }
  3287  
  3288  // Valid reports whether the setting is valid.
  3289  func (s http2Setting) Valid() error {
  3290  	// Limits and error codes from 6.5.2 Defined SETTINGS Parameters
  3291  	switch s.ID {
  3292  	case http2SettingEnablePush:
  3293  		if s.Val != 1 && s.Val != 0 {
  3294  			return http2ConnectionError(http2ErrCodeProtocol)
  3295  		}
  3296  	case http2SettingInitialWindowSize:
  3297  		if s.Val > 1<<31-1 {
  3298  			return http2ConnectionError(http2ErrCodeFlowControl)
  3299  		}
  3300  	case http2SettingMaxFrameSize:
  3301  		if s.Val < 16384 || s.Val > 1<<24-1 {
  3302  			return http2ConnectionError(http2ErrCodeProtocol)
  3303  		}
  3304  	}
  3305  	return nil
  3306  }
  3307  
  3308  // A SettingID is an HTTP/2 setting as defined in
  3309  // http://http2.github.io/http2-spec/#iana-settings
  3310  type http2SettingID uint16
  3311  
  3312  const (
  3313  	http2SettingHeaderTableSize      http2SettingID = 0x1
  3314  	http2SettingEnablePush           http2SettingID = 0x2
  3315  	http2SettingMaxConcurrentStreams http2SettingID = 0x3
  3316  	http2SettingInitialWindowSize    http2SettingID = 0x4
  3317  	http2SettingMaxFrameSize         http2SettingID = 0x5
  3318  	http2SettingMaxHeaderListSize    http2SettingID = 0x6
  3319  )
  3320  
  3321  var http2settingName = map[http2SettingID]string{
  3322  	http2SettingHeaderTableSize:      "HEADER_TABLE_SIZE",
  3323  	http2SettingEnablePush:           "ENABLE_PUSH",
  3324  	http2SettingMaxConcurrentStreams: "MAX_CONCURRENT_STREAMS",
  3325  	http2SettingInitialWindowSize:    "INITIAL_WINDOW_SIZE",
  3326  	http2SettingMaxFrameSize:         "MAX_FRAME_SIZE",
  3327  	http2SettingMaxHeaderListSize:    "MAX_HEADER_LIST_SIZE",
  3328  }
  3329  
  3330  func (s http2SettingID) String() string {
  3331  	if v, ok := http2settingName[s]; ok {
  3332  		return v
  3333  	}
  3334  	return fmt.Sprintf("UNKNOWN_SETTING_%d", uint16(s))
  3335  }
  3336  
  3337  // validWireHeaderFieldName reports whether v is a valid header field
  3338  // name (key). See httpguts.ValidHeaderName for the base rules.
  3339  //
  3340  // Further, http2 says:
  3341  //   "Just as in HTTP/1.x, header field names are strings of ASCII
  3342  //   characters that are compared in a case-insensitive
  3343  //   fashion. However, header field names MUST be converted to
  3344  //   lowercase prior to their encoding in HTTP/2. "
  3345  func http2validWireHeaderFieldName(v string) bool {
  3346  	if len(v) == 0 {
  3347  		return false
  3348  	}
  3349  	for _, r := range v {
  3350  		if !httpguts.IsTokenRune(r) {
  3351  			return false
  3352  		}
  3353  		if 'A' <= r && r <= 'Z' {
  3354  			return false
  3355  		}
  3356  	}
  3357  	return true
  3358  }
  3359  
  3360  func http2httpCodeString(code int) string {
  3361  	switch code {
  3362  	case 200:
  3363  		return "200"
  3364  	case 404:
  3365  		return "404"
  3366  	}
  3367  	return strconv.Itoa(code)
  3368  }
  3369  
  3370  // from pkg io
  3371  type http2stringWriter interface {
  3372  	WriteString(s string) (n int, err error)
  3373  }
  3374  
  3375  // A gate lets two goroutines coordinate their activities.
  3376  type http2gate chan struct{}
  3377  
  3378  func (g http2gate) Done() { g <- struct{}{} }
  3379  
  3380  func (g http2gate) Wait() { <-g }
  3381  
  3382  // A closeWaiter is like a sync.WaitGroup but only goes 1 to 0 (open to closed).
  3383  type http2closeWaiter chan struct{}
  3384  
  3385  // Init makes a closeWaiter usable.
  3386  // It exists because so a closeWaiter value can be placed inside a
  3387  // larger struct and have the Mutex and Cond's memory in the same
  3388  // allocation.
  3389  func (cw *http2closeWaiter) Init() {
  3390  	*cw = make(chan struct{})
  3391  }
  3392  
  3393  // Close marks the closeWaiter as closed and unblocks any waiters.
  3394  func (cw http2closeWaiter) Close() {
  3395  	close(cw)
  3396  }
  3397  
  3398  // Wait waits for the closeWaiter to become closed.
  3399  func (cw http2closeWaiter) Wait() {
  3400  	<-cw
  3401  }
  3402  
  3403  // bufferedWriter is a buffered writer that writes to w.
  3404  // Its buffered writer is lazily allocated as needed, to minimize
  3405  // idle memory usage with many connections.
  3406  type http2bufferedWriter struct {
  3407  	_  http2incomparable
  3408  	w  io.Writer     // immutable
  3409  	bw *bufio.Writer // non-nil when data is buffered
  3410  }
  3411  
  3412  func http2newBufferedWriter(w io.Writer) *http2bufferedWriter {
  3413  	return &http2bufferedWriter{w: w}
  3414  }
  3415  
  3416  // bufWriterPoolBufferSize is the size of bufio.Writer's
  3417  // buffers created using bufWriterPool.
  3418  //
  3419  // TODO: pick a less arbitrary value? this is a bit under
  3420  // (3 x typical 1500 byte MTU) at least. Other than that,
  3421  // not much thought went into it.
  3422  const http2bufWriterPoolBufferSize = 4 << 10
  3423  
  3424  var http2bufWriterPool = sync.Pool{
  3425  	New: func() interface{} {
  3426  		return bufio.NewWriterSize(nil, http2bufWriterPoolBufferSize)
  3427  	},
  3428  }
  3429  
  3430  func (w *http2bufferedWriter) Available() int {
  3431  	if w.bw == nil {
  3432  		return http2bufWriterPoolBufferSize
  3433  	}
  3434  	return w.bw.Available()
  3435  }
  3436  
  3437  func (w *http2bufferedWriter) Write(p []byte) (n int, err error) {
  3438  	if w.bw == nil {
  3439  		bw := http2bufWriterPool.Get().(*bufio.Writer)
  3440  		bw.Reset(w.w)
  3441  		w.bw = bw
  3442  	}
  3443  	return w.bw.Write(p)
  3444  }
  3445  
  3446  func (w *http2bufferedWriter) Flush() error {
  3447  	bw := w.bw
  3448  	if bw == nil {
  3449  		return nil
  3450  	}
  3451  	err := bw.Flush()
  3452  	bw.Reset(nil)
  3453  	http2bufWriterPool.Put(bw)
  3454  	w.bw = nil
  3455  	return err
  3456  }
  3457  
  3458  func http2mustUint31(v int32) uint32 {
  3459  	if v < 0 || v > 2147483647 {
  3460  		panic("out of range")
  3461  	}
  3462  	return uint32(v)
  3463  }
  3464  
  3465  // bodyAllowedForStatus reports whether a given response status code
  3466  // permits a body. See RFC 7230, section 3.3.
  3467  func http2bodyAllowedForStatus(status int) bool {
  3468  	switch {
  3469  	case status >= 100 && status <= 199:
  3470  		return false
  3471  	case status == 204:
  3472  		return false
  3473  	case status == 304:
  3474  		return false
  3475  	}
  3476  	return true
  3477  }
  3478  
  3479  type http2httpError struct {
  3480  	_       http2incomparable
  3481  	msg     string
  3482  	timeout bool
  3483  }
  3484  
  3485  func (e *http2httpError) Error() string { return e.msg }
  3486  
  3487  func (e *http2httpError) Timeout() bool { return e.timeout }
  3488  
  3489  func (e *http2httpError) Temporary() bool { return true }
  3490  
  3491  var http2errTimeout error = &http2httpError{msg: "http2: timeout awaiting response headers", timeout: true}
  3492  
  3493  type http2connectionStater interface {
  3494  	ConnectionState() tls.ConnectionState
  3495  }
  3496  
  3497  var http2sorterPool = sync.Pool{New: func() interface{} { return new(http2sorter) }}
  3498  
  3499  type http2sorter struct {
  3500  	v []string // owned by sorter
  3501  }
  3502  
  3503  func (s *http2sorter) Len() int { return len(s.v) }
  3504  
  3505  func (s *http2sorter) Swap(i, j int) { s.v[i], s.v[j] = s.v[j], s.v[i] }
  3506  
  3507  func (s *http2sorter) Less(i, j int) bool { return s.v[i] < s.v[j] }
  3508  
  3509  // Keys returns the sorted keys of h.
  3510  //
  3511  // The returned slice is only valid until s used again or returned to
  3512  // its pool.
  3513  func (s *http2sorter) Keys(h Header) []string {
  3514  	keys := s.v[:0]
  3515  	for k := range h {
  3516  		keys = append(keys, k)
  3517  	}
  3518  	s.v = keys
  3519  	sort.Sort(s)
  3520  	return keys
  3521  }
  3522  
  3523  func (s *http2sorter) SortStrings(ss []string) {
  3524  	// Our sorter works on s.v, which sorter owns, so
  3525  	// stash it away while we sort the user's buffer.
  3526  	save := s.v
  3527  	s.v = ss
  3528  	sort.Sort(s)
  3529  	s.v = save
  3530  }
  3531  
  3532  // validPseudoPath reports whether v is a valid :path pseudo-header
  3533  // value. It must be either:
  3534  //
  3535  //     *) a non-empty string starting with '/'
  3536  //     *) the string '*', for OPTIONS requests.
  3537  //
  3538  // For now this is only used a quick check for deciding when to clean
  3539  // up Opaque URLs before sending requests from the Transport.
  3540  // See golang.org/issue/16847
  3541  //
  3542  // We used to enforce that the path also didn't start with "//", but
  3543  // Google's GFE accepts such paths and Chrome sends them, so ignore
  3544  // that part of the spec. See golang.org/issue/19103.
  3545  func http2validPseudoPath(v string) bool {
  3546  	return (len(v) > 0 && v[0] == '/') || v == "*"
  3547  }
  3548  
  3549  // incomparable is a zero-width, non-comparable type. Adding it to a struct
  3550  // makes that struct also non-comparable, and generally doesn't add
  3551  // any size (as long as it's first).
  3552  type http2incomparable [0]func()
  3553  
  3554  // pipe is a goroutine-safe io.Reader/io.Writer pair. It's like
  3555  // io.Pipe except there are no PipeReader/PipeWriter halves, and the
  3556  // underlying buffer is an interface. (io.Pipe is always unbuffered)
  3557  type http2pipe struct {
  3558  	mu       sync.Mutex
  3559  	c        sync.Cond       // c.L lazily initialized to &p.mu
  3560  	b        http2pipeBuffer // nil when done reading
  3561  	unread   int             // bytes unread when done
  3562  	err      error           // read error once empty. non-nil means closed.
  3563  	breakErr error           // immediate read error (caller doesn't see rest of b)
  3564  	donec    chan struct{}   // closed on error
  3565  	readFn   func()          // optional code to run in Read before error
  3566  }
  3567  
  3568  type http2pipeBuffer interface {
  3569  	Len() int
  3570  	io.Writer
  3571  	io.Reader
  3572  }
  3573  
  3574  // setBuffer initializes the pipe buffer.
  3575  // It has no effect if the pipe is already closed.
  3576  func (p *http2pipe) setBuffer(b http2pipeBuffer) {
  3577  	p.mu.Lock()
  3578  	defer p.mu.Unlock()
  3579  	if p.err != nil || p.breakErr != nil {
  3580  		return
  3581  	}
  3582  	p.b = b
  3583  }
  3584  
  3585  func (p *http2pipe) Len() int {
  3586  	p.mu.Lock()
  3587  	defer p.mu.Unlock()
  3588  	if p.b == nil {
  3589  		return p.unread
  3590  	}
  3591  	return p.b.Len()
  3592  }
  3593  
  3594  // Read waits until data is available and copies bytes
  3595  // from the buffer into p.
  3596  func (p *http2pipe) Read(d []byte) (n int, err error) {
  3597  	p.mu.Lock()
  3598  	defer p.mu.Unlock()
  3599  	if p.c.L == nil {
  3600  		p.c.L = &p.mu
  3601  	}
  3602  	for {
  3603  		if p.breakErr != nil {
  3604  			return 0, p.breakErr
  3605  		}
  3606  		if p.b != nil && p.b.Len() > 0 {
  3607  			return p.b.Read(d)
  3608  		}
  3609  		if p.err != nil {
  3610  			if p.readFn != nil {
  3611  				p.readFn()     // e.g. copy trailers
  3612  				p.readFn = nil // not sticky like p.err
  3613  			}
  3614  			p.b = nil
  3615  			return 0, p.err
  3616  		}
  3617  		p.c.Wait()
  3618  	}
  3619  }
  3620  
  3621  var http2errClosedPipeWrite = errors.New("write on closed buffer")
  3622  
  3623  // Write copies bytes from p into the buffer and wakes a reader.
  3624  // It is an error to write more data than the buffer can hold.
  3625  func (p *http2pipe) Write(d []byte) (n int, err error) {
  3626  	p.mu.Lock()
  3627  	defer p.mu.Unlock()
  3628  	if p.c.L == nil {
  3629  		p.c.L = &p.mu
  3630  	}
  3631  	defer p.c.Signal()
  3632  	if p.err != nil {
  3633  		return 0, http2errClosedPipeWrite
  3634  	}
  3635  	if p.breakErr != nil {
  3636  		p.unread += len(d)
  3637  		return len(d), nil // discard when there is no reader
  3638  	}
  3639  	return p.b.Write(d)
  3640  }
  3641  
  3642  // CloseWithError causes the next Read (waking up a current blocked
  3643  // Read if needed) to return the provided err after all data has been
  3644  // read.
  3645  //
  3646  // The error must be non-nil.
  3647  func (p *http2pipe) CloseWithError(err error) { p.closeWithError(&p.err, err, nil) }
  3648  
  3649  // BreakWithError causes the next Read (waking up a current blocked
  3650  // Read if needed) to return the provided err immediately, without
  3651  // waiting for unread data.
  3652  func (p *http2pipe) BreakWithError(err error) { p.closeWithError(&p.breakErr, err, nil) }
  3653  
  3654  // closeWithErrorAndCode is like CloseWithError but also sets some code to run
  3655  // in the caller's goroutine before returning the error.
  3656  func (p *http2pipe) closeWithErrorAndCode(err error, fn func()) { p.closeWithError(&p.err, err, fn) }
  3657  
  3658  func (p *http2pipe) closeWithError(dst *error, err error, fn func()) {
  3659  	if err == nil {
  3660  		panic("err must be non-nil")
  3661  	}
  3662  	p.mu.Lock()
  3663  	defer p.mu.Unlock()
  3664  	if p.c.L == nil {
  3665  		p.c.L = &p.mu
  3666  	}
  3667  	defer p.c.Signal()
  3668  	if *dst != nil {
  3669  		// Already been done.
  3670  		return
  3671  	}
  3672  	p.readFn = fn
  3673  	if dst == &p.breakErr {
  3674  		if p.b != nil {
  3675  			p.unread += p.b.Len()
  3676  		}
  3677  		p.b = nil
  3678  	}
  3679  	*dst = err
  3680  	p.closeDoneLocked()
  3681  }
  3682  
  3683  // requires p.mu be held.
  3684  func (p *http2pipe) closeDoneLocked() {
  3685  	if p.donec == nil {
  3686  		return
  3687  	}
  3688  	// Close if unclosed. This isn't racy since we always
  3689  	// hold p.mu while closing.
  3690  	select {
  3691  	case <-p.donec:
  3692  	default:
  3693  		close(p.donec)
  3694  	}
  3695  }
  3696  
  3697  // Err returns the error (if any) first set by BreakWithError or CloseWithError.
  3698  func (p *http2pipe) Err() error {
  3699  	p.mu.Lock()
  3700  	defer p.mu.Unlock()
  3701  	if p.breakErr != nil {
  3702  		return p.breakErr
  3703  	}
  3704  	return p.err
  3705  }
  3706  
  3707  // Done returns a channel which is closed if and when this pipe is closed
  3708  // with CloseWithError.
  3709  func (p *http2pipe) Done() <-chan struct{} {
  3710  	p.mu.Lock()
  3711  	defer p.mu.Unlock()
  3712  	if p.donec == nil {
  3713  		p.donec = make(chan struct{})
  3714  		if p.err != nil || p.breakErr != nil {
  3715  			// Already hit an error.
  3716  			p.closeDoneLocked()
  3717  		}
  3718  	}
  3719  	return p.donec
  3720  }
  3721  
  3722  const (
  3723  	http2prefaceTimeout         = 10 * time.Second
  3724  	http2firstSettingsTimeout   = 2 * time.Second // should be in-flight with preface anyway
  3725  	http2handlerChunkWriteSize  = 4 << 10
  3726  	http2defaultMaxStreams      = 250 // TODO: make this 100 as the GFE seems to?
  3727  	http2maxQueuedControlFrames = 10000
  3728  )
  3729  
  3730  var (
  3731  	http2errClientDisconnected = errors.New("client disconnected")
  3732  	http2errClosedBody         = errors.New("body closed by handler")
  3733  	http2errHandlerComplete    = errors.New("http2: request body closed due to handler exiting")
  3734  	http2errStreamClosed       = errors.New("http2: stream closed")
  3735  )
  3736  
  3737  var http2responseWriterStatePool = sync.Pool{
  3738  	New: func() interface{} {
  3739  		rws := &http2responseWriterState{}
  3740  		rws.bw = bufio.NewWriterSize(http2chunkWriter{rws}, http2handlerChunkWriteSize)
  3741  		return rws
  3742  	},
  3743  }
  3744  
  3745  // Test hooks.
  3746  var (
  3747  	http2testHookOnConn        func()
  3748  	http2testHookGetServerConn func(*http2serverConn)
  3749  	http2testHookOnPanicMu     *sync.Mutex // nil except in tests
  3750  	http2testHookOnPanic       func(sc *http2serverConn, panicVal interface{}) (rePanic bool)
  3751  )
  3752  
  3753  // Server is an HTTP/2 server.
  3754  type http2Server struct {
  3755  	// MaxHandlers limits the number of http.Handler ServeHTTP goroutines
  3756  	// which may run at a time over all connections.
  3757  	// Negative or zero no limit.
  3758  	// TODO: implement
  3759  	MaxHandlers int
  3760  
  3761  	// MaxConcurrentStreams optionally specifies the number of
  3762  	// concurrent streams that each client may have open at a
  3763  	// time. This is unrelated to the number of http.Handler goroutines
  3764  	// which may be active globally, which is MaxHandlers.
  3765  	// If zero, MaxConcurrentStreams defaults to at least 100, per
  3766  	// the HTTP/2 spec's recommendations.
  3767  	MaxConcurrentStreams uint32
  3768  
  3769  	// MaxReadFrameSize optionally specifies the largest frame
  3770  	// this server is willing to read. A valid value is between
  3771  	// 16k and 16M, inclusive. If zero or otherwise invalid, a
  3772  	// default value is used.
  3773  	MaxReadFrameSize uint32
  3774  
  3775  	// PermitProhibitedCipherSuites, if true, permits the use of
  3776  	// cipher suites prohibited by the HTTP/2 spec.
  3777  	PermitProhibitedCipherSuites bool
  3778  
  3779  	// IdleTimeout specifies how long until idle clients should be
  3780  	// closed with a GOAWAY frame. PING frames are not considered
  3781  	// activity for the purposes of IdleTimeout.
  3782  	IdleTimeout time.Duration
  3783  
  3784  	// MaxUploadBufferPerConnection is the size of the initial flow
  3785  	// control window for each connections. The HTTP/2 spec does not
  3786  	// allow this to be smaller than 65535 or larger than 2^32-1.
  3787  	// If the value is outside this range, a default value will be
  3788  	// used instead.
  3789  	MaxUploadBufferPerConnection int32
  3790  
  3791  	// MaxUploadBufferPerStream is the size of the initial flow control
  3792  	// window for each stream. The HTTP/2 spec does not allow this to
  3793  	// be larger than 2^32-1. If the value is zero or larger than the
  3794  	// maximum, a default value will be used instead.
  3795  	MaxUploadBufferPerStream int32
  3796  
  3797  	// NewWriteScheduler constructs a write scheduler for a connection.
  3798  	// If nil, a default scheduler is chosen.
  3799  	NewWriteScheduler func() http2WriteScheduler
  3800  
  3801  	// Internal state. This is a pointer (rather than embedded directly)
  3802  	// so that we don't embed a Mutex in this struct, which will make the
  3803  	// struct non-copyable, which might break some callers.
  3804  	state *http2serverInternalState
  3805  }
  3806  
  3807  func (s *http2Server) initialConnRecvWindowSize() int32 {
  3808  	if s.MaxUploadBufferPerConnection > http2initialWindowSize {
  3809  		return s.MaxUploadBufferPerConnection
  3810  	}
  3811  	return 1 << 20
  3812  }
  3813  
  3814  func (s *http2Server) initialStreamRecvWindowSize() int32 {
  3815  	if s.MaxUploadBufferPerStream > 0 {
  3816  		return s.MaxUploadBufferPerStream
  3817  	}
  3818  	return 1 << 20
  3819  }
  3820  
  3821  func (s *http2Server) maxReadFrameSize() uint32 {
  3822  	if v := s.MaxReadFrameSize; v >= http2minMaxFrameSize && v <= http2maxFrameSize {
  3823  		return v
  3824  	}
  3825  	return http2defaultMaxReadFrameSize
  3826  }
  3827  
  3828  func (s *http2Server) maxConcurrentStreams() uint32 {
  3829  	if v := s.MaxConcurrentStreams; v > 0 {
  3830  		return v
  3831  	}
  3832  	return http2defaultMaxStreams
  3833  }
  3834  
  3835  // maxQueuedControlFrames is the maximum number of control frames like
  3836  // SETTINGS, PING and RST_STREAM that will be queued for writing before
  3837  // the connection is closed to prevent memory exhaustion attacks.
  3838  func (s *http2Server) maxQueuedControlFrames() int {
  3839  	// TODO: if anybody asks, add a Server field, and remember to define the
  3840  	// behavior of negative values.
  3841  	return http2maxQueuedControlFrames
  3842  }
  3843  
  3844  type http2serverInternalState struct {
  3845  	mu          sync.Mutex
  3846  	activeConns map[*http2serverConn]struct{}
  3847  }
  3848  
  3849  func (s *http2serverInternalState) registerConn(sc *http2serverConn) {
  3850  	if s == nil {
  3851  		return // if the Server was used without calling ConfigureServer
  3852  	}
  3853  	s.mu.Lock()
  3854  	s.activeConns[sc] = struct{}{}
  3855  	s.mu.Unlock()
  3856  }
  3857  
  3858  func (s *http2serverInternalState) unregisterConn(sc *http2serverConn) {
  3859  	if s == nil {
  3860  		return // if the Server was used without calling ConfigureServer
  3861  	}
  3862  	s.mu.Lock()
  3863  	delete(s.activeConns, sc)
  3864  	s.mu.Unlock()
  3865  }
  3866  
  3867  func (s *http2serverInternalState) startGracefulShutdown() {
  3868  	if s == nil {
  3869  		return // if the Server was used without calling ConfigureServer
  3870  	}
  3871  	s.mu.Lock()
  3872  	for sc := range s.activeConns {
  3873  		sc.startGracefulShutdown()
  3874  	}
  3875  	s.mu.Unlock()
  3876  }
  3877  
  3878  // ConfigureServer adds HTTP/2 support to a net/http Server.
  3879  //
  3880  // The configuration conf may be nil.
  3881  //
  3882  // ConfigureServer must be called before s begins serving.
  3883  func http2ConfigureServer(s *Server, conf *http2Server) error {
  3884  	if s == nil {
  3885  		panic("nil *http.Server")
  3886  	}
  3887  	if conf == nil {
  3888  		conf = new(http2Server)
  3889  	}
  3890  	conf.state = &http2serverInternalState{activeConns: make(map[*http2serverConn]struct{})}
  3891  	if h1, h2 := s, conf; h2.IdleTimeout == 0 {
  3892  		if h1.IdleTimeout != 0 {
  3893  			h2.IdleTimeout = h1.IdleTimeout
  3894  		} else {
  3895  			h2.IdleTimeout = h1.ReadTimeout
  3896  		}
  3897  	}
  3898  	s.RegisterOnShutdown(conf.state.startGracefulShutdown)
  3899  
  3900  	if s.TLSConfig == nil {
  3901  		s.TLSConfig = new(tls.Config)
  3902  	} else if s.TLSConfig.CipherSuites != nil && s.TLSConfig.MinVersion < tls.VersionTLS12 {
  3903  		// If they already provided a TLS 1.0–1.2 CipherSuite list, return an
  3904  		// error if it is missing ECDHE_RSA_WITH_AES_128_GCM_SHA256 or
  3905  		// ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.
  3906  		haveRequired := false
  3907  		for _, cs := range s.TLSConfig.CipherSuites {
  3908  			switch cs {
  3909  			case tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  3910  				// Alternative MTI cipher to not discourage ECDSA-only servers.
  3911  				// See http://golang.org/cl/30721 for further information.
  3912  				tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:
  3913  				haveRequired = true
  3914  			}
  3915  		}
  3916  		if !haveRequired {
  3917  			return fmt.Errorf("http2: TLSConfig.CipherSuites is missing an HTTP/2-required AES_128_GCM_SHA256 cipher (need at least one of TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 or TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)")
  3918  		}
  3919  	}
  3920  
  3921  	// Note: not setting MinVersion to tls.VersionTLS12,
  3922  	// as we don't want to interfere with HTTP/1.1 traffic
  3923  	// on the user's server. We enforce TLS 1.2 later once
  3924  	// we accept a connection. Ideally this should be done
  3925  	// during next-proto selection, but using TLS <1.2 with
  3926  	// HTTP/2 is still the client's bug.
  3927  
  3928  	s.TLSConfig.PreferServerCipherSuites = true
  3929  
  3930  	if !http2strSliceContains(s.TLSConfig.NextProtos, http2NextProtoTLS) {
  3931  		s.TLSConfig.NextProtos = append(s.TLSConfig.NextProtos, http2NextProtoTLS)
  3932  	}
  3933  	if !http2strSliceContains(s.TLSConfig.NextProtos, "http/1.1") {
  3934  		s.TLSConfig.NextProtos = append(s.TLSConfig.NextProtos, "http/1.1")
  3935  	}
  3936  
  3937  	if s.TLSNextProto == nil {
  3938  		s.TLSNextProto = map[string]func(*Server, *tls.Conn, Handler){}
  3939  	}
  3940  	protoHandler := func(hs *Server, c *tls.Conn, h Handler) {
  3941  		if http2testHookOnConn != nil {
  3942  			http2testHookOnConn()
  3943  		}
  3944  		// The TLSNextProto interface predates contexts, so
  3945  		// the net/http package passes down its per-connection
  3946  		// base context via an exported but unadvertised
  3947  		// method on the Handler. This is for internal
  3948  		// net/http<=>http2 use only.
  3949  		var ctx context.Context
  3950  		type baseContexter interface {
  3951  			BaseContext() context.Context
  3952  		}
  3953  		if bc, ok := h.(baseContexter); ok {
  3954  			ctx = bc.BaseContext()
  3955  		}
  3956  		conf.ServeConn(c, &http2ServeConnOpts{
  3957  			Context:    ctx,
  3958  			Handler:    h,
  3959  			BaseConfig: hs,
  3960  		})
  3961  	}
  3962  	s.TLSNextProto[http2NextProtoTLS] = protoHandler
  3963  	return nil
  3964  }
  3965  
  3966  // ServeConnOpts are options for the Server.ServeConn method.
  3967  type http2ServeConnOpts struct {
  3968  	// Context is the base context to use.
  3969  	// If nil, context.Background is used.
  3970  	Context context.Context
  3971  
  3972  	// BaseConfig optionally sets the base configuration
  3973  	// for values. If nil, defaults are used.
  3974  	BaseConfig *Server
  3975  
  3976  	// Handler specifies which handler to use for processing
  3977  	// requests. If nil, BaseConfig.Handler is used. If BaseConfig
  3978  	// or BaseConfig.Handler is nil, http.DefaultServeMux is used.
  3979  	Handler Handler
  3980  }
  3981  
  3982  func (o *http2ServeConnOpts) context() context.Context {
  3983  	if o != nil && o.Context != nil {
  3984  		return o.Context
  3985  	}
  3986  	return context.Background()
  3987  }
  3988  
  3989  func (o *http2ServeConnOpts) baseConfig() *Server {
  3990  	if o != nil && o.BaseConfig != nil {
  3991  		return o.BaseConfig
  3992  	}
  3993  	return new(Server)
  3994  }
  3995  
  3996  func (o *http2ServeConnOpts) handler() Handler {
  3997  	if o != nil {
  3998  		if o.Handler != nil {
  3999  			return o.Handler
  4000  		}
  4001  		if o.BaseConfig != nil && o.BaseConfig.Handler != nil {
  4002  			return o.BaseConfig.Handler
  4003  		}
  4004  	}
  4005  	return DefaultServeMux
  4006  }
  4007  
  4008  // ServeConn serves HTTP/2 requests on the provided connection and
  4009  // blocks until the connection is no longer readable.
  4010  //
  4011  // ServeConn starts speaking HTTP/2 assuming that c has not had any
  4012  // reads or writes. It writes its initial settings frame and expects
  4013  // to be able to read the preface and settings frame from the
  4014  // client. If c has a ConnectionState method like a *tls.Conn, the
  4015  // ConnectionState is used to verify the TLS ciphersuite and to set
  4016  // the Request.TLS field in Handlers.
  4017  //
  4018  // ServeConn does not support h2c by itself. Any h2c support must be
  4019  // implemented in terms of providing a suitably-behaving net.Conn.
  4020  //
  4021  // The opts parameter is optional. If nil, default values are used.
  4022  func (s *http2Server) ServeConn(c net.Conn, opts *http2ServeConnOpts) {
  4023  	baseCtx, cancel := http2serverConnBaseContext(c, opts)
  4024  	defer cancel()
  4025  
  4026  	sc := &http2serverConn{
  4027  		srv:                         s,
  4028  		hs:                          opts.baseConfig(),
  4029  		conn:                        c,
  4030  		baseCtx:                     baseCtx,
  4031  		remoteAddrStr:               c.RemoteAddr().String(),
  4032  		bw:                          http2newBufferedWriter(c),
  4033  		handler:                     opts.handler(),
  4034  		streams:                     make(map[uint32]*http2stream),
  4035  		readFrameCh:                 make(chan http2readFrameResult),
  4036  		wantWriteFrameCh:            make(chan http2FrameWriteRequest, 8),
  4037  		serveMsgCh:                  make(chan interface{}, 8),
  4038  		wroteFrameCh:                make(chan http2frameWriteResult, 1), // buffered; one send in writeFrameAsync
  4039  		bodyReadCh:                  make(chan http2bodyReadMsg),         // buffering doesn't matter either way
  4040  		doneServing:                 make(chan struct{}),
  4041  		clientMaxStreams:            math.MaxUint32, // Section 6.5.2: "Initially, there is no limit to this value"
  4042  		advMaxStreams:               s.maxConcurrentStreams(),
  4043  		initialStreamSendWindowSize: http2initialWindowSize,
  4044  		maxFrameSize:                http2initialMaxFrameSize,
  4045  		headerTableSize:             http2initialHeaderTableSize,
  4046  		serveG:                      http2newGoroutineLock(),
  4047  		pushEnabled:                 true,
  4048  	}
  4049  
  4050  	s.state.registerConn(sc)
  4051  	defer s.state.unregisterConn(sc)
  4052  
  4053  	// The net/http package sets the write deadline from the
  4054  	// http.Server.WriteTimeout during the TLS handshake, but then
  4055  	// passes the connection off to us with the deadline already set.
  4056  	// Write deadlines are set per stream in serverConn.newStream.
  4057  	// Disarm the net.Conn write deadline here.
  4058  	if sc.hs.WriteTimeout != 0 {
  4059  		sc.conn.SetWriteDeadline(time.Time{})
  4060  	}
  4061  
  4062  	if s.NewWriteScheduler != nil {
  4063  		sc.writeSched = s.NewWriteScheduler()
  4064  	} else {
  4065  		sc.writeSched = http2NewRandomWriteScheduler()
  4066  	}
  4067  
  4068  	// These start at the RFC-specified defaults. If there is a higher
  4069  	// configured value for inflow, that will be updated when we send a
  4070  	// WINDOW_UPDATE shortly after sending SETTINGS.
  4071  	sc.flow.add(http2initialWindowSize)
  4072  	sc.inflow.add(http2initialWindowSize)
  4073  	sc.hpackEncoder = hpack.NewEncoder(&sc.headerWriteBuf)
  4074  
  4075  	fr := http2NewFramer(sc.bw, c)
  4076  	fr.ReadMetaHeaders = hpack.NewDecoder(http2initialHeaderTableSize, nil)
  4077  	fr.MaxHeaderListSize = sc.maxHeaderListSize()
  4078  	fr.SetMaxReadFrameSize(s.maxReadFrameSize())
  4079  	sc.framer = fr
  4080  
  4081  	if tc, ok := c.(http2connectionStater); ok {
  4082  		sc.tlsState = new(tls.ConnectionState)
  4083  		*sc.tlsState = tc.ConnectionState()
  4084  		// 9.2 Use of TLS Features
  4085  		// An implementation of HTTP/2 over TLS MUST use TLS
  4086  		// 1.2 or higher with the restrictions on feature set
  4087  		// and cipher suite described in this section. Due to
  4088  		// implementation limitations, it might not be
  4089  		// possible to fail TLS negotiation. An endpoint MUST
  4090  		// immediately terminate an HTTP/2 connection that
  4091  		// does not meet the TLS requirements described in
  4092  		// this section with a connection error (Section
  4093  		// 5.4.1) of type INADEQUATE_SECURITY.
  4094  		if sc.tlsState.Version < tls.VersionTLS12 {
  4095  			sc.rejectConn(http2ErrCodeInadequateSecurity, "TLS version too low")
  4096  			return
  4097  		}
  4098  
  4099  		if sc.tlsState.ServerName == "" {
  4100  			// Client must use SNI, but we don't enforce that anymore,
  4101  			// since it was causing problems when connecting to bare IP
  4102  			// addresses during development.
  4103  			//
  4104  			// TODO: optionally enforce? Or enforce at the time we receive
  4105  			// a new request, and verify the ServerName matches the :authority?
  4106  			// But that precludes proxy situations, perhaps.
  4107  			//
  4108  			// So for now, do nothing here again.
  4109  		}
  4110  
  4111  		if !s.PermitProhibitedCipherSuites && http2isBadCipher(sc.tlsState.CipherSuite) {
  4112  			// "Endpoints MAY choose to generate a connection error
  4113  			// (Section 5.4.1) of type INADEQUATE_SECURITY if one of
  4114  			// the prohibited cipher suites are negotiated."
  4115  			//
  4116  			// We choose that. In my opinion, the spec is weak
  4117  			// here. It also says both parties must support at least
  4118  			// TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 so there's no
  4119  			// excuses here. If we really must, we could allow an
  4120  			// "AllowInsecureWeakCiphers" option on the server later.
  4121  			// Let's see how it plays out first.
  4122  			sc.rejectConn(http2ErrCodeInadequateSecurity, fmt.Sprintf("Prohibited TLS 1.2 Cipher Suite: %x", sc.tlsState.CipherSuite))
  4123  			return
  4124  		}
  4125  	}
  4126  
  4127  	if hook := http2testHookGetServerConn; hook != nil {
  4128  		hook(sc)
  4129  	}
  4130  	sc.serve()
  4131  }
  4132  
  4133  func http2serverConnBaseContext(c net.Conn, opts *http2ServeConnOpts) (ctx context.Context, cancel func()) {
  4134  	ctx, cancel = context.WithCancel(opts.context())
  4135  	ctx = context.WithValue(ctx, LocalAddrContextKey, c.LocalAddr())
  4136  	if hs := opts.baseConfig(); hs != nil {
  4137  		ctx = context.WithValue(ctx, ServerContextKey, hs)
  4138  	}
  4139  	return
  4140  }
  4141  
  4142  func (sc *http2serverConn) rejectConn(err http2ErrCode, debug string) {
  4143  	sc.vlogf("http2: server rejecting conn: %v, %s", err, debug)
  4144  	// ignoring errors. hanging up anyway.
  4145  	sc.framer.WriteGoAway(0, err, []byte(debug))
  4146  	sc.bw.Flush()
  4147  	sc.conn.Close()
  4148  }
  4149  
  4150  type http2serverConn struct {
  4151  	// Immutable:
  4152  	srv              *http2Server
  4153  	hs               *Server
  4154  	conn             net.Conn
  4155  	bw               *http2bufferedWriter // writing to conn
  4156  	handler          Handler
  4157  	baseCtx          context.Context
  4158  	framer           *http2Framer
  4159  	doneServing      chan struct{}               // closed when serverConn.serve ends
  4160  	readFrameCh      chan http2readFrameResult   // written by serverConn.readFrames
  4161  	wantWriteFrameCh chan http2FrameWriteRequest // from handlers -> serve
  4162  	wroteFrameCh     chan http2frameWriteResult  // from writeFrameAsync -> serve, tickles more frame writes
  4163  	bodyReadCh       chan http2bodyReadMsg       // from handlers -> serve
  4164  	serveMsgCh       chan interface{}            // misc messages & code to send to / run on the serve loop
  4165  	flow             http2flow                   // conn-wide (not stream-specific) outbound flow control
  4166  	inflow           http2flow                   // conn-wide inbound flow control
  4167  	tlsState         *tls.ConnectionState        // shared by all handlers, like net/http
  4168  	remoteAddrStr    string
  4169  	writeSched       http2WriteScheduler
  4170  
  4171  	// Everything following is owned by the serve loop; use serveG.check():
  4172  	serveG                      http2goroutineLock // used to verify funcs are on serve()
  4173  	pushEnabled                 bool
  4174  	sawFirstSettings            bool // got the initial SETTINGS frame after the preface
  4175  	needToSendSettingsAck       bool
  4176  	unackedSettings             int    // how many SETTINGS have we sent without ACKs?
  4177  	queuedControlFrames         int    // control frames in the writeSched queue
  4178  	clientMaxStreams            uint32 // SETTINGS_MAX_CONCURRENT_STREAMS from client (our PUSH_PROMISE limit)
  4179  	advMaxStreams               uint32 // our SETTINGS_MAX_CONCURRENT_STREAMS advertised the client
  4180  	curClientStreams            uint32 // number of open streams initiated by the client
  4181  	curPushedStreams            uint32 // number of open streams initiated by server push
  4182  	maxClientStreamID           uint32 // max ever seen from client (odd), or 0 if there have been no client requests
  4183  	maxPushPromiseID            uint32 // ID of the last push promise (even), or 0 if there have been no pushes
  4184  	streams                     map[uint32]*http2stream
  4185  	initialStreamSendWindowSize int32
  4186  	maxFrameSize                int32
  4187  	headerTableSize             uint32
  4188  	peerMaxHeaderListSize       uint32            // zero means unknown (default)
  4189  	canonHeader                 map[string]string // http2-lower-case -> Go-Canonical-Case
  4190  	writingFrame                bool              // started writing a frame (on serve goroutine or separate)
  4191  	writingFrameAsync           bool              // started a frame on its own goroutine but haven't heard back on wroteFrameCh
  4192  	needsFrameFlush             bool              // last frame write wasn't a flush
  4193  	inGoAway                    bool              // we've started to or sent GOAWAY
  4194  	inFrameScheduleLoop         bool              // whether we're in the scheduleFrameWrite loop
  4195  	needToSendGoAway            bool              // we need to schedule a GOAWAY frame write
  4196  	goAwayCode                  http2ErrCode
  4197  	shutdownTimer               *time.Timer // nil until used
  4198  	idleTimer                   *time.Timer // nil if unused
  4199  
  4200  	// Owned by the writeFrameAsync goroutine:
  4201  	headerWriteBuf bytes.Buffer
  4202  	hpackEncoder   *hpack.Encoder
  4203  
  4204  	// Used by startGracefulShutdown.
  4205  	shutdownOnce sync.Once
  4206  }
  4207  
  4208  func (sc *http2serverConn) maxHeaderListSize() uint32 {
  4209  	n := sc.hs.MaxHeaderBytes
  4210  	if n <= 0 {
  4211  		n = DefaultMaxHeaderBytes
  4212  	}
  4213  	// http2's count is in a slightly different unit and includes 32 bytes per pair.
  4214  	// So, take the net/http.Server value and pad it up a bit, assuming 10 headers.
  4215  	const perFieldOverhead = 32 // per http2 spec
  4216  	const typicalHeaders = 10   // conservative
  4217  	return uint32(n + typicalHeaders*perFieldOverhead)
  4218  }
  4219  
  4220  func (sc *http2serverConn) curOpenStreams() uint32 {
  4221  	sc.serveG.check()
  4222  	return sc.curClientStreams + sc.curPushedStreams
  4223  }
  4224  
  4225  // stream represents a stream. This is the minimal metadata needed by
  4226  // the serve goroutine. Most of the actual stream state is owned by
  4227  // the http.Handler's goroutine in the responseWriter. Because the
  4228  // responseWriter's responseWriterState is recycled at the end of a
  4229  // handler, this struct intentionally has no pointer to the
  4230  // *responseWriter{,State} itself, as the Handler ending nils out the
  4231  // responseWriter's state field.
  4232  type http2stream struct {
  4233  	// immutable:
  4234  	sc        *http2serverConn
  4235  	id        uint32
  4236  	body      *http2pipe       // non-nil if expecting DATA frames
  4237  	cw        http2closeWaiter // closed wait stream transitions to closed state
  4238  	ctx       context.Context
  4239  	cancelCtx func()
  4240  
  4241  	// owned by serverConn's serve loop:
  4242  	bodyBytes        int64     // body bytes seen so far
  4243  	declBodyBytes    int64     // or -1 if undeclared
  4244  	flow             http2flow // limits writing from Handler to client
  4245  	inflow           http2flow // what the client is allowed to POST/etc to us
  4246  	state            http2streamState
  4247  	resetQueued      bool        // RST_STREAM queued for write; set by sc.resetStream
  4248  	gotTrailerHeader bool        // HEADER frame for trailers was seen
  4249  	wroteHeaders     bool        // whether we wrote headers (not status 100)
  4250  	writeDeadline    *time.Timer // nil if unused
  4251  
  4252  	trailer    Header // accumulated trailers
  4253  	reqTrailer Header // handler's Request.Trailer
  4254  }
  4255  
  4256  func (sc *http2serverConn) Framer() *http2Framer { return sc.framer }
  4257  
  4258  func (sc *http2serverConn) CloseConn() error { return sc.conn.Close() }
  4259  
  4260  func (sc *http2serverConn) Flush() error { return sc.bw.Flush() }
  4261  
  4262  func (sc *http2serverConn) HeaderEncoder() (*hpack.Encoder, *bytes.Buffer) {
  4263  	return sc.hpackEncoder, &sc.headerWriteBuf
  4264  }
  4265  
  4266  func (sc *http2serverConn) state(streamID uint32) (http2streamState, *http2stream) {
  4267  	sc.serveG.check()
  4268  	// http://tools.ietf.org/html/rfc7540#section-5.1
  4269  	if st, ok := sc.streams[streamID]; ok {
  4270  		return st.state, st
  4271  	}
  4272  	// "The first use of a new stream identifier implicitly closes all
  4273  	// streams in the "idle" state that might have been initiated by
  4274  	// that peer with a lower-valued stream identifier. For example, if
  4275  	// a client sends a HEADERS frame on stream 7 without ever sending a
  4276  	// frame on stream 5, then stream 5 transitions to the "closed"
  4277  	// state when the first frame for stream 7 is sent or received."
  4278  	if streamID%2 == 1 {
  4279  		if streamID <= sc.maxClientStreamID {
  4280  			return http2stateClosed, nil
  4281  		}
  4282  	} else {
  4283  		if streamID <= sc.maxPushPromiseID {
  4284  			return http2stateClosed, nil
  4285  		}
  4286  	}
  4287  	return http2stateIdle, nil
  4288  }
  4289  
  4290  // setConnState calls the net/http ConnState hook for this connection, if configured.
  4291  // Note that the net/http package does StateNew and StateClosed for us.
  4292  // There is currently no plan for StateHijacked or hijacking HTTP/2 connections.
  4293  func (sc *http2serverConn) setConnState(state ConnState) {
  4294  	if sc.hs.ConnState != nil {
  4295  		sc.hs.ConnState(sc.conn, state)
  4296  	}
  4297  }
  4298  
  4299  func (sc *http2serverConn) vlogf(format string, args ...interface{}) {
  4300  	if http2VerboseLogs {
  4301  		sc.logf(format, args...)
  4302  	}
  4303  }
  4304  
  4305  func (sc *http2serverConn) logf(format string, args ...interface{}) {
  4306  	if lg := sc.hs.ErrorLog; lg != nil {
  4307  		lg.Printf(format, args...)
  4308  	} else {
  4309  		log.Printf(format, args...)
  4310  	}
  4311  }
  4312  
  4313  // errno returns v's underlying uintptr, else 0.
  4314  //
  4315  // TODO: remove this helper function once http2 can use build
  4316  // tags. See comment in isClosedConnError.
  4317  func http2errno(v error) uintptr {
  4318  	if rv := reflect.ValueOf(v); rv.Kind() == reflect.Uintptr {
  4319  		return uintptr(rv.Uint())
  4320  	}
  4321  	return 0
  4322  }
  4323  
  4324  // isClosedConnError reports whether err is an error from use of a closed
  4325  // network connection.
  4326  func http2isClosedConnError(err error) bool {
  4327  	if err == nil {
  4328  		return false
  4329  	}
  4330  
  4331  	// TODO: remove this string search and be more like the Windows
  4332  	// case below. That might involve modifying the standard library
  4333  	// to return better error types.
  4334  	str := err.Error()
  4335  	if strings.Contains(str, "use of closed network connection") {
  4336  		return true
  4337  	}
  4338  
  4339  	// TODO(bradfitz): x/tools/cmd/bundle doesn't really support
  4340  	// build tags, so I can't make an http2_windows.go file with
  4341  	// Windows-specific stuff. Fix that and move this, once we
  4342  	// have a way to bundle this into std's net/http somehow.
  4343  	if runtime.GOOS == "windows" {
  4344  		if oe, ok := err.(*net.OpError); ok && oe.Op == "read" {
  4345  			if se, ok := oe.Err.(*os.SyscallError); ok && se.Syscall == "wsarecv" {
  4346  				const WSAECONNABORTED = 10053
  4347  				const WSAECONNRESET = 10054
  4348  				if n := http2errno(se.Err); n == WSAECONNRESET || n == WSAECONNABORTED {
  4349  					return true
  4350  				}
  4351  			}
  4352  		}
  4353  	}
  4354  	return false
  4355  }
  4356  
  4357  func (sc *http2serverConn) condlogf(err error, format string, args ...interface{}) {
  4358  	if err == nil {
  4359  		return
  4360  	}
  4361  	if err == io.EOF || err == io.ErrUnexpectedEOF || http2isClosedConnError(err) || err == http2errPrefaceTimeout {
  4362  		// Boring, expected errors.
  4363  		sc.vlogf(format, args...)
  4364  	} else {
  4365  		sc.logf(format, args...)
  4366  	}
  4367  }
  4368  
  4369  func (sc *http2serverConn) canonicalHeader(v string) string {
  4370  	sc.serveG.check()
  4371  	http2buildCommonHeaderMapsOnce()
  4372  	cv, ok := http2commonCanonHeader[v]
  4373  	if ok {
  4374  		return cv
  4375  	}
  4376  	cv, ok = sc.canonHeader[v]
  4377  	if ok {
  4378  		return cv
  4379  	}
  4380  	if sc.canonHeader == nil {
  4381  		sc.canonHeader = make(map[string]string)
  4382  	}
  4383  	cv = CanonicalHeaderKey(v)
  4384  	// maxCachedCanonicalHeaders is an arbitrarily-chosen limit on the number of
  4385  	// entries in the canonHeader cache. This should be larger than the number
  4386  	// of unique, uncommon header keys likely to be sent by the peer, while not
  4387  	// so high as to permit unreaasonable memory usage if the peer sends an unbounded
  4388  	// number of unique header keys.
  4389  	const maxCachedCanonicalHeaders = 32
  4390  	if len(sc.canonHeader) < maxCachedCanonicalHeaders {
  4391  		sc.canonHeader[v] = cv
  4392  	}
  4393  	return cv
  4394  }
  4395  
  4396  type http2readFrameResult struct {
  4397  	f   http2Frame // valid until readMore is called
  4398  	err error
  4399  
  4400  	// readMore should be called once the consumer no longer needs or
  4401  	// retains f. After readMore, f is invalid and more frames can be
  4402  	// read.
  4403  	readMore func()
  4404  }
  4405  
  4406  // readFrames is the loop that reads incoming frames.
  4407  // It takes care to only read one frame at a time, blocking until the
  4408  // consumer is done with the frame.
  4409  // It's run on its own goroutine.
  4410  func (sc *http2serverConn) readFrames() {
  4411  	gate := make(http2gate)
  4412  	gateDone := gate.Done
  4413  	for {
  4414  		f, err := sc.framer.ReadFrame()
  4415  		select {
  4416  		case sc.readFrameCh <- http2readFrameResult{f, err, gateDone}:
  4417  		case <-sc.doneServing:
  4418  			return
  4419  		}
  4420  		select {
  4421  		case <-gate:
  4422  		case <-sc.doneServing:
  4423  			return
  4424  		}
  4425  		if http2terminalReadFrameError(err) {
  4426  			return
  4427  		}
  4428  	}
  4429  }
  4430  
  4431  // frameWriteResult is the message passed from writeFrameAsync to the serve goroutine.
  4432  type http2frameWriteResult struct {
  4433  	_   http2incomparable
  4434  	wr  http2FrameWriteRequest // what was written (or attempted)
  4435  	err error                  // result of the writeFrame call
  4436  }
  4437  
  4438  // writeFrameAsync runs in its own goroutine and writes a single frame
  4439  // and then reports when it's done.
  4440  // At most one goroutine can be running writeFrameAsync at a time per
  4441  // serverConn.
  4442  func (sc *http2serverConn) writeFrameAsync(wr http2FrameWriteRequest) {
  4443  	err := wr.write.writeFrame(sc)
  4444  	sc.wroteFrameCh <- http2frameWriteResult{wr: wr, err: err}
  4445  }
  4446  
  4447  func (sc *http2serverConn) closeAllStreamsOnConnClose() {
  4448  	sc.serveG.check()
  4449  	for _, st := range sc.streams {
  4450  		sc.closeStream(st, http2errClientDisconnected)
  4451  	}
  4452  }
  4453  
  4454  func (sc *http2serverConn) stopShutdownTimer() {
  4455  	sc.serveG.check()
  4456  	if t := sc.shutdownTimer; t != nil {
  4457  		t.Stop()
  4458  	}
  4459  }
  4460  
  4461  func (sc *http2serverConn) notePanic() {
  4462  	// Note: this is for serverConn.serve panicking, not http.Handler code.
  4463  	if http2testHookOnPanicMu != nil {
  4464  		http2testHookOnPanicMu.Lock()
  4465  		defer http2testHookOnPanicMu.Unlock()
  4466  	}
  4467  	if http2testHookOnPanic != nil {
  4468  		if e := recover(); e != nil {
  4469  			if http2testHookOnPanic(sc, e) {
  4470  				panic(e)
  4471  			}
  4472  		}
  4473  	}
  4474  }
  4475  
  4476  func (sc *http2serverConn) serve() {
  4477  	sc.serveG.check()
  4478  	defer sc.notePanic()
  4479  	defer sc.conn.Close()
  4480  	defer sc.closeAllStreamsOnConnClose()
  4481  	defer sc.stopShutdownTimer()
  4482  	defer close(sc.doneServing) // unblocks handlers trying to send
  4483  
  4484  	if http2VerboseLogs {
  4485  		sc.vlogf("http2: server connection from %v on %p", sc.conn.RemoteAddr(), sc.hs)
  4486  	}
  4487  
  4488  	sc.writeFrame(http2FrameWriteRequest{
  4489  		write: http2writeSettings{
  4490  			{http2SettingMaxFrameSize, sc.srv.maxReadFrameSize()},
  4491  			{http2SettingMaxConcurrentStreams, sc.advMaxStreams},
  4492  			{http2SettingMaxHeaderListSize, sc.maxHeaderListSize()},
  4493  			{http2SettingInitialWindowSize, uint32(sc.srv.initialStreamRecvWindowSize())},
  4494  		},
  4495  	})
  4496  	sc.unackedSettings++
  4497  
  4498  	// Each connection starts with intialWindowSize inflow tokens.
  4499  	// If a higher value is configured, we add more tokens.
  4500  	if diff := sc.srv.initialConnRecvWindowSize() - http2initialWindowSize; diff > 0 {
  4501  		sc.sendWindowUpdate(nil, int(diff))
  4502  	}
  4503  
  4504  	if err := sc.readPreface(); err != nil {
  4505  		sc.condlogf(err, "http2: server: error reading preface from client %v: %v", sc.conn.RemoteAddr(), err)
  4506  		return
  4507  	}
  4508  	// Now that we've got the preface, get us out of the
  4509  	// "StateNew" state. We can't go directly to idle, though.
  4510  	// Active means we read some data and anticipate a request. We'll
  4511  	// do another Active when we get a HEADERS frame.
  4512  	sc.setConnState(StateActive)
  4513  	sc.setConnState(StateIdle)
  4514  
  4515  	if sc.srv.IdleTimeout != 0 {
  4516  		sc.idleTimer = time.AfterFunc(sc.srv.IdleTimeout, sc.onIdleTimer)
  4517  		defer sc.idleTimer.Stop()
  4518  	}
  4519  
  4520  	go sc.readFrames() // closed by defer sc.conn.Close above
  4521  
  4522  	settingsTimer := time.AfterFunc(http2firstSettingsTimeout, sc.onSettingsTimer)
  4523  	defer settingsTimer.Stop()
  4524  
  4525  	loopNum := 0
  4526  	for {
  4527  		loopNum++
  4528  		select {
  4529  		case wr := <-sc.wantWriteFrameCh:
  4530  			if se, ok := wr.write.(http2StreamError); ok {
  4531  				sc.resetStream(se)
  4532  				break
  4533  			}
  4534  			sc.writeFrame(wr)
  4535  		case res := <-sc.wroteFrameCh:
  4536  			sc.wroteFrame(res)
  4537  		case res := <-sc.readFrameCh:
  4538  			// Process any written frames before reading new frames from the client since a
  4539  			// written frame could have triggered a new stream to be started.
  4540  			if sc.writingFrameAsync {
  4541  				select {
  4542  				case wroteRes := <-sc.wroteFrameCh:
  4543  					sc.wroteFrame(wroteRes)
  4544  				default:
  4545  				}
  4546  			}
  4547  			if !sc.processFrameFromReader(res) {
  4548  				return
  4549  			}
  4550  			res.readMore()
  4551  			if settingsTimer != nil {
  4552  				settingsTimer.Stop()
  4553  				settingsTimer = nil
  4554  			}
  4555  		case m := <-sc.bodyReadCh:
  4556  			sc.noteBodyRead(m.st, m.n)
  4557  		case msg := <-sc.serveMsgCh:
  4558  			switch v := msg.(type) {
  4559  			case func(int):
  4560  				v(loopNum) // for testing
  4561  			case *http2serverMessage:
  4562  				switch v {
  4563  				case http2settingsTimerMsg:
  4564  					sc.logf("timeout waiting for SETTINGS frames from %v", sc.conn.RemoteAddr())
  4565  					return
  4566  				case http2idleTimerMsg:
  4567  					sc.vlogf("connection is idle")
  4568  					sc.goAway(http2ErrCodeNo)
  4569  				case http2shutdownTimerMsg:
  4570  					sc.vlogf("GOAWAY close timer fired; closing conn from %v", sc.conn.RemoteAddr())
  4571  					return
  4572  				case http2gracefulShutdownMsg:
  4573  					sc.startGracefulShutdownInternal()
  4574  				default:
  4575  					panic("unknown timer")
  4576  				}
  4577  			case *http2startPushRequest:
  4578  				sc.startPush(v)
  4579  			default:
  4580  				panic(fmt.Sprintf("unexpected type %T", v))
  4581  			}
  4582  		}
  4583  
  4584  		// If the peer is causing us to generate a lot of control frames,
  4585  		// but not reading them from us, assume they are trying to make us
  4586  		// run out of memory.
  4587  		if sc.queuedControlFrames > sc.srv.maxQueuedControlFrames() {
  4588  			sc.vlogf("http2: too many control frames in send queue, closing connection")
  4589  			return
  4590  		}
  4591  
  4592  		// Start the shutdown timer after sending a GOAWAY. When sending GOAWAY
  4593  		// with no error code (graceful shutdown), don't start the timer until
  4594  		// all open streams have been completed.
  4595  		sentGoAway := sc.inGoAway && !sc.needToSendGoAway && !sc.writingFrame
  4596  		gracefulShutdownComplete := sc.goAwayCode == http2ErrCodeNo && sc.curOpenStreams() == 0
  4597  		if sentGoAway && sc.shutdownTimer == nil && (sc.goAwayCode != http2ErrCodeNo || gracefulShutdownComplete) {
  4598  			sc.shutDownIn(http2goAwayTimeout)
  4599  		}
  4600  	}
  4601  }
  4602  
  4603  func (sc *http2serverConn) awaitGracefulShutdown(sharedCh <-chan struct{}, privateCh chan struct{}) {
  4604  	select {
  4605  	case <-sc.doneServing:
  4606  	case <-sharedCh:
  4607  		close(privateCh)
  4608  	}
  4609  }
  4610  
  4611  type http2serverMessage int
  4612  
  4613  // Message values sent to serveMsgCh.
  4614  var (
  4615  	http2settingsTimerMsg    = new(http2serverMessage)
  4616  	http2idleTimerMsg        = new(http2serverMessage)
  4617  	http2shutdownTimerMsg    = new(http2serverMessage)
  4618  	http2gracefulShutdownMsg = new(http2serverMessage)
  4619  )
  4620  
  4621  func (sc *http2serverConn) onSettingsTimer() { sc.sendServeMsg(http2settingsTimerMsg) }
  4622  
  4623  func (sc *http2serverConn) onIdleTimer() { sc.sendServeMsg(http2idleTimerMsg) }
  4624  
  4625  func (sc *http2serverConn) onShutdownTimer() { sc.sendServeMsg(http2shutdownTimerMsg) }
  4626  
  4627  func (sc *http2serverConn) sendServeMsg(msg interface{}) {
  4628  	sc.serveG.checkNotOn() // NOT
  4629  	select {
  4630  	case sc.serveMsgCh <- msg:
  4631  	case <-sc.doneServing:
  4632  	}
  4633  }
  4634  
  4635  var http2errPrefaceTimeout = errors.New("timeout waiting for client preface")
  4636  
  4637  // readPreface reads the ClientPreface greeting from the peer or
  4638  // returns errPrefaceTimeout on timeout, or an error if the greeting
  4639  // is invalid.
  4640  func (sc *http2serverConn) readPreface() error {
  4641  	errc := make(chan error, 1)
  4642  	go func() {
  4643  		// Read the client preface
  4644  		buf := make([]byte, len(http2ClientPreface))
  4645  		if _, err := io.ReadFull(sc.conn, buf); err != nil {
  4646  			errc <- err
  4647  		} else if !bytes.Equal(buf, http2clientPreface) {
  4648  			errc <- fmt.Errorf("bogus greeting %q", buf)
  4649  		} else {
  4650  			errc <- nil
  4651  		}
  4652  	}()
  4653  	timer := time.NewTimer(http2prefaceTimeout) // TODO: configurable on *Server?
  4654  	defer timer.Stop()
  4655  	select {
  4656  	case <-timer.C:
  4657  		return http2errPrefaceTimeout
  4658  	case err := <-errc:
  4659  		if err == nil {
  4660  			if http2VerboseLogs {
  4661  				sc.vlogf("http2: server: client %v said hello", sc.conn.RemoteAddr())
  4662  			}
  4663  		}
  4664  		return err
  4665  	}
  4666  }
  4667  
  4668  var http2errChanPool = sync.Pool{
  4669  	New: func() interface{} { return make(chan error, 1) },
  4670  }
  4671  
  4672  var http2writeDataPool = sync.Pool{
  4673  	New: func() interface{} { return new(http2writeData) },
  4674  }
  4675  
  4676  // writeDataFromHandler writes DATA response frames from a handler on
  4677  // the given stream.
  4678  func (sc *http2serverConn) writeDataFromHandler(stream *http2stream, data []byte, endStream bool) error {
  4679  	ch := http2errChanPool.Get().(chan error)
  4680  	writeArg := http2writeDataPool.Get().(*http2writeData)
  4681  	*writeArg = http2writeData{stream.id, data, endStream}
  4682  	err := sc.writeFrameFromHandler(http2FrameWriteRequest{
  4683  		write:  writeArg,
  4684  		stream: stream,
  4685  		done:   ch,
  4686  	})
  4687  	if err != nil {
  4688  		return err
  4689  	}
  4690  	var frameWriteDone bool // the frame write is done (successfully or not)
  4691  	select {
  4692  	case err = <-ch:
  4693  		frameWriteDone = true
  4694  	case <-sc.doneServing:
  4695  		return http2errClientDisconnected
  4696  	case <-stream.cw:
  4697  		// If both ch and stream.cw were ready (as might
  4698  		// happen on the final Write after an http.Handler
  4699  		// ends), prefer the write result. Otherwise this
  4700  		// might just be us successfully closing the stream.
  4701  		// The writeFrameAsync and serve goroutines guarantee
  4702  		// that the ch send will happen before the stream.cw
  4703  		// close.
  4704  		select {
  4705  		case err = <-ch:
  4706  			frameWriteDone = true
  4707  		default:
  4708  			return http2errStreamClosed
  4709  		}
  4710  	}
  4711  	http2errChanPool.Put(ch)
  4712  	if frameWriteDone {
  4713  		http2writeDataPool.Put(writeArg)
  4714  	}
  4715  	return err
  4716  }
  4717  
  4718  // writeFrameFromHandler sends wr to sc.wantWriteFrameCh, but aborts
  4719  // if the connection has gone away.
  4720  //
  4721  // This must not be run from the serve goroutine itself, else it might
  4722  // deadlock writing to sc.wantWriteFrameCh (which is only mildly
  4723  // buffered and is read by serve itself). If you're on the serve
  4724  // goroutine, call writeFrame instead.
  4725  func (sc *http2serverConn) writeFrameFromHandler(wr http2FrameWriteRequest) error {
  4726  	sc.serveG.checkNotOn() // NOT
  4727  	select {
  4728  	case sc.wantWriteFrameCh <- wr:
  4729  		return nil
  4730  	case <-sc.doneServing:
  4731  		// Serve loop is gone.
  4732  		// Client has closed their connection to the server.
  4733  		return http2errClientDisconnected
  4734  	}
  4735  }
  4736  
  4737  // writeFrame schedules a frame to write and sends it if there's nothing
  4738  // already being written.
  4739  //
  4740  // There is no pushback here (the serve goroutine never blocks). It's
  4741  // the http.Handlers that block, waiting for their previous frames to
  4742  // make it onto the wire
  4743  //
  4744  // If you're not on the serve goroutine, use writeFrameFromHandler instead.
  4745  func (sc *http2serverConn) writeFrame(wr http2FrameWriteRequest) {
  4746  	sc.serveG.check()
  4747  
  4748  	// If true, wr will not be written and wr.done will not be signaled.
  4749  	var ignoreWrite bool
  4750  
  4751  	// We are not allowed to write frames on closed streams. RFC 7540 Section
  4752  	// 5.1.1 says: "An endpoint MUST NOT send frames other than PRIORITY on
  4753  	// a closed stream." Our server never sends PRIORITY, so that exception
  4754  	// does not apply.
  4755  	//
  4756  	// The serverConn might close an open stream while the stream's handler
  4757  	// is still running. For example, the server might close a stream when it
  4758  	// receives bad data from the client. If this happens, the handler might
  4759  	// attempt to write a frame after the stream has been closed (since the
  4760  	// handler hasn't yet been notified of the close). In this case, we simply
  4761  	// ignore the frame. The handler will notice that the stream is closed when
  4762  	// it waits for the frame to be written.
  4763  	//
  4764  	// As an exception to this rule, we allow sending RST_STREAM after close.
  4765  	// This allows us to immediately reject new streams without tracking any
  4766  	// state for those streams (except for the queued RST_STREAM frame). This
  4767  	// may result in duplicate RST_STREAMs in some cases, but the client should
  4768  	// ignore those.
  4769  	if wr.StreamID() != 0 {
  4770  		_, isReset := wr.write.(http2StreamError)
  4771  		if state, _ := sc.state(wr.StreamID()); state == http2stateClosed && !isReset {
  4772  			ignoreWrite = true
  4773  		}
  4774  	}
  4775  
  4776  	// Don't send a 100-continue response if we've already sent headers.
  4777  	// See golang.org/issue/14030.
  4778  	switch wr.write.(type) {
  4779  	case *http2writeResHeaders:
  4780  		wr.stream.wroteHeaders = true
  4781  	case http2write100ContinueHeadersFrame:
  4782  		if wr.stream.wroteHeaders {
  4783  			// We do not need to notify wr.done because this frame is
  4784  			// never written with wr.done != nil.
  4785  			if wr.done != nil {
  4786  				panic("wr.done != nil for write100ContinueHeadersFrame")
  4787  			}
  4788  			ignoreWrite = true
  4789  		}
  4790  	}
  4791  
  4792  	if !ignoreWrite {
  4793  		if wr.isControl() {
  4794  			sc.queuedControlFrames++
  4795  			// For extra safety, detect wraparounds, which should not happen,
  4796  			// and pull the plug.
  4797  			if sc.queuedControlFrames < 0 {
  4798  				sc.conn.Close()
  4799  			}
  4800  		}
  4801  		sc.writeSched.Push(wr)
  4802  	}
  4803  	sc.scheduleFrameWrite()
  4804  }
  4805  
  4806  // startFrameWrite starts a goroutine to write wr (in a separate
  4807  // goroutine since that might block on the network), and updates the
  4808  // serve goroutine's state about the world, updated from info in wr.
  4809  func (sc *http2serverConn) startFrameWrite(wr http2FrameWriteRequest) {
  4810  	sc.serveG.check()
  4811  	if sc.writingFrame {
  4812  		panic("internal error: can only be writing one frame at a time")
  4813  	}
  4814  
  4815  	st := wr.stream
  4816  	if st != nil {
  4817  		switch st.state {
  4818  		case http2stateHalfClosedLocal:
  4819  			switch wr.write.(type) {
  4820  			case http2StreamError, http2handlerPanicRST, http2writeWindowUpdate:
  4821  				// RFC 7540 Section 5.1 allows sending RST_STREAM, PRIORITY, and WINDOW_UPDATE
  4822  				// in this state. (We never send PRIORITY from the server, so that is not checked.)
  4823  			default:
  4824  				panic(fmt.Sprintf("internal error: attempt to send frame on a half-closed-local stream: %v", wr))
  4825  			}
  4826  		case http2stateClosed:
  4827  			panic(fmt.Sprintf("internal error: attempt to send frame on a closed stream: %v", wr))
  4828  		}
  4829  	}
  4830  	if wpp, ok := wr.write.(*http2writePushPromise); ok {
  4831  		var err error
  4832  		wpp.promisedID, err = wpp.allocatePromisedID()
  4833  		if err != nil {
  4834  			sc.writingFrameAsync = false
  4835  			wr.replyToWriter(err)
  4836  			return
  4837  		}
  4838  	}
  4839  
  4840  	sc.writingFrame = true
  4841  	sc.needsFrameFlush = true
  4842  	if wr.write.staysWithinBuffer(sc.bw.Available()) {
  4843  		sc.writingFrameAsync = false
  4844  		err := wr.write.writeFrame(sc)
  4845  		sc.wroteFrame(http2frameWriteResult{wr: wr, err: err})
  4846  	} else {
  4847  		sc.writingFrameAsync = true
  4848  		go sc.writeFrameAsync(wr)
  4849  	}
  4850  }
  4851  
  4852  // errHandlerPanicked is the error given to any callers blocked in a read from
  4853  // Request.Body when the main goroutine panics. Since most handlers read in the
  4854  // main ServeHTTP goroutine, this will show up rarely.
  4855  var http2errHandlerPanicked = errors.New("http2: handler panicked")
  4856  
  4857  // wroteFrame is called on the serve goroutine with the result of
  4858  // whatever happened on writeFrameAsync.
  4859  func (sc *http2serverConn) wroteFrame(res http2frameWriteResult) {
  4860  	sc.serveG.check()
  4861  	if !sc.writingFrame {
  4862  		panic("internal error: expected to be already writing a frame")
  4863  	}
  4864  	sc.writingFrame = false
  4865  	sc.writingFrameAsync = false
  4866  
  4867  	wr := res.wr
  4868  
  4869  	if http2writeEndsStream(wr.write) {
  4870  		st := wr.stream
  4871  		if st == nil {
  4872  			panic("internal error: expecting non-nil stream")
  4873  		}
  4874  		switch st.state {
  4875  		case http2stateOpen:
  4876  			// Here we would go to stateHalfClosedLocal in
  4877  			// theory, but since our handler is done and
  4878  			// the net/http package provides no mechanism
  4879  			// for closing a ResponseWriter while still
  4880  			// reading data (see possible TODO at top of
  4881  			// this file), we go into closed state here
  4882  			// anyway, after telling the peer we're
  4883  			// hanging up on them. We'll transition to
  4884  			// stateClosed after the RST_STREAM frame is
  4885  			// written.
  4886  			st.state = http2stateHalfClosedLocal
  4887  			// Section 8.1: a server MAY request that the client abort
  4888  			// transmission of a request without error by sending a
  4889  			// RST_STREAM with an error code of NO_ERROR after sending
  4890  			// a complete response.
  4891  			sc.resetStream(http2streamError(st.id, http2ErrCodeNo))
  4892  		case http2stateHalfClosedRemote:
  4893  			sc.closeStream(st, http2errHandlerComplete)
  4894  		}
  4895  	} else {
  4896  		switch v := wr.write.(type) {
  4897  		case http2StreamError:
  4898  			// st may be unknown if the RST_STREAM was generated to reject bad input.
  4899  			if st, ok := sc.streams[v.StreamID]; ok {
  4900  				sc.closeStream(st, v)
  4901  			}
  4902  		case http2handlerPanicRST:
  4903  			sc.closeStream(wr.stream, http2errHandlerPanicked)
  4904  		}
  4905  	}
  4906  
  4907  	// Reply (if requested) to unblock the ServeHTTP goroutine.
  4908  	wr.replyToWriter(res.err)
  4909  
  4910  	sc.scheduleFrameWrite()
  4911  }
  4912  
  4913  // scheduleFrameWrite tickles the frame writing scheduler.
  4914  //
  4915  // If a frame is already being written, nothing happens. This will be called again
  4916  // when the frame is done being written.
  4917  //
  4918  // If a frame isn't being written and we need to send one, the best frame
  4919  // to send is selected by writeSched.
  4920  //
  4921  // If a frame isn't being written and there's nothing else to send, we
  4922  // flush the write buffer.
  4923  func (sc *http2serverConn) scheduleFrameWrite() {
  4924  	sc.serveG.check()
  4925  	if sc.writingFrame || sc.inFrameScheduleLoop {
  4926  		return
  4927  	}
  4928  	sc.inFrameScheduleLoop = true
  4929  	for !sc.writingFrameAsync {
  4930  		if sc.needToSendGoAway {
  4931  			sc.needToSendGoAway = false
  4932  			sc.startFrameWrite(http2FrameWriteRequest{
  4933  				write: &http2writeGoAway{
  4934  					maxStreamID: sc.maxClientStreamID,
  4935  					code:        sc.goAwayCode,
  4936  				},
  4937  			})
  4938  			continue
  4939  		}
  4940  		if sc.needToSendSettingsAck {
  4941  			sc.needToSendSettingsAck = false
  4942  			sc.startFrameWrite(http2FrameWriteRequest{write: http2writeSettingsAck{}})
  4943  			continue
  4944  		}
  4945  		if !sc.inGoAway || sc.goAwayCode == http2ErrCodeNo {
  4946  			if wr, ok := sc.writeSched.Pop(); ok {
  4947  				if wr.isControl() {
  4948  					sc.queuedControlFrames--
  4949  				}
  4950  				sc.startFrameWrite(wr)
  4951  				continue
  4952  			}
  4953  		}
  4954  		if sc.needsFrameFlush {
  4955  			sc.startFrameWrite(http2FrameWriteRequest{write: http2flushFrameWriter{}})
  4956  			sc.needsFrameFlush = false // after startFrameWrite, since it sets this true
  4957  			continue
  4958  		}
  4959  		break
  4960  	}
  4961  	sc.inFrameScheduleLoop = false
  4962  }
  4963  
  4964  // startGracefulShutdown gracefully shuts down a connection. This
  4965  // sends GOAWAY with ErrCodeNo to tell the client we're gracefully
  4966  // shutting down. The connection isn't closed until all current
  4967  // streams are done.
  4968  //
  4969  // startGracefulShutdown returns immediately; it does not wait until
  4970  // the connection has shut down.
  4971  func (sc *http2serverConn) startGracefulShutdown() {
  4972  	sc.serveG.checkNotOn() // NOT
  4973  	sc.shutdownOnce.Do(func() { sc.sendServeMsg(http2gracefulShutdownMsg) })
  4974  }
  4975  
  4976  // After sending GOAWAY with an error code (non-graceful shutdown), the
  4977  // connection will close after goAwayTimeout.
  4978  //
  4979  // If we close the connection immediately after sending GOAWAY, there may
  4980  // be unsent data in our kernel receive buffer, which will cause the kernel
  4981  // to send a TCP RST on close() instead of a FIN. This RST will abort the
  4982  // connection immediately, whether or not the client had received the GOAWAY.
  4983  //
  4984  // Ideally we should delay for at least 1 RTT + epsilon so the client has
  4985  // a chance to read the GOAWAY and stop sending messages. Measuring RTT
  4986  // is hard, so we approximate with 1 second. See golang.org/issue/18701.
  4987  //
  4988  // This is a var so it can be shorter in tests, where all requests uses the
  4989  // loopback interface making the expected RTT very small.
  4990  //
  4991  // TODO: configurable?
  4992  var http2goAwayTimeout = 1 * time.Second
  4993  
  4994  func (sc *http2serverConn) startGracefulShutdownInternal() {
  4995  	sc.goAway(http2ErrCodeNo)
  4996  }
  4997  
  4998  func (sc *http2serverConn) goAway(code http2ErrCode) {
  4999  	sc.serveG.check()
  5000  	if sc.inGoAway {
  5001  		return
  5002  	}
  5003  	sc.inGoAway = true
  5004  	sc.needToSendGoAway = true
  5005  	sc.goAwayCode = code
  5006  	sc.scheduleFrameWrite()
  5007  }
  5008  
  5009  func (sc *http2serverConn) shutDownIn(d time.Duration) {
  5010  	sc.serveG.check()
  5011  	sc.shutdownTimer = time.AfterFunc(d, sc.onShutdownTimer)
  5012  }
  5013  
  5014  func (sc *http2serverConn) resetStream(se http2StreamError) {
  5015  	sc.serveG.check()
  5016  	sc.writeFrame(http2FrameWriteRequest{write: se})
  5017  	if st, ok := sc.streams[se.StreamID]; ok {
  5018  		st.resetQueued = true
  5019  	}
  5020  }
  5021  
  5022  // processFrameFromReader processes the serve loop's read from readFrameCh from the
  5023  // frame-reading goroutine.
  5024  // processFrameFromReader returns whether the connection should be kept open.
  5025  func (sc *http2serverConn) processFrameFromReader(res http2readFrameResult) bool {
  5026  	sc.serveG.check()
  5027  	err := res.err
  5028  	if err != nil {
  5029  		if err == http2ErrFrameTooLarge {
  5030  			sc.goAway(http2ErrCodeFrameSize)
  5031  			return true // goAway will close the loop
  5032  		}
  5033  		clientGone := err == io.EOF || err == io.ErrUnexpectedEOF || http2isClosedConnError(err)
  5034  		if clientGone {
  5035  			// TODO: could we also get into this state if
  5036  			// the peer does a half close
  5037  			// (e.g. CloseWrite) because they're done
  5038  			// sending frames but they're still wanting
  5039  			// our open replies?  Investigate.
  5040  			// TODO: add CloseWrite to crypto/tls.Conn first
  5041  			// so we have a way to test this? I suppose
  5042  			// just for testing we could have a non-TLS mode.
  5043  			return false
  5044  		}
  5045  	} else {
  5046  		f := res.f
  5047  		if http2VerboseLogs {
  5048  			sc.vlogf("http2: server read frame %v", http2summarizeFrame(f))
  5049  		}
  5050  		err = sc.processFrame(f)
  5051  		if err == nil {
  5052  			return true
  5053  		}
  5054  	}
  5055  
  5056  	switch ev := err.(type) {
  5057  	case http2StreamError:
  5058  		sc.resetStream(ev)
  5059  		return true
  5060  	case http2goAwayFlowError:
  5061  		sc.goAway(http2ErrCodeFlowControl)
  5062  		return true
  5063  	case http2ConnectionError:
  5064  		sc.logf("http2: server connection error from %v: %v", sc.conn.RemoteAddr(), ev)
  5065  		sc.goAway(http2ErrCode(ev))
  5066  		return true // goAway will handle shutdown
  5067  	default:
  5068  		if res.err != nil {
  5069  			sc.vlogf("http2: server closing client connection; error reading frame from client %s: %v", sc.conn.RemoteAddr(), err)
  5070  		} else {
  5071  			sc.logf("http2: server closing client connection: %v", err)
  5072  		}
  5073  		return false
  5074  	}
  5075  }
  5076  
  5077  func (sc *http2serverConn) processFrame(f http2Frame) error {
  5078  	sc.serveG.check()
  5079  
  5080  	// First frame received must be SETTINGS.
  5081  	if !sc.sawFirstSettings {
  5082  		if _, ok := f.(*http2SettingsFrame); !ok {
  5083  			return http2ConnectionError(http2ErrCodeProtocol)
  5084  		}
  5085  		sc.sawFirstSettings = true
  5086  	}
  5087  
  5088  	switch f := f.(type) {
  5089  	case *http2SettingsFrame:
  5090  		return sc.processSettings(f)
  5091  	case *http2MetaHeadersFrame:
  5092  		return sc.processHeaders(f)
  5093  	case *http2WindowUpdateFrame:
  5094  		return sc.processWindowUpdate(f)
  5095  	case *http2PingFrame:
  5096  		return sc.processPing(f)
  5097  	case *http2DataFrame:
  5098  		return sc.processData(f)
  5099  	case *http2RSTStreamFrame:
  5100  		return sc.processResetStream(f)
  5101  	case *http2PriorityFrame:
  5102  		return sc.processPriority(f)
  5103  	case *http2GoAwayFrame:
  5104  		return sc.processGoAway(f)
  5105  	case *http2PushPromiseFrame:
  5106  		// A client cannot push. Thus, servers MUST treat the receipt of a PUSH_PROMISE
  5107  		// frame as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.
  5108  		return http2ConnectionError(http2ErrCodeProtocol)
  5109  	default:
  5110  		sc.vlogf("http2: server ignoring frame: %v", f.Header())
  5111  		return nil
  5112  	}
  5113  }
  5114  
  5115  func (sc *http2serverConn) processPing(f *http2PingFrame) error {
  5116  	sc.serveG.check()
  5117  	if f.IsAck() {
  5118  		// 6.7 PING: " An endpoint MUST NOT respond to PING frames
  5119  		// containing this flag."
  5120  		return nil
  5121  	}
  5122  	if f.StreamID != 0 {
  5123  		// "PING frames are not associated with any individual
  5124  		// stream. If a PING frame is received with a stream
  5125  		// identifier field value other than 0x0, the recipient MUST
  5126  		// respond with a connection error (Section 5.4.1) of type
  5127  		// PROTOCOL_ERROR."
  5128  		return http2ConnectionError(http2ErrCodeProtocol)
  5129  	}
  5130  	if sc.inGoAway && sc.goAwayCode != http2ErrCodeNo {
  5131  		return nil
  5132  	}
  5133  	sc.writeFrame(http2FrameWriteRequest{write: http2writePingAck{f}})
  5134  	return nil
  5135  }
  5136  
  5137  func (sc *http2serverConn) processWindowUpdate(f *http2WindowUpdateFrame) error {
  5138  	sc.serveG.check()
  5139  	switch {
  5140  	case f.StreamID != 0: // stream-level flow control
  5141  		state, st := sc.state(f.StreamID)
  5142  		if state == http2stateIdle {
  5143  			// Section 5.1: "Receiving any frame other than HEADERS
  5144  			// or PRIORITY on a stream in this state MUST be
  5145  			// treated as a connection error (Section 5.4.1) of
  5146  			// type PROTOCOL_ERROR."
  5147  			return http2ConnectionError(http2ErrCodeProtocol)
  5148  		}
  5149  		if st == nil {
  5150  			// "WINDOW_UPDATE can be sent by a peer that has sent a
  5151  			// frame bearing the END_STREAM flag. This means that a
  5152  			// receiver could receive a WINDOW_UPDATE frame on a "half
  5153  			// closed (remote)" or "closed" stream. A receiver MUST
  5154  			// NOT treat this as an error, see Section 5.1."
  5155  			return nil
  5156  		}
  5157  		if !st.flow.add(int32(f.Increment)) {
  5158  			return http2streamError(f.StreamID, http2ErrCodeFlowControl)
  5159  		}
  5160  	default: // connection-level flow control
  5161  		if !sc.flow.add(int32(f.Increment)) {
  5162  			return http2goAwayFlowError{}
  5163  		}
  5164  	}
  5165  	sc.scheduleFrameWrite()
  5166  	return nil
  5167  }
  5168  
  5169  func (sc *http2serverConn) processResetStream(f *http2RSTStreamFrame) error {
  5170  	sc.serveG.check()
  5171  
  5172  	state, st := sc.state(f.StreamID)
  5173  	if state == http2stateIdle {
  5174  		// 6.4 "RST_STREAM frames MUST NOT be sent for a
  5175  		// stream in the "idle" state. If a RST_STREAM frame
  5176  		// identifying an idle stream is received, the
  5177  		// recipient MUST treat this as a connection error
  5178  		// (Section 5.4.1) of type PROTOCOL_ERROR.
  5179  		return http2ConnectionError(http2ErrCodeProtocol)
  5180  	}
  5181  	if st != nil {
  5182  		st.cancelCtx()
  5183  		sc.closeStream(st, http2streamError(f.StreamID, f.ErrCode))
  5184  	}
  5185  	return nil
  5186  }
  5187  
  5188  func (sc *http2serverConn) closeStream(st *http2stream, err error) {
  5189  	sc.serveG.check()
  5190  	if st.state == http2stateIdle || st.state == http2stateClosed {
  5191  		panic(fmt.Sprintf("invariant; can't close stream in state %v", st.state))
  5192  	}
  5193  	st.state = http2stateClosed
  5194  	if st.writeDeadline != nil {
  5195  		st.writeDeadline.Stop()
  5196  	}
  5197  	if st.isPushed() {
  5198  		sc.curPushedStreams--
  5199  	} else {
  5200  		sc.curClientStreams--
  5201  	}
  5202  	delete(sc.streams, st.id)
  5203  	if len(sc.streams) == 0 {
  5204  		sc.setConnState(StateIdle)
  5205  		if sc.srv.IdleTimeout != 0 {
  5206  			sc.idleTimer.Reset(sc.srv.IdleTimeout)
  5207  		}
  5208  		if http2h1ServerKeepAlivesDisabled(sc.hs) {
  5209  			sc.startGracefulShutdownInternal()
  5210  		}
  5211  	}
  5212  	if p := st.body; p != nil {
  5213  		// Return any buffered unread bytes worth of conn-level flow control.
  5214  		// See golang.org/issue/16481
  5215  		sc.sendWindowUpdate(nil, p.Len())
  5216  
  5217  		p.CloseWithError(err)
  5218  	}
  5219  	st.cw.Close() // signals Handler's CloseNotifier, unblocks writes, etc
  5220  	sc.writeSched.CloseStream(st.id)
  5221  }
  5222  
  5223  func (sc *http2serverConn) processSettings(f *http2SettingsFrame) error {
  5224  	sc.serveG.check()
  5225  	if f.IsAck() {
  5226  		sc.unackedSettings--
  5227  		if sc.unackedSettings < 0 {
  5228  			// Why is the peer ACKing settings we never sent?
  5229  			// The spec doesn't mention this case, but
  5230  			// hang up on them anyway.
  5231  			return http2ConnectionError(http2ErrCodeProtocol)
  5232  		}
  5233  		return nil
  5234  	}
  5235  	if f.NumSettings() > 100 || f.HasDuplicates() {
  5236  		// This isn't actually in the spec, but hang up on
  5237  		// suspiciously large settings frames or those with
  5238  		// duplicate entries.
  5239  		return http2ConnectionError(http2ErrCodeProtocol)
  5240  	}
  5241  	if err := f.ForeachSetting(sc.processSetting); err != nil {
  5242  		return err
  5243  	}
  5244  	// TODO: judging by RFC 7540, Section 6.5.3 each SETTINGS frame should be
  5245  	// acknowledged individually, even if multiple are received before the ACK.
  5246  	sc.needToSendSettingsAck = true
  5247  	sc.scheduleFrameWrite()
  5248  	return nil
  5249  }
  5250  
  5251  func (sc *http2serverConn) processSetting(s http2Setting) error {
  5252  	sc.serveG.check()
  5253  	if err := s.Valid(); err != nil {
  5254  		return err
  5255  	}
  5256  	if http2VerboseLogs {
  5257  		sc.vlogf("http2: server processing setting %v", s)
  5258  	}
  5259  	switch s.ID {
  5260  	case http2SettingHeaderTableSize:
  5261  		sc.headerTableSize = s.Val
  5262  		sc.hpackEncoder.SetMaxDynamicTableSize(s.Val)
  5263  	case http2SettingEnablePush:
  5264  		sc.pushEnabled = s.Val != 0
  5265  	case http2SettingMaxConcurrentStreams:
  5266  		sc.clientMaxStreams = s.Val
  5267  	case http2SettingInitialWindowSize:
  5268  		return sc.processSettingInitialWindowSize(s.Val)
  5269  	case http2SettingMaxFrameSize:
  5270  		sc.maxFrameSize = int32(s.Val) // the maximum valid s.Val is < 2^31
  5271  	case http2SettingMaxHeaderListSize:
  5272  		sc.peerMaxHeaderListSize = s.Val
  5273  	default:
  5274  		// Unknown setting: "An endpoint that receives a SETTINGS
  5275  		// frame with any unknown or unsupported identifier MUST
  5276  		// ignore that setting."
  5277  		if http2VerboseLogs {
  5278  			sc.vlogf("http2: server ignoring unknown setting %v", s)
  5279  		}
  5280  	}
  5281  	return nil
  5282  }
  5283  
  5284  func (sc *http2serverConn) processSettingInitialWindowSize(val uint32) error {
  5285  	sc.serveG.check()
  5286  	// Note: val already validated to be within range by
  5287  	// processSetting's Valid call.
  5288  
  5289  	// "A SETTINGS frame can alter the initial flow control window
  5290  	// size for all current streams. When the value of
  5291  	// SETTINGS_INITIAL_WINDOW_SIZE changes, a receiver MUST
  5292  	// adjust the size of all stream flow control windows that it
  5293  	// maintains by the difference between the new value and the
  5294  	// old value."
  5295  	old := sc.initialStreamSendWindowSize
  5296  	sc.initialStreamSendWindowSize = int32(val)
  5297  	growth := int32(val) - old // may be negative
  5298  	for _, st := range sc.streams {
  5299  		if !st.flow.add(growth) {
  5300  			// 6.9.2 Initial Flow Control Window Size
  5301  			// "An endpoint MUST treat a change to
  5302  			// SETTINGS_INITIAL_WINDOW_SIZE that causes any flow
  5303  			// control window to exceed the maximum size as a
  5304  			// connection error (Section 5.4.1) of type
  5305  			// FLOW_CONTROL_ERROR."
  5306  			return http2ConnectionError(http2ErrCodeFlowControl)
  5307  		}
  5308  	}
  5309  	return nil
  5310  }
  5311  
  5312  func (sc *http2serverConn) processData(f *http2DataFrame) error {
  5313  	sc.serveG.check()
  5314  	id := f.Header().StreamID
  5315  	if sc.inGoAway && (sc.goAwayCode != http2ErrCodeNo || id > sc.maxClientStreamID) {
  5316  		// Discard all DATA frames if the GOAWAY is due to an
  5317  		// error, or:
  5318  		//
  5319  		// Section 6.8: After sending a GOAWAY frame, the sender
  5320  		// can discard frames for streams initiated by the
  5321  		// receiver with identifiers higher than the identified
  5322  		// last stream.
  5323  		return nil
  5324  	}
  5325  
  5326  	data := f.Data()
  5327  	state, st := sc.state(id)
  5328  	if id == 0 || state == http2stateIdle {
  5329  		// Section 6.1: "DATA frames MUST be associated with a
  5330  		// stream. If a DATA frame is received whose stream
  5331  		// identifier field is 0x0, the recipient MUST respond
  5332  		// with a connection error (Section 5.4.1) of type
  5333  		// PROTOCOL_ERROR."
  5334  		//
  5335  		// Section 5.1: "Receiving any frame other than HEADERS
  5336  		// or PRIORITY on a stream in this state MUST be
  5337  		// treated as a connection error (Section 5.4.1) of
  5338  		// type PROTOCOL_ERROR."
  5339  		return http2ConnectionError(http2ErrCodeProtocol)
  5340  	}
  5341  
  5342  	// "If a DATA frame is received whose stream is not in "open"
  5343  	// or "half closed (local)" state, the recipient MUST respond
  5344  	// with a stream error (Section 5.4.2) of type STREAM_CLOSED."
  5345  	if st == nil || state != http2stateOpen || st.gotTrailerHeader || st.resetQueued {
  5346  		// This includes sending a RST_STREAM if the stream is
  5347  		// in stateHalfClosedLocal (which currently means that
  5348  		// the http.Handler returned, so it's done reading &
  5349  		// done writing). Try to stop the client from sending
  5350  		// more DATA.
  5351  
  5352  		// But still enforce their connection-level flow control,
  5353  		// and return any flow control bytes since we're not going
  5354  		// to consume them.
  5355  		if sc.inflow.available() < int32(f.Length) {
  5356  			return http2streamError(id, http2ErrCodeFlowControl)
  5357  		}
  5358  		// Deduct the flow control from inflow, since we're
  5359  		// going to immediately add it back in
  5360  		// sendWindowUpdate, which also schedules sending the
  5361  		// frames.
  5362  		sc.inflow.take(int32(f.Length))
  5363  		sc.sendWindowUpdate(nil, int(f.Length)) // conn-level
  5364  
  5365  		if st != nil && st.resetQueued {
  5366  			// Already have a stream error in flight. Don't send another.
  5367  			return nil
  5368  		}
  5369  		return http2streamError(id, http2ErrCodeStreamClosed)
  5370  	}
  5371  	if st.body == nil {
  5372  		panic("internal error: should have a body in this state")
  5373  	}
  5374  
  5375  	// Sender sending more than they'd declared?
  5376  	if st.declBodyBytes != -1 && st.bodyBytes+int64(len(data)) > st.declBodyBytes {
  5377  		st.body.CloseWithError(fmt.Errorf("sender tried to send more than declared Content-Length of %d bytes", st.declBodyBytes))
  5378  		// RFC 7540, sec 8.1.2.6: A request or response is also malformed if the
  5379  		// value of a content-length header field does not equal the sum of the
  5380  		// DATA frame payload lengths that form the body.
  5381  		return http2streamError(id, http2ErrCodeProtocol)
  5382  	}
  5383  	if f.Length > 0 {
  5384  		// Check whether the client has flow control quota.
  5385  		if st.inflow.available() < int32(f.Length) {
  5386  			return http2streamError(id, http2ErrCodeFlowControl)
  5387  		}
  5388  		st.inflow.take(int32(f.Length))
  5389  
  5390  		if len(data) > 0 {
  5391  			wrote, err := st.body.Write(data)
  5392  			if err != nil {
  5393  				sc.sendWindowUpdate(nil, int(f.Length)-wrote)
  5394  				return http2streamError(id, http2ErrCodeStreamClosed)
  5395  			}
  5396  			if wrote != len(data) {
  5397  				panic("internal error: bad Writer")
  5398  			}
  5399  			st.bodyBytes += int64(len(data))
  5400  		}
  5401  
  5402  		// Return any padded flow control now, since we won't
  5403  		// refund it later on body reads.
  5404  		if pad := int32(f.Length) - int32(len(data)); pad > 0 {
  5405  			sc.sendWindowUpdate32(nil, pad)
  5406  			sc.sendWindowUpdate32(st, pad)
  5407  		}
  5408  	}
  5409  	if f.StreamEnded() {
  5410  		st.endStream()
  5411  	}
  5412  	return nil
  5413  }
  5414  
  5415  func (sc *http2serverConn) processGoAway(f *http2GoAwayFrame) error {
  5416  	sc.serveG.check()
  5417  	if f.ErrCode != http2ErrCodeNo {
  5418  		sc.logf("http2: received GOAWAY %+v, starting graceful shutdown", f)
  5419  	} else {
  5420  		sc.vlogf("http2: received GOAWAY %+v, starting graceful shutdown", f)
  5421  	}
  5422  	sc.startGracefulShutdownInternal()
  5423  	// http://tools.ietf.org/html/rfc7540#section-6.8
  5424  	// We should not create any new streams, which means we should disable push.
  5425  	sc.pushEnabled = false
  5426  	return nil
  5427  }
  5428  
  5429  // isPushed reports whether the stream is server-initiated.
  5430  func (st *http2stream) isPushed() bool {
  5431  	return st.id%2 == 0
  5432  }
  5433  
  5434  // endStream closes a Request.Body's pipe. It is called when a DATA
  5435  // frame says a request body is over (or after trailers).
  5436  func (st *http2stream) endStream() {
  5437  	sc := st.sc
  5438  	sc.serveG.check()
  5439  
  5440  	if st.declBodyBytes != -1 && st.declBodyBytes != st.bodyBytes {
  5441  		st.body.CloseWithError(fmt.Errorf("request declared a Content-Length of %d but only wrote %d bytes",
  5442  			st.declBodyBytes, st.bodyBytes))
  5443  	} else {
  5444  		st.body.closeWithErrorAndCode(io.EOF, st.copyTrailersToHandlerRequest)
  5445  		st.body.CloseWithError(io.EOF)
  5446  	}
  5447  	st.state = http2stateHalfClosedRemote
  5448  }
  5449  
  5450  // copyTrailersToHandlerRequest is run in the Handler's goroutine in
  5451  // its Request.Body.Read just before it gets io.EOF.
  5452  func (st *http2stream) copyTrailersToHandlerRequest() {
  5453  	for k, vv := range st.trailer {
  5454  		if _, ok := st.reqTrailer[k]; ok {
  5455  			// Only copy it over it was pre-declared.
  5456  			st.reqTrailer[k] = vv
  5457  		}
  5458  	}
  5459  }
  5460  
  5461  // onWriteTimeout is run on its own goroutine (from time.AfterFunc)
  5462  // when the stream's WriteTimeout has fired.
  5463  func (st *http2stream) onWriteTimeout() {
  5464  	st.sc.writeFrameFromHandler(http2FrameWriteRequest{write: http2streamError(st.id, http2ErrCodeInternal)})
  5465  }
  5466  
  5467  func (sc *http2serverConn) processHeaders(f *http2MetaHeadersFrame) error {
  5468  	sc.serveG.check()
  5469  	id := f.StreamID
  5470  	if sc.inGoAway {
  5471  		// Ignore.
  5472  		return nil
  5473  	}
  5474  	// http://tools.ietf.org/html/rfc7540#section-5.1.1
  5475  	// Streams initiated by a client MUST use odd-numbered stream
  5476  	// identifiers. [...] An endpoint that receives an unexpected
  5477  	// stream identifier MUST respond with a connection error
  5478  	// (Section 5.4.1) of type PROTOCOL_ERROR.
  5479  	if id%2 != 1 {
  5480  		return http2ConnectionError(http2ErrCodeProtocol)
  5481  	}
  5482  	// A HEADERS frame can be used to create a new stream or
  5483  	// send a trailer for an open one. If we already have a stream
  5484  	// open, let it process its own HEADERS frame (trailers at this
  5485  	// point, if it's valid).
  5486  	if st := sc.streams[f.StreamID]; st != nil {
  5487  		if st.resetQueued {
  5488  			// We're sending RST_STREAM to close the stream, so don't bother
  5489  			// processing this frame.
  5490  			return nil
  5491  		}
  5492  		// RFC 7540, sec 5.1: If an endpoint receives additional frames, other than
  5493  		// WINDOW_UPDATE, PRIORITY, or RST_STREAM, for a stream that is in
  5494  		// this state, it MUST respond with a stream error (Section 5.4.2) of
  5495  		// type STREAM_CLOSED.
  5496  		if st.state == http2stateHalfClosedRemote {
  5497  			return http2streamError(id, http2ErrCodeStreamClosed)
  5498  		}
  5499  		return st.processTrailerHeaders(f)
  5500  	}
  5501  
  5502  	// [...] The identifier of a newly established stream MUST be
  5503  	// numerically greater than all streams that the initiating
  5504  	// endpoint has opened or reserved. [...]  An endpoint that
  5505  	// receives an unexpected stream identifier MUST respond with
  5506  	// a connection error (Section 5.4.1) of type PROTOCOL_ERROR.
  5507  	if id <= sc.maxClientStreamID {
  5508  		return http2ConnectionError(http2ErrCodeProtocol)
  5509  	}
  5510  	sc.maxClientStreamID = id
  5511  
  5512  	if sc.idleTimer != nil {
  5513  		sc.idleTimer.Stop()
  5514  	}
  5515  
  5516  	// http://tools.ietf.org/html/rfc7540#section-5.1.2
  5517  	// [...] Endpoints MUST NOT exceed the limit set by their peer. An
  5518  	// endpoint that receives a HEADERS frame that causes their
  5519  	// advertised concurrent stream limit to be exceeded MUST treat
  5520  	// this as a stream error (Section 5.4.2) of type PROTOCOL_ERROR
  5521  	// or REFUSED_STREAM.
  5522  	if sc.curClientStreams+1 > sc.advMaxStreams {
  5523  		if sc.unackedSettings == 0 {
  5524  			// They should know better.
  5525  			return http2streamError(id, http2ErrCodeProtocol)
  5526  		}
  5527  		// Assume it's a network race, where they just haven't
  5528  		// received our last SETTINGS update. But actually
  5529  		// this can't happen yet, because we don't yet provide
  5530  		// a way for users to adjust server parameters at
  5531  		// runtime.
  5532  		return http2streamError(id, http2ErrCodeRefusedStream)
  5533  	}
  5534  
  5535  	initialState := http2stateOpen
  5536  	if f.StreamEnded() {
  5537  		initialState = http2stateHalfClosedRemote
  5538  	}
  5539  	st := sc.newStream(id, 0, initialState)
  5540  
  5541  	if f.HasPriority() {
  5542  		if err := http2checkPriority(f.StreamID, f.Priority); err != nil {
  5543  			return err
  5544  		}
  5545  		sc.writeSched.AdjustStream(st.id, f.Priority)
  5546  	}
  5547  
  5548  	rw, req, err := sc.newWriterAndRequest(st, f)
  5549  	if err != nil {
  5550  		return err
  5551  	}
  5552  	st.reqTrailer = req.Trailer
  5553  	if st.reqTrailer != nil {
  5554  		st.trailer = make(Header)
  5555  	}
  5556  	st.body = req.Body.(*http2requestBody).pipe // may be nil
  5557  	st.declBodyBytes = req.ContentLength
  5558  
  5559  	handler := sc.handler.ServeHTTP
  5560  	if f.Truncated {
  5561  		// Their header list was too long. Send a 431 error.
  5562  		handler = http2handleHeaderListTooLong
  5563  	} else if err := http2checkValidHTTP2RequestHeaders(req.Header); err != nil {
  5564  		handler = http2new400Handler(err)
  5565  	}
  5566  
  5567  	// The net/http package sets the read deadline from the
  5568  	// http.Server.ReadTimeout during the TLS handshake, but then
  5569  	// passes the connection off to us with the deadline already
  5570  	// set. Disarm it here after the request headers are read,
  5571  	// similar to how the http1 server works. Here it's
  5572  	// technically more like the http1 Server's ReadHeaderTimeout
  5573  	// (in Go 1.8), though. That's a more sane option anyway.
  5574  	if sc.hs.ReadTimeout != 0 {
  5575  		sc.conn.SetReadDeadline(time.Time{})
  5576  	}
  5577  
  5578  	go sc.runHandler(rw, req, handler)
  5579  	return nil
  5580  }
  5581  
  5582  func (st *http2stream) processTrailerHeaders(f *http2MetaHeadersFrame) error {
  5583  	sc := st.sc
  5584  	sc.serveG.check()
  5585  	if st.gotTrailerHeader {
  5586  		return http2ConnectionError(http2ErrCodeProtocol)
  5587  	}
  5588  	st.gotTrailerHeader = true
  5589  	if !f.StreamEnded() {
  5590  		return http2streamError(st.id, http2ErrCodeProtocol)
  5591  	}
  5592  
  5593  	if len(f.PseudoFields()) > 0 {
  5594  		return http2streamError(st.id, http2ErrCodeProtocol)
  5595  	}
  5596  	if st.trailer != nil {
  5597  		for _, hf := range f.RegularFields() {
  5598  			key := sc.canonicalHeader(hf.Name)
  5599  			if !httpguts.ValidTrailerHeader(key) {
  5600  				// TODO: send more details to the peer somehow. But http2 has
  5601  				// no way to send debug data at a stream level. Discuss with
  5602  				// HTTP folk.
  5603  				return http2streamError(st.id, http2ErrCodeProtocol)
  5604  			}
  5605  			st.trailer[key] = append(st.trailer[key], hf.Value)
  5606  		}
  5607  	}
  5608  	st.endStream()
  5609  	return nil
  5610  }
  5611  
  5612  func http2checkPriority(streamID uint32, p http2PriorityParam) error {
  5613  	if streamID == p.StreamDep {
  5614  		// Section 5.3.1: "A stream cannot depend on itself. An endpoint MUST treat
  5615  		// this as a stream error (Section 5.4.2) of type PROTOCOL_ERROR."
  5616  		// Section 5.3.3 says that a stream can depend on one of its dependencies,
  5617  		// so it's only self-dependencies that are forbidden.
  5618  		return http2streamError(streamID, http2ErrCodeProtocol)
  5619  	}
  5620  	return nil
  5621  }
  5622  
  5623  func (sc *http2serverConn) processPriority(f *http2PriorityFrame) error {
  5624  	if sc.inGoAway {
  5625  		return nil
  5626  	}
  5627  	if err := http2checkPriority(f.StreamID, f.http2PriorityParam); err != nil {
  5628  		return err
  5629  	}
  5630  	sc.writeSched.AdjustStream(f.StreamID, f.http2PriorityParam)
  5631  	return nil
  5632  }
  5633  
  5634  func (sc *http2serverConn) newStream(id, pusherID uint32, state http2streamState) *http2stream {
  5635  	sc.serveG.check()
  5636  	if id == 0 {
  5637  		panic("internal error: cannot create stream with id 0")
  5638  	}
  5639  
  5640  	ctx, cancelCtx := context.WithCancel(sc.baseCtx)
  5641  	st := &http2stream{
  5642  		sc:        sc,
  5643  		id:        id,
  5644  		state:     state,
  5645  		ctx:       ctx,
  5646  		cancelCtx: cancelCtx,
  5647  	}
  5648  	st.cw.Init()
  5649  	st.flow.conn = &sc.flow // link to conn-level counter
  5650  	st.flow.add(sc.initialStreamSendWindowSize)
  5651  	st.inflow.conn = &sc.inflow // link to conn-level counter
  5652  	st.inflow.add(sc.srv.initialStreamRecvWindowSize())
  5653  	if sc.hs.WriteTimeout != 0 {
  5654  		st.writeDeadline = time.AfterFunc(sc.hs.WriteTimeout, st.onWriteTimeout)
  5655  	}
  5656  
  5657  	sc.streams[id] = st
  5658  	sc.writeSched.OpenStream(st.id, http2OpenStreamOptions{PusherID: pusherID})
  5659  	if st.isPushed() {
  5660  		sc.curPushedStreams++
  5661  	} else {
  5662  		sc.curClientStreams++
  5663  	}
  5664  	if sc.curOpenStreams() == 1 {
  5665  		sc.setConnState(StateActive)
  5666  	}
  5667  
  5668  	return st
  5669  }
  5670  
  5671  func (sc *http2serverConn) newWriterAndRequest(st *http2stream, f *http2MetaHeadersFrame) (*http2responseWriter, *Request, error) {
  5672  	sc.serveG.check()
  5673  
  5674  	rp := http2requestParam{
  5675  		method:    f.PseudoValue("method"),
  5676  		scheme:    f.PseudoValue("scheme"),
  5677  		authority: f.PseudoValue("authority"),
  5678  		path:      f.PseudoValue("path"),
  5679  	}
  5680  
  5681  	isConnect := rp.method == "CONNECT"
  5682  	if isConnect {
  5683  		if rp.path != "" || rp.scheme != "" || rp.authority == "" {
  5684  			return nil, nil, http2streamError(f.StreamID, http2ErrCodeProtocol)
  5685  		}
  5686  	} else if rp.method == "" || rp.path == "" || (rp.scheme != "https" && rp.scheme != "http") {
  5687  		// See 8.1.2.6 Malformed Requests and Responses:
  5688  		//
  5689  		// Malformed requests or responses that are detected
  5690  		// MUST be treated as a stream error (Section 5.4.2)
  5691  		// of type PROTOCOL_ERROR."
  5692  		//
  5693  		// 8.1.2.3 Request Pseudo-Header Fields
  5694  		// "All HTTP/2 requests MUST include exactly one valid
  5695  		// value for the :method, :scheme, and :path
  5696  		// pseudo-header fields"
  5697  		return nil, nil, http2streamError(f.StreamID, http2ErrCodeProtocol)
  5698  	}
  5699  
  5700  	bodyOpen := !f.StreamEnded()
  5701  	if rp.method == "HEAD" && bodyOpen {
  5702  		// HEAD requests can't have bodies
  5703  		return nil, nil, http2streamError(f.StreamID, http2ErrCodeProtocol)
  5704  	}
  5705  
  5706  	rp.header = make(Header)
  5707  	for _, hf := range f.RegularFields() {
  5708  		rp.header.Add(sc.canonicalHeader(hf.Name), hf.Value)
  5709  	}
  5710  	if rp.authority == "" {
  5711  		rp.authority = rp.header.Get("Host")
  5712  	}
  5713  
  5714  	rw, req, err := sc.newWriterAndRequestNoBody(st, rp)
  5715  	if err != nil {
  5716  		return nil, nil, err
  5717  	}
  5718  	if bodyOpen {
  5719  		if vv, ok := rp.header["Content-Length"]; ok {
  5720  			if cl, err := strconv.ParseUint(vv[0], 10, 63); err == nil {
  5721  				req.ContentLength = int64(cl)
  5722  			} else {
  5723  				req.ContentLength = 0
  5724  			}
  5725  		} else {
  5726  			req.ContentLength = -1
  5727  		}
  5728  		req.Body.(*http2requestBody).pipe = &http2pipe{
  5729  			b: &http2dataBuffer{expected: req.ContentLength},
  5730  		}
  5731  	}
  5732  	return rw, req, nil
  5733  }
  5734  
  5735  type http2requestParam struct {
  5736  	method                  string
  5737  	scheme, authority, path string
  5738  	header                  Header
  5739  }
  5740  
  5741  func (sc *http2serverConn) newWriterAndRequestNoBody(st *http2stream, rp http2requestParam) (*http2responseWriter, *Request, error) {
  5742  	sc.serveG.check()
  5743  
  5744  	var tlsState *tls.ConnectionState // nil if not scheme https
  5745  	if rp.scheme == "https" {
  5746  		tlsState = sc.tlsState
  5747  	}
  5748  
  5749  	needsContinue := rp.header.Get("Expect") == "100-continue"
  5750  	if needsContinue {
  5751  		rp.header.Del("Expect")
  5752  	}
  5753  	// Merge Cookie headers into one "; "-delimited value.
  5754  	if cookies := rp.header["Cookie"]; len(cookies) > 1 {
  5755  		rp.header.Set("Cookie", strings.Join(cookies, "; "))
  5756  	}
  5757  
  5758  	// Setup Trailers
  5759  	var trailer Header
  5760  	for _, v := range rp.header["Trailer"] {
  5761  		for _, key := range strings.Split(v, ",") {
  5762  			key = CanonicalHeaderKey(textproto.TrimString(key))
  5763  			switch key {
  5764  			case "Transfer-Encoding", "Trailer", "Content-Length":
  5765  				// Bogus. (copy of http1 rules)
  5766  				// Ignore.
  5767  			default:
  5768  				if trailer == nil {
  5769  					trailer = make(Header)
  5770  				}
  5771  				trailer[key] = nil
  5772  			}
  5773  		}
  5774  	}
  5775  	delete(rp.header, "Trailer")
  5776  
  5777  	var url_ *url.URL
  5778  	var requestURI string
  5779  	if rp.method == "CONNECT" {
  5780  		url_ = &url.URL{Host: rp.authority}
  5781  		requestURI = rp.authority // mimic HTTP/1 server behavior
  5782  	} else {
  5783  		var err error
  5784  		url_, err = url.ParseRequestURI(rp.path)
  5785  		if err != nil {
  5786  			return nil, nil, http2streamError(st.id, http2ErrCodeProtocol)
  5787  		}
  5788  		requestURI = rp.path
  5789  	}
  5790  
  5791  	body := &http2requestBody{
  5792  		conn:          sc,
  5793  		stream:        st,
  5794  		needsContinue: needsContinue,
  5795  	}
  5796  	req := &Request{
  5797  		Method:     rp.method,
  5798  		URL:        url_,
  5799  		RemoteAddr: sc.remoteAddrStr,
  5800  		Header:     rp.header,
  5801  		RequestURI: requestURI,
  5802  		Proto:      "HTTP/2.0",
  5803  		ProtoMajor: 2,
  5804  		ProtoMinor: 0,
  5805  		TLS:        tlsState,
  5806  		Host:       rp.authority,
  5807  		Body:       body,
  5808  		Trailer:    trailer,
  5809  	}
  5810  	req = req.WithContext(st.ctx)
  5811  
  5812  	rws := http2responseWriterStatePool.Get().(*http2responseWriterState)
  5813  	bwSave := rws.bw
  5814  	*rws = http2responseWriterState{} // zero all the fields
  5815  	rws.conn = sc
  5816  	rws.bw = bwSave
  5817  	rws.bw.Reset(http2chunkWriter{rws})
  5818  	rws.stream = st
  5819  	rws.req = req
  5820  	rws.body = body
  5821  
  5822  	rw := &http2responseWriter{rws: rws}
  5823  	return rw, req, nil
  5824  }
  5825  
  5826  // Run on its own goroutine.
  5827  func (sc *http2serverConn) runHandler(rw *http2responseWriter, req *Request, handler func(ResponseWriter, *Request)) {
  5828  	didPanic := true
  5829  	defer func() {
  5830  		rw.rws.stream.cancelCtx()
  5831  		if didPanic {
  5832  			e := recover()
  5833  			sc.writeFrameFromHandler(http2FrameWriteRequest{
  5834  				write:  http2handlerPanicRST{rw.rws.stream.id},
  5835  				stream: rw.rws.stream,
  5836  			})
  5837  			// Same as net/http:
  5838  			if e != nil && e != ErrAbortHandler {
  5839  				const size = 64 << 10
  5840  				buf := make([]byte, size)
  5841  				buf = buf[:runtime.Stack(buf, false)]
  5842  				sc.logf("http2: panic serving %v: %v\n%s", sc.conn.RemoteAddr(), e, buf)
  5843  			}
  5844  			return
  5845  		}
  5846  		rw.handlerDone()
  5847  	}()
  5848  	handler(rw, req)
  5849  	didPanic = false
  5850  }
  5851  
  5852  func http2handleHeaderListTooLong(w ResponseWriter, r *Request) {
  5853  	// 10.5.1 Limits on Header Block Size:
  5854  	// .. "A server that receives a larger header block than it is
  5855  	// willing to handle can send an HTTP 431 (Request Header Fields Too
  5856  	// Large) status code"
  5857  	const statusRequestHeaderFieldsTooLarge = 431 // only in Go 1.6+
  5858  	w.WriteHeader(statusRequestHeaderFieldsTooLarge)
  5859  	io.WriteString(w, "<h1>HTTP Error 431</h1><p>Request Header Field(s) Too Large</p>")
  5860  }
  5861  
  5862  // called from handler goroutines.
  5863  // h may be nil.
  5864  func (sc *http2serverConn) writeHeaders(st *http2stream, headerData *http2writeResHeaders) error {
  5865  	sc.serveG.checkNotOn() // NOT on
  5866  	var errc chan error
  5867  	if headerData.h != nil {
  5868  		// If there's a header map (which we don't own), so we have to block on
  5869  		// waiting for this frame to be written, so an http.Flush mid-handler
  5870  		// writes out the correct value of keys, before a handler later potentially
  5871  		// mutates it.
  5872  		errc = http2errChanPool.Get().(chan error)
  5873  	}
  5874  	if err := sc.writeFrameFromHandler(http2FrameWriteRequest{
  5875  		write:  headerData,
  5876  		stream: st,
  5877  		done:   errc,
  5878  	}); err != nil {
  5879  		return err
  5880  	}
  5881  	if errc != nil {
  5882  		select {
  5883  		case err := <-errc:
  5884  			http2errChanPool.Put(errc)
  5885  			return err
  5886  		case <-sc.doneServing:
  5887  			return http2errClientDisconnected
  5888  		case <-st.cw:
  5889  			return http2errStreamClosed
  5890  		}
  5891  	}
  5892  	return nil
  5893  }
  5894  
  5895  // called from handler goroutines.
  5896  func (sc *http2serverConn) write100ContinueHeaders(st *http2stream) {
  5897  	sc.writeFrameFromHandler(http2FrameWriteRequest{
  5898  		write:  http2write100ContinueHeadersFrame{st.id},
  5899  		stream: st,
  5900  	})
  5901  }
  5902  
  5903  // A bodyReadMsg tells the server loop that the http.Handler read n
  5904  // bytes of the DATA from the client on the given stream.
  5905  type http2bodyReadMsg struct {
  5906  	st *http2stream
  5907  	n  int
  5908  }
  5909  
  5910  // called from handler goroutines.
  5911  // Notes that the handler for the given stream ID read n bytes of its body
  5912  // and schedules flow control tokens to be sent.
  5913  func (sc *http2serverConn) noteBodyReadFromHandler(st *http2stream, n int, err error) {
  5914  	sc.serveG.checkNotOn() // NOT on
  5915  	if n > 0 {
  5916  		select {
  5917  		case sc.bodyReadCh <- http2bodyReadMsg{st, n}:
  5918  		case <-sc.doneServing:
  5919  		}
  5920  	}
  5921  }
  5922  
  5923  func (sc *http2serverConn) noteBodyRead(st *http2stream, n int) {
  5924  	sc.serveG.check()
  5925  	sc.sendWindowUpdate(nil, n) // conn-level
  5926  	if st.state != http2stateHalfClosedRemote && st.state != http2stateClosed {
  5927  		// Don't send this WINDOW_UPDATE if the stream is closed
  5928  		// remotely.
  5929  		sc.sendWindowUpdate(st, n)
  5930  	}
  5931  }
  5932  
  5933  // st may be nil for conn-level
  5934  func (sc *http2serverConn) sendWindowUpdate(st *http2stream, n int) {
  5935  	sc.serveG.check()
  5936  	// "The legal range for the increment to the flow control
  5937  	// window is 1 to 2^31-1 (2,147,483,647) octets."
  5938  	// A Go Read call on 64-bit machines could in theory read
  5939  	// a larger Read than this. Very unlikely, but we handle it here
  5940  	// rather than elsewhere for now.
  5941  	const maxUint31 = 1<<31 - 1
  5942  	for n >= maxUint31 {
  5943  		sc.sendWindowUpdate32(st, maxUint31)
  5944  		n -= maxUint31
  5945  	}
  5946  	sc.sendWindowUpdate32(st, int32(n))
  5947  }
  5948  
  5949  // st may be nil for conn-level
  5950  func (sc *http2serverConn) sendWindowUpdate32(st *http2stream, n int32) {
  5951  	sc.serveG.check()
  5952  	if n == 0 {
  5953  		return
  5954  	}
  5955  	if n < 0 {
  5956  		panic("negative update")
  5957  	}
  5958  	var streamID uint32
  5959  	if st != nil {
  5960  		streamID = st.id
  5961  	}
  5962  	sc.writeFrame(http2FrameWriteRequest{
  5963  		write:  http2writeWindowUpdate{streamID: streamID, n: uint32(n)},
  5964  		stream: st,
  5965  	})
  5966  	var ok bool
  5967  	if st == nil {
  5968  		ok = sc.inflow.add(n)
  5969  	} else {
  5970  		ok = st.inflow.add(n)
  5971  	}
  5972  	if !ok {
  5973  		panic("internal error; sent too many window updates without decrements?")
  5974  	}
  5975  }
  5976  
  5977  // requestBody is the Handler's Request.Body type.
  5978  // Read and Close may be called concurrently.
  5979  type http2requestBody struct {
  5980  	_             http2incomparable
  5981  	stream        *http2stream
  5982  	conn          *http2serverConn
  5983  	closed        bool       // for use by Close only
  5984  	sawEOF        bool       // for use by Read only
  5985  	pipe          *http2pipe // non-nil if we have a HTTP entity message body
  5986  	needsContinue bool       // need to send a 100-continue
  5987  }
  5988  
  5989  func (b *http2requestBody) Close() error {
  5990  	if b.pipe != nil && !b.closed {
  5991  		b.pipe.BreakWithError(http2errClosedBody)
  5992  	}
  5993  	b.closed = true
  5994  	return nil
  5995  }
  5996  
  5997  func (b *http2requestBody) Read(p []byte) (n int, err error) {
  5998  	if b.needsContinue {
  5999  		b.needsContinue = false
  6000  		b.conn.write100ContinueHeaders(b.stream)
  6001  	}
  6002  	if b.pipe == nil || b.sawEOF {
  6003  		return 0, io.EOF
  6004  	}
  6005  	n, err = b.pipe.Read(p)
  6006  	if err == io.EOF {
  6007  		b.sawEOF = true
  6008  	}
  6009  	if b.conn == nil && http2inTests {
  6010  		return
  6011  	}
  6012  	b.conn.noteBodyReadFromHandler(b.stream, n, err)
  6013  	return
  6014  }
  6015  
  6016  // responseWriter is the http.ResponseWriter implementation. It's
  6017  // intentionally small (1 pointer wide) to minimize garbage. The
  6018  // responseWriterState pointer inside is zeroed at the end of a
  6019  // request (in handlerDone) and calls on the responseWriter thereafter
  6020  // simply crash (caller's mistake), but the much larger responseWriterState
  6021  // and buffers are reused between multiple requests.
  6022  type http2responseWriter struct {
  6023  	rws *http2responseWriterState
  6024  }
  6025  
  6026  // Optional http.ResponseWriter interfaces implemented.
  6027  var (
  6028  	_ CloseNotifier     = (*http2responseWriter)(nil)
  6029  	_ Flusher           = (*http2responseWriter)(nil)
  6030  	_ http2stringWriter = (*http2responseWriter)(nil)
  6031  )
  6032  
  6033  type http2responseWriterState struct {
  6034  	// immutable within a request:
  6035  	stream *http2stream
  6036  	req    *Request
  6037  	body   *http2requestBody // to close at end of request, if DATA frames didn't
  6038  	conn   *http2serverConn
  6039  
  6040  	// TODO: adjust buffer writing sizes based on server config, frame size updates from peer, etc
  6041  	bw *bufio.Writer // writing to a chunkWriter{this *responseWriterState}
  6042  
  6043  	// mutated by http.Handler goroutine:
  6044  	handlerHeader Header   // nil until called
  6045  	snapHeader    Header   // snapshot of handlerHeader at WriteHeader time
  6046  	trailers      []string // set in writeChunk
  6047  	status        int      // status code passed to WriteHeader
  6048  	wroteHeader   bool     // WriteHeader called (explicitly or implicitly). Not necessarily sent to user yet.
  6049  	sentHeader    bool     // have we sent the header frame?
  6050  	handlerDone   bool     // handler has finished
  6051  	dirty         bool     // a Write failed; don't reuse this responseWriterState
  6052  
  6053  	sentContentLen int64 // non-zero if handler set a Content-Length header
  6054  	wroteBytes     int64
  6055  
  6056  	closeNotifierMu sync.Mutex // guards closeNotifierCh
  6057  	closeNotifierCh chan bool  // nil until first used
  6058  }
  6059  
  6060  type http2chunkWriter struct{ rws *http2responseWriterState }
  6061  
  6062  func (cw http2chunkWriter) Write(p []byte) (n int, err error) { return cw.rws.writeChunk(p) }
  6063  
  6064  func (rws *http2responseWriterState) hasTrailers() bool { return len(rws.trailers) > 0 }
  6065  
  6066  func (rws *http2responseWriterState) hasNonemptyTrailers() bool {
  6067  	for _, trailer := range rws.trailers {
  6068  		if _, ok := rws.handlerHeader[trailer]; ok {
  6069  			return true
  6070  		}
  6071  	}
  6072  	return false
  6073  }
  6074  
  6075  // declareTrailer is called for each Trailer header when the
  6076  // response header is written. It notes that a header will need to be
  6077  // written in the trailers at the end of the response.
  6078  func (rws *http2responseWriterState) declareTrailer(k string) {
  6079  	k = CanonicalHeaderKey(k)
  6080  	if !httpguts.ValidTrailerHeader(k) {
  6081  		// Forbidden by RFC 7230, section 4.1.2.
  6082  		rws.conn.logf("ignoring invalid trailer %q", k)
  6083  		return
  6084  	}
  6085  	if !http2strSliceContains(rws.trailers, k) {
  6086  		rws.trailers = append(rws.trailers, k)
  6087  	}
  6088  }
  6089  
  6090  // writeChunk writes chunks from the bufio.Writer. But because
  6091  // bufio.Writer may bypass its chunking, sometimes p may be
  6092  // arbitrarily large.
  6093  //
  6094  // writeChunk is also responsible (on the first chunk) for sending the
  6095  // HEADER response.
  6096  func (rws *http2responseWriterState) writeChunk(p []byte) (n int, err error) {
  6097  	if !rws.wroteHeader {
  6098  		rws.writeHeader(200)
  6099  	}
  6100  
  6101  	isHeadResp := rws.req.Method == "HEAD"
  6102  	if !rws.sentHeader {
  6103  		rws.sentHeader = true
  6104  		var ctype, clen string
  6105  		if clen = rws.snapHeader.Get("Content-Length"); clen != "" {
  6106  			rws.snapHeader.Del("Content-Length")
  6107  			if cl, err := strconv.ParseUint(clen, 10, 63); err == nil {
  6108  				rws.sentContentLen = int64(cl)
  6109  			} else {
  6110  				clen = ""
  6111  			}
  6112  		}
  6113  		if clen == "" && rws.handlerDone && http2bodyAllowedForStatus(rws.status) && (len(p) > 0 || !isHeadResp) {
  6114  			clen = strconv.Itoa(len(p))
  6115  		}
  6116  		_, hasContentType := rws.snapHeader["Content-Type"]
  6117  		// If the Content-Encoding is non-blank, we shouldn't
  6118  		// sniff the body. See Issue golang.org/issue/31753.
  6119  		ce := rws.snapHeader.Get("Content-Encoding")
  6120  		hasCE := len(ce) > 0
  6121  		if !hasCE && !hasContentType && http2bodyAllowedForStatus(rws.status) && len(p) > 0 {
  6122  			ctype = DetectContentType(p)
  6123  		}
  6124  		var date string
  6125  		if _, ok := rws.snapHeader["Date"]; !ok {
  6126  			// TODO(bradfitz): be faster here, like net/http? measure.
  6127  			date = time.Now().UTC().Format(TimeFormat)
  6128  		}
  6129  
  6130  		for _, v := range rws.snapHeader["Trailer"] {
  6131  			http2foreachHeaderElement(v, rws.declareTrailer)
  6132  		}
  6133  
  6134  		// "Connection" headers aren't allowed in HTTP/2 (RFC 7540, 8.1.2.2),
  6135  		// but respect "Connection" == "close" to mean sending a GOAWAY and tearing
  6136  		// down the TCP connection when idle, like we do for HTTP/1.
  6137  		// TODO: remove more Connection-specific header fields here, in addition
  6138  		// to "Connection".
  6139  		if _, ok := rws.snapHeader["Connection"]; ok {
  6140  			v := rws.snapHeader.Get("Connection")
  6141  			delete(rws.snapHeader, "Connection")
  6142  			if v == "close" {
  6143  				rws.conn.startGracefulShutdown()
  6144  			}
  6145  		}
  6146  
  6147  		endStream := (rws.handlerDone && !rws.hasTrailers() && len(p) == 0) || isHeadResp
  6148  		err = rws.conn.writeHeaders(rws.stream, &http2writeResHeaders{
  6149  			streamID:      rws.stream.id,
  6150  			httpResCode:   rws.status,
  6151  			h:             rws.snapHeader,
  6152  			endStream:     endStream,
  6153  			contentType:   ctype,
  6154  			contentLength: clen,
  6155  			date:          date,
  6156  		})
  6157  		if err != nil {
  6158  			rws.dirty = true
  6159  			return 0, err
  6160  		}
  6161  		if endStream {
  6162  			return 0, nil
  6163  		}
  6164  	}
  6165  	if isHeadResp {
  6166  		return len(p), nil
  6167  	}
  6168  	if len(p) == 0 && !rws.handlerDone {
  6169  		return 0, nil
  6170  	}
  6171  
  6172  	if rws.handlerDone {
  6173  		rws.promoteUndeclaredTrailers()
  6174  	}
  6175  
  6176  	// only send trailers if they have actually been defined by the
  6177  	// server handler.
  6178  	hasNonemptyTrailers := rws.hasNonemptyTrailers()
  6179  	endStream := rws.handlerDone && !hasNonemptyTrailers
  6180  	if len(p) > 0 || endStream {
  6181  		// only send a 0 byte DATA frame if we're ending the stream.
  6182  		if err := rws.conn.writeDataFromHandler(rws.stream, p, endStream); err != nil {
  6183  			rws.dirty = true
  6184  			return 0, err
  6185  		}
  6186  	}
  6187  
  6188  	if rws.handlerDone && hasNonemptyTrailers {
  6189  		err = rws.conn.writeHeaders(rws.stream, &http2writeResHeaders{
  6190  			streamID:  rws.stream.id,
  6191  			h:         rws.handlerHeader,
  6192  			trailers:  rws.trailers,
  6193  			endStream: true,
  6194  		})
  6195  		if err != nil {
  6196  			rws.dirty = true
  6197  		}
  6198  		return len(p), err
  6199  	}
  6200  	return len(p), nil
  6201  }
  6202  
  6203  // TrailerPrefix is a magic prefix for ResponseWriter.Header map keys
  6204  // that, if present, signals that the map entry is actually for
  6205  // the response trailers, and not the response headers. The prefix
  6206  // is stripped after the ServeHTTP call finishes and the values are
  6207  // sent in the trailers.
  6208  //
  6209  // This mechanism is intended only for trailers that are not known
  6210  // prior to the headers being written. If the set of trailers is fixed
  6211  // or known before the header is written, the normal Go trailers mechanism
  6212  // is preferred:
  6213  //    https://golang.org/pkg/net/http/#ResponseWriter
  6214  //    https://golang.org/pkg/net/http/#example_ResponseWriter_trailers
  6215  const http2TrailerPrefix = "Trailer:"
  6216  
  6217  // promoteUndeclaredTrailers permits http.Handlers to set trailers
  6218  // after the header has already been flushed. Because the Go
  6219  // ResponseWriter interface has no way to set Trailers (only the
  6220  // Header), and because we didn't want to expand the ResponseWriter
  6221  // interface, and because nobody used trailers, and because RFC 7230
  6222  // says you SHOULD (but not must) predeclare any trailers in the
  6223  // header, the official ResponseWriter rules said trailers in Go must
  6224  // be predeclared, and then we reuse the same ResponseWriter.Header()
  6225  // map to mean both Headers and Trailers. When it's time to write the
  6226  // Trailers, we pick out the fields of Headers that were declared as
  6227  // trailers. That worked for a while, until we found the first major
  6228  // user of Trailers in the wild: gRPC (using them only over http2),
  6229  // and gRPC libraries permit setting trailers mid-stream without
  6230  // predeclaring them. So: change of plans. We still permit the old
  6231  // way, but we also permit this hack: if a Header() key begins with
  6232  // "Trailer:", the suffix of that key is a Trailer. Because ':' is an
  6233  // invalid token byte anyway, there is no ambiguity. (And it's already
  6234  // filtered out) It's mildly hacky, but not terrible.
  6235  //
  6236  // This method runs after the Handler is done and promotes any Header
  6237  // fields to be trailers.
  6238  func (rws *http2responseWriterState) promoteUndeclaredTrailers() {
  6239  	for k, vv := range rws.handlerHeader {
  6240  		if !strings.HasPrefix(k, http2TrailerPrefix) {
  6241  			continue
  6242  		}
  6243  		trailerKey := strings.TrimPrefix(k, http2TrailerPrefix)
  6244  		rws.declareTrailer(trailerKey)
  6245  		rws.handlerHeader[CanonicalHeaderKey(trailerKey)] = vv
  6246  	}
  6247  
  6248  	if len(rws.trailers) > 1 {
  6249  		sorter := http2sorterPool.Get().(*http2sorter)
  6250  		sorter.SortStrings(rws.trailers)
  6251  		http2sorterPool.Put(sorter)
  6252  	}
  6253  }
  6254  
  6255  func (w *http2responseWriter) Flush() {
  6256  	rws := w.rws
  6257  	if rws == nil {
  6258  		panic("Header called after Handler finished")
  6259  	}
  6260  	if rws.bw.Buffered() > 0 {
  6261  		if err := rws.bw.Flush(); err != nil {
  6262  			// Ignore the error. The frame writer already knows.
  6263  			return
  6264  		}
  6265  	} else {
  6266  		// The bufio.Writer won't call chunkWriter.Write
  6267  		// (writeChunk with zero bytes, so we have to do it
  6268  		// ourselves to force the HTTP response header and/or
  6269  		// final DATA frame (with END_STREAM) to be sent.
  6270  		rws.writeChunk(nil)
  6271  	}
  6272  }
  6273  
  6274  func (w *http2responseWriter) CloseNotify() <-chan bool {
  6275  	rws := w.rws
  6276  	if rws == nil {
  6277  		panic("CloseNotify called after Handler finished")
  6278  	}
  6279  	rws.closeNotifierMu.Lock()
  6280  	ch := rws.closeNotifierCh
  6281  	if ch == nil {
  6282  		ch = make(chan bool, 1)
  6283  		rws.closeNotifierCh = ch
  6284  		cw := rws.stream.cw
  6285  		go func() {
  6286  			cw.Wait() // wait for close
  6287  			ch <- true
  6288  		}()
  6289  	}
  6290  	rws.closeNotifierMu.Unlock()
  6291  	return ch
  6292  }
  6293  
  6294  func (w *http2responseWriter) Header() Header {
  6295  	rws := w.rws
  6296  	if rws == nil {
  6297  		panic("Header called after Handler finished")
  6298  	}
  6299  	if rws.handlerHeader == nil {
  6300  		rws.handlerHeader = make(Header)
  6301  	}
  6302  	return rws.handlerHeader
  6303  }
  6304  
  6305  // checkWriteHeaderCode is a copy of net/http's checkWriteHeaderCode.
  6306  func http2checkWriteHeaderCode(code int) {
  6307  	// Issue 22880: require valid WriteHeader status codes.
  6308  	// For now we only enforce that it's three digits.
  6309  	// In the future we might block things over 599 (600 and above aren't defined
  6310  	// at http://httpwg.org/specs/rfc7231.html#status.codes)
  6311  	// and we might block under 200 (once we have more mature 1xx support).
  6312  	// But for now any three digits.
  6313  	//
  6314  	// We used to send "HTTP/1.1 000 0" on the wire in responses but there's
  6315  	// no equivalent bogus thing we can realistically send in HTTP/2,
  6316  	// so we'll consistently panic instead and help people find their bugs
  6317  	// early. (We can't return an error from WriteHeader even if we wanted to.)
  6318  	if code < 100 || code > 999 {
  6319  		panic(fmt.Sprintf("invalid WriteHeader code %v", code))
  6320  	}
  6321  }
  6322  
  6323  func (w *http2responseWriter) WriteHeader(code int) {
  6324  	rws := w.rws
  6325  	if rws == nil {
  6326  		panic("WriteHeader called after Handler finished")
  6327  	}
  6328  	rws.writeHeader(code)
  6329  }
  6330  
  6331  func (rws *http2responseWriterState) writeHeader(code int) {
  6332  	if !rws.wroteHeader {
  6333  		http2checkWriteHeaderCode(code)
  6334  		rws.wroteHeader = true
  6335  		rws.status = code
  6336  		if len(rws.handlerHeader) > 0 {
  6337  			rws.snapHeader = http2cloneHeader(rws.handlerHeader)
  6338  		}
  6339  	}
  6340  }
  6341  
  6342  func http2cloneHeader(h Header) Header {
  6343  	h2 := make(Header, len(h))
  6344  	for k, vv := range h {
  6345  		vv2 := make([]string, len(vv))
  6346  		copy(vv2, vv)
  6347  		h2[k] = vv2
  6348  	}
  6349  	return h2
  6350  }
  6351  
  6352  // The Life Of A Write is like this:
  6353  //
  6354  // * Handler calls w.Write or w.WriteString ->
  6355  // * -> rws.bw (*bufio.Writer) ->
  6356  // * (Handler might call Flush)
  6357  // * -> chunkWriter{rws}
  6358  // * -> responseWriterState.writeChunk(p []byte)
  6359  // * -> responseWriterState.writeChunk (most of the magic; see comment there)
  6360  func (w *http2responseWriter) Write(p []byte) (n int, err error) {
  6361  	return w.write(len(p), p, "")
  6362  }
  6363  
  6364  func (w *http2responseWriter) WriteString(s string) (n int, err error) {
  6365  	return w.write(len(s), nil, s)
  6366  }
  6367  
  6368  // either dataB or dataS is non-zero.
  6369  func (w *http2responseWriter) write(lenData int, dataB []byte, dataS string) (n int, err error) {
  6370  	rws := w.rws
  6371  	if rws == nil {
  6372  		panic("Write called after Handler finished")
  6373  	}
  6374  	if !rws.wroteHeader {
  6375  		w.WriteHeader(200)
  6376  	}
  6377  	if !http2bodyAllowedForStatus(rws.status) {
  6378  		return 0, ErrBodyNotAllowed
  6379  	}
  6380  	rws.wroteBytes += int64(len(dataB)) + int64(len(dataS)) // only one can be set
  6381  	if rws.sentContentLen != 0 && rws.wroteBytes > rws.sentContentLen {
  6382  		// TODO: send a RST_STREAM
  6383  		return 0, errors.New("http2: handler wrote more than declared Content-Length")
  6384  	}
  6385  
  6386  	if dataB != nil {
  6387  		return rws.bw.Write(dataB)
  6388  	} else {
  6389  		return rws.bw.WriteString(dataS)
  6390  	}
  6391  }
  6392  
  6393  func (w *http2responseWriter) handlerDone() {
  6394  	rws := w.rws
  6395  	dirty := rws.dirty
  6396  	rws.handlerDone = true
  6397  	w.Flush()
  6398  	w.rws = nil
  6399  	if !dirty {
  6400  		// Only recycle the pool if all prior Write calls to
  6401  		// the serverConn goroutine completed successfully. If
  6402  		// they returned earlier due to resets from the peer
  6403  		// there might still be write goroutines outstanding
  6404  		// from the serverConn referencing the rws memory. See
  6405  		// issue 20704.
  6406  		http2responseWriterStatePool.Put(rws)
  6407  	}
  6408  }
  6409  
  6410  // Push errors.
  6411  var (
  6412  	http2ErrRecursivePush    = errors.New("http2: recursive push not allowed")
  6413  	http2ErrPushLimitReached = errors.New("http2: push would exceed peer's SETTINGS_MAX_CONCURRENT_STREAMS")
  6414  )
  6415  
  6416  var _ Pusher = (*http2responseWriter)(nil)
  6417  
  6418  func (w *http2responseWriter) Push(target string, opts *PushOptions) error {
  6419  	st := w.rws.stream
  6420  	sc := st.sc
  6421  	sc.serveG.checkNotOn()
  6422  
  6423  	// No recursive pushes: "PUSH_PROMISE frames MUST only be sent on a peer-initiated stream."
  6424  	// http://tools.ietf.org/html/rfc7540#section-6.6
  6425  	if st.isPushed() {
  6426  		return http2ErrRecursivePush
  6427  	}
  6428  
  6429  	if opts == nil {
  6430  		opts = new(PushOptions)
  6431  	}
  6432  
  6433  	// Default options.
  6434  	if opts.Method == "" {
  6435  		opts.Method = "GET"
  6436  	}
  6437  	if opts.Header == nil {
  6438  		opts.Header = Header{}
  6439  	}
  6440  	wantScheme := "http"
  6441  	if w.rws.req.TLS != nil {
  6442  		wantScheme = "https"
  6443  	}
  6444  
  6445  	// Validate the request.
  6446  	u, err := url.Parse(target)
  6447  	if err != nil {
  6448  		return err
  6449  	}
  6450  	if u.Scheme == "" {
  6451  		if !strings.HasPrefix(target, "/") {
  6452  			return fmt.Errorf("target must be an absolute URL or an absolute path: %q", target)
  6453  		}
  6454  		u.Scheme = wantScheme
  6455  		u.Host = w.rws.req.Host
  6456  	} else {
  6457  		if u.Scheme != wantScheme {
  6458  			return fmt.Errorf("cannot push URL with scheme %q from request with scheme %q", u.Scheme, wantScheme)
  6459  		}
  6460  		if u.Host == "" {
  6461  			return errors.New("URL must have a host")
  6462  		}
  6463  	}
  6464  	for k := range opts.Header {
  6465  		if strings.HasPrefix(k, ":") {
  6466  			return fmt.Errorf("promised request headers cannot include pseudo header %q", k)
  6467  		}
  6468  		// These headers are meaningful only if the request has a body,
  6469  		// but PUSH_PROMISE requests cannot have a body.
  6470  		// http://tools.ietf.org/html/rfc7540#section-8.2
  6471  		// Also disallow Host, since the promised URL must be absolute.
  6472  		if http2asciiEqualFold(k, "content-length") ||
  6473  			http2asciiEqualFold(k, "content-encoding") ||
  6474  			http2asciiEqualFold(k, "trailer") ||
  6475  			http2asciiEqualFold(k, "te") ||
  6476  			http2asciiEqualFold(k, "expect") ||
  6477  			http2asciiEqualFold(k, "host") {
  6478  			return fmt.Errorf("promised request headers cannot include %q", k)
  6479  		}
  6480  	}
  6481  	if err := http2checkValidHTTP2RequestHeaders(opts.Header); err != nil {
  6482  		return err
  6483  	}
  6484  
  6485  	// The RFC effectively limits promised requests to GET and HEAD:
  6486  	// "Promised requests MUST be cacheable [GET, HEAD, or POST], and MUST be safe [GET or HEAD]"
  6487  	// http://tools.ietf.org/html/rfc7540#section-8.2
  6488  	if opts.Method != "GET" && opts.Method != "HEAD" {
  6489  		return fmt.Errorf("method %q must be GET or HEAD", opts.Method)
  6490  	}
  6491  
  6492  	msg := &http2startPushRequest{
  6493  		parent: st,
  6494  		method: opts.Method,
  6495  		url:    u,
  6496  		header: http2cloneHeader(opts.Header),
  6497  		done:   http2errChanPool.Get().(chan error),
  6498  	}
  6499  
  6500  	select {
  6501  	case <-sc.doneServing:
  6502  		return http2errClientDisconnected
  6503  	case <-st.cw:
  6504  		return http2errStreamClosed
  6505  	case sc.serveMsgCh <- msg:
  6506  	}
  6507  
  6508  	select {
  6509  	case <-sc.doneServing:
  6510  		return http2errClientDisconnected
  6511  	case <-st.cw:
  6512  		return http2errStreamClosed
  6513  	case err := <-msg.done:
  6514  		http2errChanPool.Put(msg.done)
  6515  		return err
  6516  	}
  6517  }
  6518  
  6519  type http2startPushRequest struct {
  6520  	parent *http2stream
  6521  	method string
  6522  	url    *url.URL
  6523  	header Header
  6524  	done   chan error
  6525  }
  6526  
  6527  func (sc *http2serverConn) startPush(msg *http2startPushRequest) {
  6528  	sc.serveG.check()
  6529  
  6530  	// http://tools.ietf.org/html/rfc7540#section-6.6.
  6531  	// PUSH_PROMISE frames MUST only be sent on a peer-initiated stream that
  6532  	// is in either the "open" or "half-closed (remote)" state.
  6533  	if msg.parent.state != http2stateOpen && msg.parent.state != http2stateHalfClosedRemote {
  6534  		// responseWriter.Push checks that the stream is peer-initiated.
  6535  		msg.done <- http2errStreamClosed
  6536  		return
  6537  	}
  6538  
  6539  	// http://tools.ietf.org/html/rfc7540#section-6.6.
  6540  	if !sc.pushEnabled {
  6541  		msg.done <- ErrNotSupported
  6542  		return
  6543  	}
  6544  
  6545  	// PUSH_PROMISE frames must be sent in increasing order by stream ID, so
  6546  	// we allocate an ID for the promised stream lazily, when the PUSH_PROMISE
  6547  	// is written. Once the ID is allocated, we start the request handler.
  6548  	allocatePromisedID := func() (uint32, error) {
  6549  		sc.serveG.check()
  6550  
  6551  		// Check this again, just in case. Technically, we might have received
  6552  		// an updated SETTINGS by the time we got around to writing this frame.
  6553  		if !sc.pushEnabled {
  6554  			return 0, ErrNotSupported
  6555  		}
  6556  		// http://tools.ietf.org/html/rfc7540#section-6.5.2.
  6557  		if sc.curPushedStreams+1 > sc.clientMaxStreams {
  6558  			return 0, http2ErrPushLimitReached
  6559  		}
  6560  
  6561  		// http://tools.ietf.org/html/rfc7540#section-5.1.1.
  6562  		// Streams initiated by the server MUST use even-numbered identifiers.
  6563  		// A server that is unable to establish a new stream identifier can send a GOAWAY
  6564  		// frame so that the client is forced to open a new connection for new streams.
  6565  		if sc.maxPushPromiseID+2 >= 1<<31 {
  6566  			sc.startGracefulShutdownInternal()
  6567  			return 0, http2ErrPushLimitReached
  6568  		}
  6569  		sc.maxPushPromiseID += 2
  6570  		promisedID := sc.maxPushPromiseID
  6571  
  6572  		// http://tools.ietf.org/html/rfc7540#section-8.2.
  6573  		// Strictly speaking, the new stream should start in "reserved (local)", then
  6574  		// transition to "half closed (remote)" after sending the initial HEADERS, but
  6575  		// we start in "half closed (remote)" for simplicity.
  6576  		// See further comments at the definition of stateHalfClosedRemote.
  6577  		promised := sc.newStream(promisedID, msg.parent.id, http2stateHalfClosedRemote)
  6578  		rw, req, err := sc.newWriterAndRequestNoBody(promised, http2requestParam{
  6579  			method:    msg.method,
  6580  			scheme:    msg.url.Scheme,
  6581  			authority: msg.url.Host,
  6582  			path:      msg.url.RequestURI(),
  6583  			header:    http2cloneHeader(msg.header), // clone since handler runs concurrently with writing the PUSH_PROMISE
  6584  		})
  6585  		if err != nil {
  6586  			// Should not happen, since we've already validated msg.url.
  6587  			panic(fmt.Sprintf("newWriterAndRequestNoBody(%+v): %v", msg.url, err))
  6588  		}
  6589  
  6590  		go sc.runHandler(rw, req, sc.handler.ServeHTTP)
  6591  		return promisedID, nil
  6592  	}
  6593  
  6594  	sc.writeFrame(http2FrameWriteRequest{
  6595  		write: &http2writePushPromise{
  6596  			streamID:           msg.parent.id,
  6597  			method:             msg.method,
  6598  			url:                msg.url,
  6599  			h:                  msg.header,
  6600  			allocatePromisedID: allocatePromisedID,
  6601  		},
  6602  		stream: msg.parent,
  6603  		done:   msg.done,
  6604  	})
  6605  }
  6606  
  6607  // foreachHeaderElement splits v according to the "#rule" construction
  6608  // in RFC 7230 section 7 and calls fn for each non-empty element.
  6609  func http2foreachHeaderElement(v string, fn func(string)) {
  6610  	v = textproto.TrimString(v)
  6611  	if v == "" {
  6612  		return
  6613  	}
  6614  	if !strings.Contains(v, ",") {
  6615  		fn(v)
  6616  		return
  6617  	}
  6618  	for _, f := range strings.Split(v, ",") {
  6619  		if f = textproto.TrimString(f); f != "" {
  6620  			fn(f)
  6621  		}
  6622  	}
  6623  }
  6624  
  6625  // From http://httpwg.org/specs/rfc7540.html#rfc.section.8.1.2.2
  6626  var http2connHeaders = []string{
  6627  	"Connection",
  6628  	"Keep-Alive",
  6629  	"Proxy-Connection",
  6630  	"Transfer-Encoding",
  6631  	"Upgrade",
  6632  }
  6633  
  6634  // checkValidHTTP2RequestHeaders checks whether h is a valid HTTP/2 request,
  6635  // per RFC 7540 Section 8.1.2.2.
  6636  // The returned error is reported to users.
  6637  func http2checkValidHTTP2RequestHeaders(h Header) error {
  6638  	for _, k := range http2connHeaders {
  6639  		if _, ok := h[k]; ok {
  6640  			return fmt.Errorf("request header %q is not valid in HTTP/2", k)
  6641  		}
  6642  	}
  6643  	te := h["Te"]
  6644  	if len(te) > 0 && (len(te) > 1 || (te[0] != "trailers" && te[0] != "")) {
  6645  		return errors.New(`request header "TE" may only be "trailers" in HTTP/2`)
  6646  	}
  6647  	return nil
  6648  }
  6649  
  6650  func http2new400Handler(err error) HandlerFunc {
  6651  	return func(w ResponseWriter, r *Request) {
  6652  		Error(w, err.Error(), StatusBadRequest)
  6653  	}
  6654  }
  6655  
  6656  // h1ServerKeepAlivesDisabled reports whether hs has its keep-alives
  6657  // disabled. See comments on h1ServerShutdownChan above for why
  6658  // the code is written this way.
  6659  func http2h1ServerKeepAlivesDisabled(hs *Server) bool {
  6660  	var x interface{} = hs
  6661  	type I interface {
  6662  		doKeepAlives() bool
  6663  	}
  6664  	if hs, ok := x.(I); ok {
  6665  		return !hs.doKeepAlives()
  6666  	}
  6667  	return false
  6668  }
  6669  
  6670  const (
  6671  	// transportDefaultConnFlow is how many connection-level flow control
  6672  	// tokens we give the server at start-up, past the default 64k.
  6673  	http2transportDefaultConnFlow = 1 << 30
  6674  
  6675  	// transportDefaultStreamFlow is how many stream-level flow
  6676  	// control tokens we announce to the peer, and how many bytes
  6677  	// we buffer per stream.
  6678  	http2transportDefaultStreamFlow = 4 << 20
  6679  
  6680  	// transportDefaultStreamMinRefresh is the minimum number of bytes we'll send
  6681  	// a stream-level WINDOW_UPDATE for at a time.
  6682  	http2transportDefaultStreamMinRefresh = 4 << 10
  6683  
  6684  	http2defaultUserAgent = "Go-http-client/2.0"
  6685  
  6686  	// initialMaxConcurrentStreams is a connections maxConcurrentStreams until
  6687  	// it's received servers initial SETTINGS frame, which corresponds with the
  6688  	// spec's minimum recommended value.
  6689  	http2initialMaxConcurrentStreams = 100
  6690  
  6691  	// defaultMaxConcurrentStreams is a connections default maxConcurrentStreams
  6692  	// if the server doesn't include one in its initial SETTINGS frame.
  6693  	http2defaultMaxConcurrentStreams = 1000
  6694  )
  6695  
  6696  // Transport is an HTTP/2 Transport.
  6697  //
  6698  // A Transport internally caches connections to servers. It is safe
  6699  // for concurrent use by multiple goroutines.
  6700  type http2Transport struct {
  6701  	// DialTLS specifies an optional dial function for creating
  6702  	// TLS connections for requests.
  6703  	//
  6704  	// If DialTLS is nil, tls.Dial is used.
  6705  	//
  6706  	// If the returned net.Conn has a ConnectionState method like tls.Conn,
  6707  	// it will be used to set http.Response.TLS.
  6708  	DialTLS func(network, addr string, cfg *tls.Config) (net.Conn, error)
  6709  
  6710  	// TLSClientConfig specifies the TLS configuration to use with
  6711  	// tls.Client. If nil, the default configuration is used.
  6712  	TLSClientConfig *tls.Config
  6713  
  6714  	// ConnPool optionally specifies an alternate connection pool to use.
  6715  	// If nil, the default is used.
  6716  	ConnPool http2ClientConnPool
  6717  
  6718  	// DisableCompression, if true, prevents the Transport from
  6719  	// requesting compression with an "Accept-Encoding: gzip"
  6720  	// request header when the Request contains no existing
  6721  	// Accept-Encoding value. If the Transport requests gzip on
  6722  	// its own and gets a gzipped response, it's transparently
  6723  	// decoded in the Response.Body. However, if the user
  6724  	// explicitly requested gzip it is not automatically
  6725  	// uncompressed.
  6726  	DisableCompression bool
  6727  
  6728  	// AllowHTTP, if true, permits HTTP/2 requests using the insecure,
  6729  	// plain-text "http" scheme. Note that this does not enable h2c support.
  6730  	AllowHTTP bool
  6731  
  6732  	// MaxHeaderListSize is the http2 SETTINGS_MAX_HEADER_LIST_SIZE to
  6733  	// send in the initial settings frame. It is how many bytes
  6734  	// of response headers are allowed. Unlike the http2 spec, zero here
  6735  	// means to use a default limit (currently 10MB). If you actually
  6736  	// want to advertise an unlimited value to the peer, Transport
  6737  	// interprets the highest possible value here (0xffffffff or 1<<32-1)
  6738  	// to mean no limit.
  6739  	MaxHeaderListSize uint32
  6740  
  6741  	// StrictMaxConcurrentStreams controls whether the server's
  6742  	// SETTINGS_MAX_CONCURRENT_STREAMS should be respected
  6743  	// globally. If false, new TCP connections are created to the
  6744  	// server as needed to keep each under the per-connection
  6745  	// SETTINGS_MAX_CONCURRENT_STREAMS limit. If true, the
  6746  	// server's SETTINGS_MAX_CONCURRENT_STREAMS is interpreted as
  6747  	// a global limit and callers of RoundTrip block when needed,
  6748  	// waiting for their turn.
  6749  	StrictMaxConcurrentStreams bool
  6750  
  6751  	// ReadIdleTimeout is the timeout after which a health check using ping
  6752  	// frame will be carried out if no frame is received on the connection.
  6753  	// Note that a ping response will is considered a received frame, so if
  6754  	// there is no other traffic on the connection, the health check will
  6755  	// be performed every ReadIdleTimeout interval.
  6756  	// If zero, no health check is performed.
  6757  	ReadIdleTimeout time.Duration
  6758  
  6759  	// PingTimeout is the timeout after which the connection will be closed
  6760  	// if a response to Ping is not received.
  6761  	// Defaults to 15s.
  6762  	PingTimeout time.Duration
  6763  
  6764  	// t1, if non-nil, is the standard library Transport using
  6765  	// this transport. Its settings are used (but not its
  6766  	// RoundTrip method, etc).
  6767  	t1 *Transport
  6768  
  6769  	connPoolOnce  sync.Once
  6770  	connPoolOrDef http2ClientConnPool // non-nil version of ConnPool
  6771  }
  6772  
  6773  func (t *http2Transport) maxHeaderListSize() uint32 {
  6774  	if t.MaxHeaderListSize == 0 {
  6775  		return 10 << 20
  6776  	}
  6777  	if t.MaxHeaderListSize == 0xffffffff {
  6778  		return 0
  6779  	}
  6780  	return t.MaxHeaderListSize
  6781  }
  6782  
  6783  func (t *http2Transport) disableCompression() bool {
  6784  	return t.DisableCompression || (t.t1 != nil && t.t1.DisableCompression)
  6785  }
  6786  
  6787  func (t *http2Transport) pingTimeout() time.Duration {
  6788  	if t.PingTimeout == 0 {
  6789  		return 15 * time.Second
  6790  	}
  6791  	return t.PingTimeout
  6792  
  6793  }
  6794  
  6795  // ConfigureTransport configures a net/http HTTP/1 Transport to use HTTP/2.
  6796  // It returns an error if t1 has already been HTTP/2-enabled.
  6797  //
  6798  // Use ConfigureTransports instead to configure the HTTP/2 Transport.
  6799  func http2ConfigureTransport(t1 *Transport) error {
  6800  	_, err := http2ConfigureTransports(t1)
  6801  	return err
  6802  }
  6803  
  6804  // ConfigureTransports configures a net/http HTTP/1 Transport to use HTTP/2.
  6805  // It returns a new HTTP/2 Transport for further configuration.
  6806  // It returns an error if t1 has already been HTTP/2-enabled.
  6807  func http2ConfigureTransports(t1 *Transport) (*http2Transport, error) {
  6808  	return http2configureTransports(t1)
  6809  }
  6810  
  6811  func http2configureTransports(t1 *Transport) (*http2Transport, error) {
  6812  	connPool := new(http2clientConnPool)
  6813  	t2 := &http2Transport{
  6814  		ConnPool: http2noDialClientConnPool{connPool},
  6815  		t1:       t1,
  6816  	}
  6817  	connPool.t = t2
  6818  	if err := http2registerHTTPSProtocol(t1, http2noDialH2RoundTripper{t2}); err != nil {
  6819  		return nil, err
  6820  	}
  6821  	if t1.TLSClientConfig == nil {
  6822  		t1.TLSClientConfig = new(tls.Config)
  6823  	}
  6824  	if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "h2") {
  6825  		t1.TLSClientConfig.NextProtos = append([]string{"h2"}, t1.TLSClientConfig.NextProtos...)
  6826  	}
  6827  	if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "http/1.1") {
  6828  		t1.TLSClientConfig.NextProtos = append(t1.TLSClientConfig.NextProtos, "http/1.1")
  6829  	}
  6830  	upgradeFn := func(authority string, c *tls.Conn) RoundTripper {
  6831  		addr := http2authorityAddr("https", authority)
  6832  		if used, err := connPool.addConnIfNeeded(addr, t2, c); err != nil {
  6833  			go c.Close()
  6834  			return http2erringRoundTripper{err}
  6835  		} else if !used {
  6836  			// Turns out we don't need this c.
  6837  			// For example, two goroutines made requests to the same host
  6838  			// at the same time, both kicking off TCP dials. (since protocol
  6839  			// was unknown)
  6840  			go c.Close()
  6841  		}
  6842  		return t2
  6843  	}
  6844  	if m := t1.TLSNextProto; len(m) == 0 {
  6845  		t1.TLSNextProto = map[string]func(string, *tls.Conn) RoundTripper{
  6846  			"h2": upgradeFn,
  6847  		}
  6848  	} else {
  6849  		m["h2"] = upgradeFn
  6850  	}
  6851  	return t2, nil
  6852  }
  6853  
  6854  func (t *http2Transport) connPool() http2ClientConnPool {
  6855  	t.connPoolOnce.Do(t.initConnPool)
  6856  	return t.connPoolOrDef
  6857  }
  6858  
  6859  func (t *http2Transport) initConnPool() {
  6860  	if t.ConnPool != nil {
  6861  		t.connPoolOrDef = t.ConnPool
  6862  	} else {
  6863  		t.connPoolOrDef = &http2clientConnPool{t: t}
  6864  	}
  6865  }
  6866  
  6867  // ClientConn is the state of a single HTTP/2 client connection to an
  6868  // HTTP/2 server.
  6869  type http2ClientConn struct {
  6870  	t             *http2Transport
  6871  	tconn         net.Conn             // usually *tls.Conn, except specialized impls
  6872  	tlsState      *tls.ConnectionState // nil only for specialized impls
  6873  	reused        uint32               // whether conn is being reused; atomic
  6874  	singleUse     bool                 // whether being used for a single http.Request
  6875  	getConnCalled bool                 // used by clientConnPool
  6876  
  6877  	// readLoop goroutine fields:
  6878  	readerDone chan struct{} // closed on error
  6879  	readerErr  error         // set before readerDone is closed
  6880  
  6881  	idleTimeout time.Duration // or 0 for never
  6882  	idleTimer   *time.Timer
  6883  
  6884  	mu              sync.Mutex // guards following
  6885  	cond            *sync.Cond // hold mu; broadcast on flow/closed changes
  6886  	flow            http2flow  // our conn-level flow control quota (cs.flow is per stream)
  6887  	inflow          http2flow  // peer's conn-level flow control
  6888  	doNotReuse      bool       // whether conn is marked to not be reused for any future requests
  6889  	closing         bool
  6890  	closed          bool
  6891  	seenSettings    bool                          // true if we've seen a settings frame, false otherwise
  6892  	wantSettingsAck bool                          // we sent a SETTINGS frame and haven't heard back
  6893  	goAway          *http2GoAwayFrame             // if non-nil, the GoAwayFrame we received
  6894  	goAwayDebug     string                        // goAway frame's debug data, retained as a string
  6895  	streams         map[uint32]*http2clientStream // client-initiated
  6896  	streamsReserved int                           // incr by ReserveNewRequest; decr on RoundTrip
  6897  	nextStreamID    uint32
  6898  	pendingRequests int                       // requests blocked and waiting to be sent because len(streams) == maxConcurrentStreams
  6899  	pings           map[[8]byte]chan struct{} // in flight ping data to notification channel
  6900  	br              *bufio.Reader
  6901  	lastActive      time.Time
  6902  	lastIdle        time.Time // time last idle
  6903  	// Settings from peer: (also guarded by wmu)
  6904  	maxFrameSize          uint32
  6905  	maxConcurrentStreams  uint32
  6906  	peerMaxHeaderListSize uint64
  6907  	initialWindowSize     uint32
  6908  
  6909  	// reqHeaderMu is a 1-element semaphore channel controlling access to sending new requests.
  6910  	// Write to reqHeaderMu to lock it, read from it to unlock.
  6911  	// Lock reqmu BEFORE mu or wmu.
  6912  	reqHeaderMu chan struct{}
  6913  
  6914  	// wmu is held while writing.
  6915  	// Acquire BEFORE mu when holding both, to avoid blocking mu on network writes.
  6916  	// Only acquire both at the same time when changing peer settings.
  6917  	wmu  sync.Mutex
  6918  	bw   *bufio.Writer
  6919  	fr   *http2Framer
  6920  	werr error        // first write error that has occurred
  6921  	hbuf bytes.Buffer // HPACK encoder writes into this
  6922  	henc *hpack.Encoder
  6923  }
  6924  
  6925  // clientStream is the state for a single HTTP/2 stream. One of these
  6926  // is created for each Transport.RoundTrip call.
  6927  type http2clientStream struct {
  6928  	cc *http2ClientConn
  6929  
  6930  	// Fields of Request that we may access even after the response body is closed.
  6931  	ctx       context.Context
  6932  	reqCancel <-chan struct{}
  6933  
  6934  	trace         *httptrace.ClientTrace // or nil
  6935  	ID            uint32
  6936  	bufPipe       http2pipe // buffered pipe with the flow-controlled response payload
  6937  	requestedGzip bool
  6938  	isHead        bool
  6939  
  6940  	abortOnce sync.Once
  6941  	abort     chan struct{} // closed to signal stream should end immediately
  6942  	abortErr  error         // set if abort is closed
  6943  
  6944  	peerClosed chan struct{} // closed when the peer sends an END_STREAM flag
  6945  	donec      chan struct{} // closed after the stream is in the closed state
  6946  	on100      chan struct{} // buffered; written to if a 100 is received
  6947  
  6948  	respHeaderRecv chan struct{} // closed when headers are received
  6949  	res            *Response     // set if respHeaderRecv is closed
  6950  
  6951  	flow        http2flow // guarded by cc.mu
  6952  	inflow      http2flow // guarded by cc.mu
  6953  	bytesRemain int64     // -1 means unknown; owned by transportResponseBody.Read
  6954  	readErr     error     // sticky read error; owned by transportResponseBody.Read
  6955  
  6956  	reqBody              io.ReadCloser
  6957  	reqBodyContentLength int64 // -1 means unknown
  6958  	reqBodyClosed        bool  // body has been closed; guarded by cc.mu
  6959  
  6960  	// owned by writeRequest:
  6961  	sentEndStream bool // sent an END_STREAM flag to the peer
  6962  	sentHeaders   bool
  6963  
  6964  	// owned by clientConnReadLoop:
  6965  	firstByte    bool  // got the first response byte
  6966  	pastHeaders  bool  // got first MetaHeadersFrame (actual headers)
  6967  	pastTrailers bool  // got optional second MetaHeadersFrame (trailers)
  6968  	num1xx       uint8 // number of 1xx responses seen
  6969  	readClosed   bool  // peer sent an END_STREAM flag
  6970  	readAborted  bool  // read loop reset the stream
  6971  
  6972  	trailer    Header  // accumulated trailers
  6973  	resTrailer *Header // client's Response.Trailer
  6974  }
  6975  
  6976  var http2got1xxFuncForTests func(int, textproto.MIMEHeader) error
  6977  
  6978  // get1xxTraceFunc returns the value of request's httptrace.ClientTrace.Got1xxResponse func,
  6979  // if any. It returns nil if not set or if the Go version is too old.
  6980  func (cs *http2clientStream) get1xxTraceFunc() func(int, textproto.MIMEHeader) error {
  6981  	if fn := http2got1xxFuncForTests; fn != nil {
  6982  		return fn
  6983  	}
  6984  	return http2traceGot1xxResponseFunc(cs.trace)
  6985  }
  6986  
  6987  func (cs *http2clientStream) abortStream(err error) {
  6988  	cs.cc.mu.Lock()
  6989  	defer cs.cc.mu.Unlock()
  6990  	cs.abortStreamLocked(err)
  6991  }
  6992  
  6993  func (cs *http2clientStream) abortStreamLocked(err error) {
  6994  	cs.abortOnce.Do(func() {
  6995  		cs.abortErr = err
  6996  		close(cs.abort)
  6997  	})
  6998  	if cs.reqBody != nil && !cs.reqBodyClosed {
  6999  		cs.reqBody.Close()
  7000  		cs.reqBodyClosed = true
  7001  	}
  7002  	// TODO(dneil): Clean up tests where cs.cc.cond is nil.
  7003  	if cs.cc.cond != nil {
  7004  		// Wake up writeRequestBody if it is waiting on flow control.
  7005  		cs.cc.cond.Broadcast()
  7006  	}
  7007  }
  7008  
  7009  func (cs *http2clientStream) abortRequestBodyWrite() {
  7010  	cc := cs.cc
  7011  	cc.mu.Lock()
  7012  	defer cc.mu.Unlock()
  7013  	if cs.reqBody != nil && !cs.reqBodyClosed {
  7014  		cs.reqBody.Close()
  7015  		cs.reqBodyClosed = true
  7016  		cc.cond.Broadcast()
  7017  	}
  7018  }
  7019  
  7020  type http2stickyErrWriter struct {
  7021  	w   io.Writer
  7022  	err *error
  7023  }
  7024  
  7025  func (sew http2stickyErrWriter) Write(p []byte) (n int, err error) {
  7026  	if *sew.err != nil {
  7027  		return 0, *sew.err
  7028  	}
  7029  	n, err = sew.w.Write(p)
  7030  	*sew.err = err
  7031  	return
  7032  }
  7033  
  7034  // noCachedConnError is the concrete type of ErrNoCachedConn, which
  7035  // needs to be detected by net/http regardless of whether it's its
  7036  // bundled version (in h2_bundle.go with a rewritten type name) or
  7037  // from a user's x/net/http2. As such, as it has a unique method name
  7038  // (IsHTTP2NoCachedConnError) that net/http sniffs for via func
  7039  // isNoCachedConnError.
  7040  type http2noCachedConnError struct{}
  7041  
  7042  func (http2noCachedConnError) IsHTTP2NoCachedConnError() {}
  7043  
  7044  func (http2noCachedConnError) Error() string { return "http2: no cached connection was available" }
  7045  
  7046  // isNoCachedConnError reports whether err is of type noCachedConnError
  7047  // or its equivalent renamed type in net/http2's h2_bundle.go. Both types
  7048  // may coexist in the same running program.
  7049  func http2isNoCachedConnError(err error) bool {
  7050  	_, ok := err.(interface{ IsHTTP2NoCachedConnError() })
  7051  	return ok
  7052  }
  7053  
  7054  var http2ErrNoCachedConn error = http2noCachedConnError{}
  7055  
  7056  // RoundTripOpt are options for the Transport.RoundTripOpt method.
  7057  type http2RoundTripOpt struct {
  7058  	// OnlyCachedConn controls whether RoundTripOpt may
  7059  	// create a new TCP connection. If set true and
  7060  	// no cached connection is available, RoundTripOpt
  7061  	// will return ErrNoCachedConn.
  7062  	OnlyCachedConn bool
  7063  }
  7064  
  7065  func (t *http2Transport) RoundTrip(req *Request) (*Response, error) {
  7066  	return t.RoundTripOpt(req, http2RoundTripOpt{})
  7067  }
  7068  
  7069  // authorityAddr returns a given authority (a host/IP, or host:port / ip:port)
  7070  // and returns a host:port. The port 443 is added if needed.
  7071  func http2authorityAddr(scheme string, authority string) (addr string) {
  7072  	host, port, err := net.SplitHostPort(authority)
  7073  	if err != nil { // authority didn't have a port
  7074  		port = "443"
  7075  		if scheme == "http" {
  7076  			port = "80"
  7077  		}
  7078  		host = authority
  7079  	}
  7080  	if a, err := idna.ToASCII(host); err == nil {
  7081  		host = a
  7082  	}
  7083  	// IPv6 address literal, without a port:
  7084  	if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") {
  7085  		return host + ":" + port
  7086  	}
  7087  	return net.JoinHostPort(host, port)
  7088  }
  7089  
  7090  // RoundTripOpt is like RoundTrip, but takes options.
  7091  func (t *http2Transport) RoundTripOpt(req *Request, opt http2RoundTripOpt) (*Response, error) {
  7092  	if !(req.URL.Scheme == "https" || (req.URL.Scheme == "http" && t.AllowHTTP)) {
  7093  		return nil, errors.New("http2: unsupported scheme")
  7094  	}
  7095  
  7096  	addr := http2authorityAddr(req.URL.Scheme, req.URL.Host)
  7097  	for retry := 0; ; retry++ {
  7098  		cc, err := t.connPool().GetClientConn(req, addr)
  7099  		if err != nil {
  7100  			t.vlogf("http2: Transport failed to get client conn for %s: %v", addr, err)
  7101  			return nil, err
  7102  		}
  7103  		reused := !atomic.CompareAndSwapUint32(&cc.reused, 0, 1)
  7104  		http2traceGotConn(req, cc, reused)
  7105  		res, err := cc.RoundTrip(req)
  7106  		if err != nil && retry <= 6 {
  7107  			if req, err = http2shouldRetryRequest(req, err); err == nil {
  7108  				// After the first retry, do exponential backoff with 10% jitter.
  7109  				if retry == 0 {
  7110  					continue
  7111  				}
  7112  				backoff := float64(uint(1) << (uint(retry) - 1))
  7113  				backoff += backoff * (0.1 * mathrand.Float64())
  7114  				select {
  7115  				case <-time.After(time.Second * time.Duration(backoff)):
  7116  					continue
  7117  				case <-req.Context().Done():
  7118  					err = req.Context().Err()
  7119  				}
  7120  			}
  7121  		}
  7122  		if err != nil {
  7123  			t.vlogf("RoundTrip failure: %v", err)
  7124  			return nil, err
  7125  		}
  7126  		return res, nil
  7127  	}
  7128  }
  7129  
  7130  // CloseIdleConnections closes any connections which were previously
  7131  // connected from previous requests but are now sitting idle.
  7132  // It does not interrupt any connections currently in use.
  7133  func (t *http2Transport) CloseIdleConnections() {
  7134  	if cp, ok := t.connPool().(http2clientConnPoolIdleCloser); ok {
  7135  		cp.closeIdleConnections()
  7136  	}
  7137  }
  7138  
  7139  var (
  7140  	http2errClientConnClosed    = errors.New("http2: client conn is closed")
  7141  	http2errClientConnUnusable  = errors.New("http2: client conn not usable")
  7142  	http2errClientConnGotGoAway = errors.New("http2: Transport received Server's graceful shutdown GOAWAY")
  7143  )
  7144  
  7145  // shouldRetryRequest is called by RoundTrip when a request fails to get
  7146  // response headers. It is always called with a non-nil error.
  7147  // It returns either a request to retry (either the same request, or a
  7148  // modified clone), or an error if the request can't be replayed.
  7149  func http2shouldRetryRequest(req *Request, err error) (*Request, error) {
  7150  	if !http2canRetryError(err) {
  7151  		return nil, err
  7152  	}
  7153  	// If the Body is nil (or http.NoBody), it's safe to reuse
  7154  	// this request and its Body.
  7155  	if req.Body == nil || req.Body == NoBody {
  7156  		return req, nil
  7157  	}
  7158  
  7159  	// If the request body can be reset back to its original
  7160  	// state via the optional req.GetBody, do that.
  7161  	if req.GetBody != nil {
  7162  		body, err := req.GetBody()
  7163  		if err != nil {
  7164  			return nil, err
  7165  		}
  7166  		newReq := *req
  7167  		newReq.Body = body
  7168  		return &newReq, nil
  7169  	}
  7170  
  7171  	// The Request.Body can't reset back to the beginning, but we
  7172  	// don't seem to have started to read from it yet, so reuse
  7173  	// the request directly.
  7174  	if err == http2errClientConnUnusable {
  7175  		return req, nil
  7176  	}
  7177  
  7178  	return nil, fmt.Errorf("http2: Transport: cannot retry err [%v] after Request.Body was written; define Request.GetBody to avoid this error", err)
  7179  }
  7180  
  7181  func http2canRetryError(err error) bool {
  7182  	if err == http2errClientConnUnusable || err == http2errClientConnGotGoAway {
  7183  		return true
  7184  	}
  7185  	if se, ok := err.(http2StreamError); ok {
  7186  		if se.Code == http2ErrCodeProtocol && se.Cause == http2errFromPeer {
  7187  			// See golang/go#47635, golang/go#42777
  7188  			return true
  7189  		}
  7190  		return se.Code == http2ErrCodeRefusedStream
  7191  	}
  7192  	return false
  7193  }
  7194  
  7195  func (t *http2Transport) dialClientConn(ctx context.Context, addr string, singleUse bool) (*http2ClientConn, error) {
  7196  	host, _, err := net.SplitHostPort(addr)
  7197  	if err != nil {
  7198  		return nil, err
  7199  	}
  7200  	tconn, err := t.dialTLS(ctx)("tcp", addr, t.newTLSConfig(host))
  7201  	if err != nil {
  7202  		return nil, err
  7203  	}
  7204  	return t.newClientConn(tconn, singleUse)
  7205  }
  7206  
  7207  func (t *http2Transport) newTLSConfig(host string) *tls.Config {
  7208  	cfg := new(tls.Config)
  7209  	if t.TLSClientConfig != nil {
  7210  		*cfg = *t.TLSClientConfig.Clone()
  7211  	}
  7212  	if !http2strSliceContains(cfg.NextProtos, http2NextProtoTLS) {
  7213  		cfg.NextProtos = append([]string{http2NextProtoTLS}, cfg.NextProtos...)
  7214  	}
  7215  	if cfg.ServerName == "" {
  7216  		cfg.ServerName = host
  7217  	}
  7218  	return cfg
  7219  }
  7220  
  7221  func (t *http2Transport) dialTLS(ctx context.Context) func(string, string, *tls.Config) (net.Conn, error) {
  7222  	if t.DialTLS != nil {
  7223  		return t.DialTLS
  7224  	}
  7225  	return func(network, addr string, cfg *tls.Config) (net.Conn, error) {
  7226  		tlsCn, err := t.dialTLSWithContext(ctx, network, addr, cfg)
  7227  		if err != nil {
  7228  			return nil, err
  7229  		}
  7230  		state := tlsCn.ConnectionState()
  7231  		if p := state.NegotiatedProtocol; p != http2NextProtoTLS {
  7232  			return nil, fmt.Errorf("http2: unexpected ALPN protocol %q; want %q", p, http2NextProtoTLS)
  7233  		}
  7234  		if !state.NegotiatedProtocolIsMutual {
  7235  			return nil, errors.New("http2: could not negotiate protocol mutually")
  7236  		}
  7237  		return tlsCn, nil
  7238  	}
  7239  }
  7240  
  7241  // disableKeepAlives reports whether connections should be closed as
  7242  // soon as possible after handling the first request.
  7243  func (t *http2Transport) disableKeepAlives() bool {
  7244  	return t.t1 != nil && t.t1.DisableKeepAlives
  7245  }
  7246  
  7247  func (t *http2Transport) expectContinueTimeout() time.Duration {
  7248  	if t.t1 == nil {
  7249  		return 0
  7250  	}
  7251  	return t.t1.ExpectContinueTimeout
  7252  }
  7253  
  7254  func (t *http2Transport) NewClientConn(c net.Conn) (*http2ClientConn, error) {
  7255  	return t.newClientConn(c, t.disableKeepAlives())
  7256  }
  7257  
  7258  func (t *http2Transport) newClientConn(c net.Conn, singleUse bool) (*http2ClientConn, error) {
  7259  	cc := &http2ClientConn{
  7260  		t:                     t,
  7261  		tconn:                 c,
  7262  		readerDone:            make(chan struct{}),
  7263  		nextStreamID:          1,
  7264  		maxFrameSize:          16 << 10,                         // spec default
  7265  		initialWindowSize:     65535,                            // spec default
  7266  		maxConcurrentStreams:  http2initialMaxConcurrentStreams, // "infinite", per spec. Use a smaller value until we have received server settings.
  7267  		peerMaxHeaderListSize: 0xffffffffffffffff,               // "infinite", per spec. Use 2^64-1 instead.
  7268  		streams:               make(map[uint32]*http2clientStream),
  7269  		singleUse:             singleUse,
  7270  		wantSettingsAck:       true,
  7271  		pings:                 make(map[[8]byte]chan struct{}),
  7272  		reqHeaderMu:           make(chan struct{}, 1),
  7273  	}
  7274  	if d := t.idleConnTimeout(); d != 0 {
  7275  		cc.idleTimeout = d
  7276  		cc.idleTimer = time.AfterFunc(d, cc.onIdleTimeout)
  7277  	}
  7278  	if http2VerboseLogs {
  7279  		t.vlogf("http2: Transport creating client conn %p to %v", cc, c.RemoteAddr())
  7280  	}
  7281  
  7282  	cc.cond = sync.NewCond(&cc.mu)
  7283  	cc.flow.add(int32(http2initialWindowSize))
  7284  
  7285  	// TODO: adjust this writer size to account for frame size +
  7286  	// MTU + crypto/tls record padding.
  7287  	cc.bw = bufio.NewWriter(http2stickyErrWriter{c, &cc.werr})
  7288  	cc.br = bufio.NewReader(c)
  7289  	cc.fr = http2NewFramer(cc.bw, cc.br)
  7290  	cc.fr.ReadMetaHeaders = hpack.NewDecoder(http2initialHeaderTableSize, nil)
  7291  	cc.fr.MaxHeaderListSize = t.maxHeaderListSize()
  7292  
  7293  	// TODO: SetMaxDynamicTableSize, SetMaxDynamicTableSizeLimit on
  7294  	// henc in response to SETTINGS frames?
  7295  	cc.henc = hpack.NewEncoder(&cc.hbuf)
  7296  
  7297  	if t.AllowHTTP {
  7298  		cc.nextStreamID = 3
  7299  	}
  7300  
  7301  	if cs, ok := c.(http2connectionStater); ok {
  7302  		state := cs.ConnectionState()
  7303  		cc.tlsState = &state
  7304  	}
  7305  
  7306  	initialSettings := []http2Setting{
  7307  		{ID: http2SettingEnablePush, Val: 0},
  7308  		{ID: http2SettingInitialWindowSize, Val: http2transportDefaultStreamFlow},
  7309  	}
  7310  	if max := t.maxHeaderListSize(); max != 0 {
  7311  		initialSettings = append(initialSettings, http2Setting{ID: http2SettingMaxHeaderListSize, Val: max})
  7312  	}
  7313  
  7314  	cc.bw.Write(http2clientPreface)
  7315  	cc.fr.WriteSettings(initialSettings...)
  7316  	cc.fr.WriteWindowUpdate(0, http2transportDefaultConnFlow)
  7317  	cc.inflow.add(http2transportDefaultConnFlow + http2initialWindowSize)
  7318  	cc.bw.Flush()
  7319  	if cc.werr != nil {
  7320  		cc.Close()
  7321  		return nil, cc.werr
  7322  	}
  7323  
  7324  	go cc.readLoop()
  7325  	return cc, nil
  7326  }
  7327  
  7328  func (cc *http2ClientConn) healthCheck() {
  7329  	pingTimeout := cc.t.pingTimeout()
  7330  	// We don't need to periodically ping in the health check, because the readLoop of ClientConn will
  7331  	// trigger the healthCheck again if there is no frame received.
  7332  	ctx, cancel := context.WithTimeout(context.Background(), pingTimeout)
  7333  	defer cancel()
  7334  	err := cc.Ping(ctx)
  7335  	if err != nil {
  7336  		cc.closeForLostPing()
  7337  		cc.t.connPool().MarkDead(cc)
  7338  		return
  7339  	}
  7340  }
  7341  
  7342  // SetDoNotReuse marks cc as not reusable for future HTTP requests.
  7343  func (cc *http2ClientConn) SetDoNotReuse() {
  7344  	cc.mu.Lock()
  7345  	defer cc.mu.Unlock()
  7346  	cc.doNotReuse = true
  7347  }
  7348  
  7349  func (cc *http2ClientConn) setGoAway(f *http2GoAwayFrame) {
  7350  	cc.mu.Lock()
  7351  	defer cc.mu.Unlock()
  7352  
  7353  	old := cc.goAway
  7354  	cc.goAway = f
  7355  
  7356  	// Merge the previous and current GoAway error frames.
  7357  	if cc.goAwayDebug == "" {
  7358  		cc.goAwayDebug = string(f.DebugData())
  7359  	}
  7360  	if old != nil && old.ErrCode != http2ErrCodeNo {
  7361  		cc.goAway.ErrCode = old.ErrCode
  7362  	}
  7363  	last := f.LastStreamID
  7364  	for streamID, cs := range cc.streams {
  7365  		if streamID > last {
  7366  			cs.abortStreamLocked(http2errClientConnGotGoAway)
  7367  		}
  7368  	}
  7369  }
  7370  
  7371  // CanTakeNewRequest reports whether the connection can take a new request,
  7372  // meaning it has not been closed or received or sent a GOAWAY.
  7373  //
  7374  // If the caller is going to immediately make a new request on this
  7375  // connection, use ReserveNewRequest instead.
  7376  func (cc *http2ClientConn) CanTakeNewRequest() bool {
  7377  	cc.mu.Lock()
  7378  	defer cc.mu.Unlock()
  7379  	return cc.canTakeNewRequestLocked()
  7380  }
  7381  
  7382  // ReserveNewRequest is like CanTakeNewRequest but also reserves a
  7383  // concurrent stream in cc. The reservation is decremented on the
  7384  // next call to RoundTrip.
  7385  func (cc *http2ClientConn) ReserveNewRequest() bool {
  7386  	cc.mu.Lock()
  7387  	defer cc.mu.Unlock()
  7388  	if st := cc.idleStateLocked(); !st.canTakeNewRequest {
  7389  		return false
  7390  	}
  7391  	cc.streamsReserved++
  7392  	return true
  7393  }
  7394  
  7395  // clientConnIdleState describes the suitability of a client
  7396  // connection to initiate a new RoundTrip request.
  7397  type http2clientConnIdleState struct {
  7398  	canTakeNewRequest bool
  7399  }
  7400  
  7401  func (cc *http2ClientConn) idleState() http2clientConnIdleState {
  7402  	cc.mu.Lock()
  7403  	defer cc.mu.Unlock()
  7404  	return cc.idleStateLocked()
  7405  }
  7406  
  7407  func (cc *http2ClientConn) idleStateLocked() (st http2clientConnIdleState) {
  7408  	if cc.singleUse && cc.nextStreamID > 1 {
  7409  		return
  7410  	}
  7411  	var maxConcurrentOkay bool
  7412  	if cc.t.StrictMaxConcurrentStreams {
  7413  		// We'll tell the caller we can take a new request to
  7414  		// prevent the caller from dialing a new TCP
  7415  		// connection, but then we'll block later before
  7416  		// writing it.
  7417  		maxConcurrentOkay = true
  7418  	} else {
  7419  		maxConcurrentOkay = int64(len(cc.streams)+cc.streamsReserved+1) <= int64(cc.maxConcurrentStreams)
  7420  	}
  7421  
  7422  	st.canTakeNewRequest = cc.goAway == nil && !cc.closed && !cc.closing && maxConcurrentOkay &&
  7423  		!cc.doNotReuse &&
  7424  		int64(cc.nextStreamID)+2*int64(cc.pendingRequests) < math.MaxInt32 &&
  7425  		!cc.tooIdleLocked()
  7426  	return
  7427  }
  7428  
  7429  func (cc *http2ClientConn) canTakeNewRequestLocked() bool {
  7430  	st := cc.idleStateLocked()
  7431  	return st.canTakeNewRequest
  7432  }
  7433  
  7434  // tooIdleLocked reports whether this connection has been been sitting idle
  7435  // for too much wall time.
  7436  func (cc *http2ClientConn) tooIdleLocked() bool {
  7437  	// The Round(0) strips the monontonic clock reading so the
  7438  	// times are compared based on their wall time. We don't want
  7439  	// to reuse a connection that's been sitting idle during
  7440  	// VM/laptop suspend if monotonic time was also frozen.
  7441  	return cc.idleTimeout != 0 && !cc.lastIdle.IsZero() && time.Since(cc.lastIdle.Round(0)) > cc.idleTimeout
  7442  }
  7443  
  7444  // onIdleTimeout is called from a time.AfterFunc goroutine. It will
  7445  // only be called when we're idle, but because we're coming from a new
  7446  // goroutine, there could be a new request coming in at the same time,
  7447  // so this simply calls the synchronized closeIfIdle to shut down this
  7448  // connection. The timer could just call closeIfIdle, but this is more
  7449  // clear.
  7450  func (cc *http2ClientConn) onIdleTimeout() {
  7451  	cc.closeIfIdle()
  7452  }
  7453  
  7454  func (cc *http2ClientConn) closeIfIdle() {
  7455  	cc.mu.Lock()
  7456  	if len(cc.streams) > 0 || cc.streamsReserved > 0 {
  7457  		cc.mu.Unlock()
  7458  		return
  7459  	}
  7460  	cc.closed = true
  7461  	nextID := cc.nextStreamID
  7462  	// TODO: do clients send GOAWAY too? maybe? Just Close:
  7463  	cc.mu.Unlock()
  7464  
  7465  	if http2VerboseLogs {
  7466  		cc.vlogf("http2: Transport closing idle conn %p (forSingleUse=%v, maxStream=%v)", cc, cc.singleUse, nextID-2)
  7467  	}
  7468  	cc.tconn.Close()
  7469  }
  7470  
  7471  func (cc *http2ClientConn) isDoNotReuseAndIdle() bool {
  7472  	cc.mu.Lock()
  7473  	defer cc.mu.Unlock()
  7474  	return cc.doNotReuse && len(cc.streams) == 0
  7475  }
  7476  
  7477  var http2shutdownEnterWaitStateHook = func() {}
  7478  
  7479  // Shutdown gracefully closes the client connection, waiting for running streams to complete.
  7480  func (cc *http2ClientConn) Shutdown(ctx context.Context) error {
  7481  	if err := cc.sendGoAway(); err != nil {
  7482  		return err
  7483  	}
  7484  	// Wait for all in-flight streams to complete or connection to close
  7485  	done := make(chan error, 1)
  7486  	cancelled := false // guarded by cc.mu
  7487  	go func() {
  7488  		cc.mu.Lock()
  7489  		defer cc.mu.Unlock()
  7490  		for {
  7491  			if len(cc.streams) == 0 || cc.closed {
  7492  				cc.closed = true
  7493  				done <- cc.tconn.Close()
  7494  				break
  7495  			}
  7496  			if cancelled {
  7497  				break
  7498  			}
  7499  			cc.cond.Wait()
  7500  		}
  7501  	}()
  7502  	http2shutdownEnterWaitStateHook()
  7503  	select {
  7504  	case err := <-done:
  7505  		return err
  7506  	case <-ctx.Done():
  7507  		cc.mu.Lock()
  7508  		// Free the goroutine above
  7509  		cancelled = true
  7510  		cc.cond.Broadcast()
  7511  		cc.mu.Unlock()
  7512  		return ctx.Err()
  7513  	}
  7514  }
  7515  
  7516  func (cc *http2ClientConn) sendGoAway() error {
  7517  	cc.mu.Lock()
  7518  	closing := cc.closing
  7519  	cc.closing = true
  7520  	maxStreamID := cc.nextStreamID
  7521  	cc.mu.Unlock()
  7522  	if closing {
  7523  		// GOAWAY sent already
  7524  		return nil
  7525  	}
  7526  
  7527  	cc.wmu.Lock()
  7528  	defer cc.wmu.Unlock()
  7529  	// Send a graceful shutdown frame to server
  7530  	if err := cc.fr.WriteGoAway(maxStreamID, http2ErrCodeNo, nil); err != nil {
  7531  		return err
  7532  	}
  7533  	if err := cc.bw.Flush(); err != nil {
  7534  		return err
  7535  	}
  7536  	// Prevent new requests
  7537  	return nil
  7538  }
  7539  
  7540  // closes the client connection immediately. In-flight requests are interrupted.
  7541  // err is sent to streams.
  7542  func (cc *http2ClientConn) closeForError(err error) error {
  7543  	cc.mu.Lock()
  7544  	cc.closed = true
  7545  	for _, cs := range cc.streams {
  7546  		cs.abortStreamLocked(err)
  7547  	}
  7548  	defer cc.cond.Broadcast()
  7549  	defer cc.mu.Unlock()
  7550  	return cc.tconn.Close()
  7551  }
  7552  
  7553  // Close closes the client connection immediately.
  7554  //
  7555  // In-flight requests are interrupted. For a graceful shutdown, use Shutdown instead.
  7556  func (cc *http2ClientConn) Close() error {
  7557  	err := errors.New("http2: client connection force closed via ClientConn.Close")
  7558  	return cc.closeForError(err)
  7559  }
  7560  
  7561  // closes the client connection immediately. In-flight requests are interrupted.
  7562  func (cc *http2ClientConn) closeForLostPing() error {
  7563  	err := errors.New("http2: client connection lost")
  7564  	return cc.closeForError(err)
  7565  }
  7566  
  7567  // errRequestCanceled is a copy of net/http's errRequestCanceled because it's not
  7568  // exported. At least they'll be DeepEqual for h1-vs-h2 comparisons tests.
  7569  var http2errRequestCanceled = errors.New("github.com/hxx258456/ccgo/gmhttp: request canceled")
  7570  
  7571  func http2commaSeparatedTrailers(req *Request) (string, error) {
  7572  	keys := make([]string, 0, len(req.Trailer))
  7573  	for k := range req.Trailer {
  7574  		k = CanonicalHeaderKey(k)
  7575  		switch k {
  7576  		case "Transfer-Encoding", "Trailer", "Content-Length":
  7577  			return "", fmt.Errorf("invalid Trailer key %q", k)
  7578  		}
  7579  		keys = append(keys, k)
  7580  	}
  7581  	if len(keys) > 0 {
  7582  		sort.Strings(keys)
  7583  		return strings.Join(keys, ","), nil
  7584  	}
  7585  	return "", nil
  7586  }
  7587  
  7588  func (cc *http2ClientConn) responseHeaderTimeout() time.Duration {
  7589  	if cc.t.t1 != nil {
  7590  		return cc.t.t1.ResponseHeaderTimeout
  7591  	}
  7592  	// No way to do this (yet?) with just an http2.Transport. Probably
  7593  	// no need. Request.Cancel this is the new way. We only need to support
  7594  	// this for compatibility with the old http.Transport fields when
  7595  	// we're doing transparent http2.
  7596  	return 0
  7597  }
  7598  
  7599  // checkConnHeaders checks whether req has any invalid connection-level headers.
  7600  // per RFC 7540 section 8.1.2.2: Connection-Specific Header Fields.
  7601  // Certain headers are special-cased as okay but not transmitted later.
  7602  func http2checkConnHeaders(req *Request) error {
  7603  	if v := req.Header.Get("Upgrade"); v != "" {
  7604  		return fmt.Errorf("http2: invalid Upgrade request header: %q", req.Header["Upgrade"])
  7605  	}
  7606  	if vv := req.Header["Transfer-Encoding"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && vv[0] != "chunked") {
  7607  		return fmt.Errorf("http2: invalid Transfer-Encoding request header: %q", vv)
  7608  	}
  7609  	if vv := req.Header["Connection"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && !http2asciiEqualFold(vv[0], "close") && !http2asciiEqualFold(vv[0], "keep-alive")) {
  7610  		return fmt.Errorf("http2: invalid Connection request header: %q", vv)
  7611  	}
  7612  	return nil
  7613  }
  7614  
  7615  // actualContentLength returns a sanitized version of
  7616  // req.ContentLength, where 0 actually means zero (not unknown) and -1
  7617  // means unknown.
  7618  func http2actualContentLength(req *Request) int64 {
  7619  	if req.Body == nil || req.Body == NoBody {
  7620  		return 0
  7621  	}
  7622  	if req.ContentLength != 0 {
  7623  		return req.ContentLength
  7624  	}
  7625  	return -1
  7626  }
  7627  
  7628  func (cc *http2ClientConn) decrStreamReservations() {
  7629  	cc.mu.Lock()
  7630  	defer cc.mu.Unlock()
  7631  	cc.decrStreamReservationsLocked()
  7632  }
  7633  
  7634  func (cc *http2ClientConn) decrStreamReservationsLocked() {
  7635  	if cc.streamsReserved > 0 {
  7636  		cc.streamsReserved--
  7637  	}
  7638  }
  7639  
  7640  func (cc *http2ClientConn) RoundTrip(req *Request) (*Response, error) {
  7641  	ctx := req.Context()
  7642  	cs := &http2clientStream{
  7643  		cc:                   cc,
  7644  		ctx:                  ctx,
  7645  		reqCancel:            req.Cancel,
  7646  		isHead:               req.Method == "HEAD",
  7647  		reqBody:              req.Body,
  7648  		reqBodyContentLength: http2actualContentLength(req),
  7649  		trace:                httptrace.ContextClientTrace(ctx),
  7650  		peerClosed:           make(chan struct{}),
  7651  		abort:                make(chan struct{}),
  7652  		respHeaderRecv:       make(chan struct{}),
  7653  		donec:                make(chan struct{}),
  7654  	}
  7655  	go cs.doRequest(req)
  7656  
  7657  	waitDone := func() error {
  7658  		select {
  7659  		case <-cs.donec:
  7660  			return nil
  7661  		case <-ctx.Done():
  7662  			return ctx.Err()
  7663  		case <-cs.reqCancel:
  7664  			return http2errRequestCanceled
  7665  		}
  7666  	}
  7667  
  7668  	handleResponseHeaders := func() (*Response, error) {
  7669  		res := cs.res
  7670  		if res.StatusCode > 299 {
  7671  			// On error or status code 3xx, 4xx, 5xx, etc abort any
  7672  			// ongoing write, assuming that the server doesn't care
  7673  			// about our request body. If the server replied with 1xx or
  7674  			// 2xx, however, then assume the server DOES potentially
  7675  			// want our body (e.g. full-duplex streaming:
  7676  			// golang.org/issue/13444). If it turns out the server
  7677  			// doesn't, they'll RST_STREAM us soon enough. This is a
  7678  			// heuristic to avoid adding knobs to Transport. Hopefully
  7679  			// we can keep it.
  7680  			cs.abortRequestBodyWrite()
  7681  		}
  7682  		res.Request = req
  7683  		res.TLS = cc.tlsState
  7684  		if res.Body == http2noBody && http2actualContentLength(req) == 0 {
  7685  			// If there isn't a request or response body still being
  7686  			// written, then wait for the stream to be closed before
  7687  			// RoundTrip returns.
  7688  			if err := waitDone(); err != nil {
  7689  				return nil, err
  7690  			}
  7691  		}
  7692  		return res, nil
  7693  	}
  7694  
  7695  	for {
  7696  		select {
  7697  		case <-cs.respHeaderRecv:
  7698  			return handleResponseHeaders()
  7699  		case <-cs.abort:
  7700  			select {
  7701  			case <-cs.respHeaderRecv:
  7702  				// If both cs.respHeaderRecv and cs.abort are signaling,
  7703  				// pick respHeaderRecv. The server probably wrote the
  7704  				// response and immediately reset the stream.
  7705  				// golang.org/issue/49645
  7706  				return handleResponseHeaders()
  7707  			default:
  7708  				waitDone()
  7709  				return nil, cs.abortErr
  7710  			}
  7711  		case <-ctx.Done():
  7712  			err := ctx.Err()
  7713  			cs.abortStream(err)
  7714  			return nil, err
  7715  		case <-cs.reqCancel:
  7716  			cs.abortStream(http2errRequestCanceled)
  7717  			return nil, http2errRequestCanceled
  7718  		}
  7719  	}
  7720  }
  7721  
  7722  // writeRequest runs for the duration of the request lifetime.
  7723  //
  7724  // It sends the request and performs post-request cleanup (closing Request.Body, etc.).
  7725  func (cs *http2clientStream) doRequest(req *Request) {
  7726  	err := cs.writeRequest(req)
  7727  	cs.cleanupWriteRequest(err)
  7728  }
  7729  
  7730  // writeRequest sends a request.
  7731  //
  7732  // It returns nil after the request is written, the response read,
  7733  // and the request stream is half-closed by the peer.
  7734  //
  7735  // It returns non-nil if the request ends otherwise.
  7736  // If the returned error is StreamError, the error Code may be used in resetting the stream.
  7737  func (cs *http2clientStream) writeRequest(req *Request) (err error) {
  7738  	cc := cs.cc
  7739  	ctx := cs.ctx
  7740  
  7741  	if err := http2checkConnHeaders(req); err != nil {
  7742  		return err
  7743  	}
  7744  
  7745  	// Acquire the new-request lock by writing to reqHeaderMu.
  7746  	// This lock guards the critical section covering allocating a new stream ID
  7747  	// (requires mu) and creating the stream (requires wmu).
  7748  	if cc.reqHeaderMu == nil {
  7749  		panic("RoundTrip on uninitialized ClientConn") // for tests
  7750  	}
  7751  	select {
  7752  	case cc.reqHeaderMu <- struct{}{}:
  7753  	case <-cs.reqCancel:
  7754  		return http2errRequestCanceled
  7755  	case <-ctx.Done():
  7756  		return ctx.Err()
  7757  	}
  7758  
  7759  	cc.mu.Lock()
  7760  	if cc.idleTimer != nil {
  7761  		cc.idleTimer.Stop()
  7762  	}
  7763  	cc.decrStreamReservationsLocked()
  7764  	if err := cc.awaitOpenSlotForStreamLocked(cs); err != nil {
  7765  		cc.mu.Unlock()
  7766  		<-cc.reqHeaderMu
  7767  		return err
  7768  	}
  7769  	cc.addStreamLocked(cs) // assigns stream ID
  7770  	if http2isConnectionCloseRequest(req) {
  7771  		cc.doNotReuse = true
  7772  	}
  7773  	cc.mu.Unlock()
  7774  
  7775  	// TODO(bradfitz): this is a copy of the logic in net/http. Unify somewhere?
  7776  	if !cc.t.disableCompression() &&
  7777  		req.Header.Get("Accept-Encoding") == "" &&
  7778  		req.Header.Get("Range") == "" &&
  7779  		!cs.isHead {
  7780  		// Request gzip only, not deflate. Deflate is ambiguous and
  7781  		// not as universally supported anyway.
  7782  		// See: https://zlib.net/zlib_faq.html#faq39
  7783  		//
  7784  		// Note that we don't request this for HEAD requests,
  7785  		// due to a bug in nginx:
  7786  		//   http://trac.nginx.org/nginx/ticket/358
  7787  		//   https://golang.org/issue/5522
  7788  		//
  7789  		// We don't request gzip if the request is for a range, since
  7790  		// auto-decoding a portion of a gzipped document will just fail
  7791  		// anyway. See https://golang.org/issue/8923
  7792  		cs.requestedGzip = true
  7793  	}
  7794  
  7795  	continueTimeout := cc.t.expectContinueTimeout()
  7796  	if continueTimeout != 0 {
  7797  		if !httpguts.HeaderValuesContainsToken(req.Header["Expect"], "100-continue") {
  7798  			continueTimeout = 0
  7799  		} else {
  7800  			cs.on100 = make(chan struct{}, 1)
  7801  		}
  7802  	}
  7803  
  7804  	// Past this point (where we send request headers), it is possible for
  7805  	// RoundTrip to return successfully. Since the RoundTrip contract permits
  7806  	// the caller to "mutate or reuse" the Request after closing the Response's Body,
  7807  	// we must take care when referencing the Request from here on.
  7808  	err = cs.encodeAndWriteHeaders(req)
  7809  	<-cc.reqHeaderMu
  7810  	if err != nil {
  7811  		return err
  7812  	}
  7813  
  7814  	hasBody := cs.reqBodyContentLength != 0
  7815  	if !hasBody {
  7816  		cs.sentEndStream = true
  7817  	} else {
  7818  		if continueTimeout != 0 {
  7819  			http2traceWait100Continue(cs.trace)
  7820  			timer := time.NewTimer(continueTimeout)
  7821  			select {
  7822  			case <-timer.C:
  7823  				err = nil
  7824  			case <-cs.on100:
  7825  				err = nil
  7826  			case <-cs.abort:
  7827  				err = cs.abortErr
  7828  			case <-ctx.Done():
  7829  				err = ctx.Err()
  7830  			case <-cs.reqCancel:
  7831  				err = http2errRequestCanceled
  7832  			}
  7833  			timer.Stop()
  7834  			if err != nil {
  7835  				http2traceWroteRequest(cs.trace, err)
  7836  				return err
  7837  			}
  7838  		}
  7839  
  7840  		if err = cs.writeRequestBody(req); err != nil {
  7841  			if err != http2errStopReqBodyWrite {
  7842  				http2traceWroteRequest(cs.trace, err)
  7843  				return err
  7844  			}
  7845  		} else {
  7846  			cs.sentEndStream = true
  7847  		}
  7848  	}
  7849  
  7850  	http2traceWroteRequest(cs.trace, err)
  7851  
  7852  	var respHeaderTimer <-chan time.Time
  7853  	var respHeaderRecv chan struct{}
  7854  	if d := cc.responseHeaderTimeout(); d != 0 {
  7855  		timer := time.NewTimer(d)
  7856  		defer timer.Stop()
  7857  		respHeaderTimer = timer.C
  7858  		respHeaderRecv = cs.respHeaderRecv
  7859  	}
  7860  	// Wait until the peer half-closes its end of the stream,
  7861  	// or until the request is aborted (via context, error, or otherwise),
  7862  	// whichever comes first.
  7863  	for {
  7864  		select {
  7865  		case <-cs.peerClosed:
  7866  			return nil
  7867  		case <-respHeaderTimer:
  7868  			return http2errTimeout
  7869  		case <-respHeaderRecv:
  7870  			respHeaderRecv = nil
  7871  			respHeaderTimer = nil // keep waiting for END_STREAM
  7872  		case <-cs.abort:
  7873  			return cs.abortErr
  7874  		case <-ctx.Done():
  7875  			return ctx.Err()
  7876  		case <-cs.reqCancel:
  7877  			return http2errRequestCanceled
  7878  		}
  7879  	}
  7880  }
  7881  
  7882  func (cs *http2clientStream) encodeAndWriteHeaders(req *Request) error {
  7883  	cc := cs.cc
  7884  	ctx := cs.ctx
  7885  
  7886  	cc.wmu.Lock()
  7887  	defer cc.wmu.Unlock()
  7888  
  7889  	// If the request was canceled while waiting for cc.mu, just quit.
  7890  	select {
  7891  	case <-cs.abort:
  7892  		return cs.abortErr
  7893  	case <-ctx.Done():
  7894  		return ctx.Err()
  7895  	case <-cs.reqCancel:
  7896  		return http2errRequestCanceled
  7897  	default:
  7898  	}
  7899  
  7900  	// Encode headers.
  7901  	//
  7902  	// we send: HEADERS{1}, CONTINUATION{0,} + DATA{0,} (DATA is
  7903  	// sent by writeRequestBody below, along with any Trailers,
  7904  	// again in form HEADERS{1}, CONTINUATION{0,})
  7905  	trailers, err := http2commaSeparatedTrailers(req)
  7906  	if err != nil {
  7907  		return err
  7908  	}
  7909  	hasTrailers := trailers != ""
  7910  	contentLen := http2actualContentLength(req)
  7911  	hasBody := contentLen != 0
  7912  	hdrs, err := cc.encodeHeaders(req, cs.requestedGzip, trailers, contentLen)
  7913  	if err != nil {
  7914  		return err
  7915  	}
  7916  
  7917  	// Write the request.
  7918  	endStream := !hasBody && !hasTrailers
  7919  	cs.sentHeaders = true
  7920  	err = cc.writeHeaders(cs.ID, endStream, int(cc.maxFrameSize), hdrs)
  7921  	http2traceWroteHeaders(cs.trace)
  7922  	return err
  7923  }
  7924  
  7925  // cleanupWriteRequest performs post-request tasks.
  7926  //
  7927  // If err (the result of writeRequest) is non-nil and the stream is not closed,
  7928  // cleanupWriteRequest will send a reset to the peer.
  7929  func (cs *http2clientStream) cleanupWriteRequest(err error) {
  7930  	cc := cs.cc
  7931  
  7932  	if cs.ID == 0 {
  7933  		// We were canceled before creating the stream, so return our reservation.
  7934  		cc.decrStreamReservations()
  7935  	}
  7936  
  7937  	// TODO: write h12Compare test showing whether
  7938  	// Request.Body is closed by the Transport,
  7939  	// and in multiple cases: server replies <=299 and >299
  7940  	// while still writing request body
  7941  	cc.mu.Lock()
  7942  	bodyClosed := cs.reqBodyClosed
  7943  	cs.reqBodyClosed = true
  7944  	cc.mu.Unlock()
  7945  	if !bodyClosed && cs.reqBody != nil {
  7946  		cs.reqBody.Close()
  7947  	}
  7948  
  7949  	if err != nil && cs.sentEndStream {
  7950  		// If the connection is closed immediately after the response is read,
  7951  		// we may be aborted before finishing up here. If the stream was closed
  7952  		// cleanly on both sides, there is no error.
  7953  		select {
  7954  		case <-cs.peerClosed:
  7955  			err = nil
  7956  		default:
  7957  		}
  7958  	}
  7959  	if err != nil {
  7960  		cs.abortStream(err) // possibly redundant, but harmless
  7961  		if cs.sentHeaders {
  7962  			if se, ok := err.(http2StreamError); ok {
  7963  				if se.Cause != http2errFromPeer {
  7964  					cc.writeStreamReset(cs.ID, se.Code, err)
  7965  				}
  7966  			} else {
  7967  				cc.writeStreamReset(cs.ID, http2ErrCodeCancel, err)
  7968  			}
  7969  		}
  7970  		cs.bufPipe.CloseWithError(err) // no-op if already closed
  7971  	} else {
  7972  		if cs.sentHeaders && !cs.sentEndStream {
  7973  			cc.writeStreamReset(cs.ID, http2ErrCodeNo, nil)
  7974  		}
  7975  		cs.bufPipe.CloseWithError(http2errRequestCanceled)
  7976  	}
  7977  	if cs.ID != 0 {
  7978  		cc.forgetStreamID(cs.ID)
  7979  	}
  7980  
  7981  	cc.wmu.Lock()
  7982  	werr := cc.werr
  7983  	cc.wmu.Unlock()
  7984  	if werr != nil {
  7985  		cc.Close()
  7986  	}
  7987  
  7988  	close(cs.donec)
  7989  }
  7990  
  7991  // awaitOpenSlotForStream waits until len(streams) < maxConcurrentStreams.
  7992  // Must hold cc.mu.
  7993  func (cc *http2ClientConn) awaitOpenSlotForStreamLocked(cs *http2clientStream) error {
  7994  	for {
  7995  		cc.lastActive = time.Now()
  7996  		if cc.closed || !cc.canTakeNewRequestLocked() {
  7997  			return http2errClientConnUnusable
  7998  		}
  7999  		cc.lastIdle = time.Time{}
  8000  		if int64(len(cc.streams)) < int64(cc.maxConcurrentStreams) {
  8001  			return nil
  8002  		}
  8003  		cc.pendingRequests++
  8004  		cc.cond.Wait()
  8005  		cc.pendingRequests--
  8006  		select {
  8007  		case <-cs.abort:
  8008  			return cs.abortErr
  8009  		default:
  8010  		}
  8011  	}
  8012  }
  8013  
  8014  // requires cc.wmu be held
  8015  func (cc *http2ClientConn) writeHeaders(streamID uint32, endStream bool, maxFrameSize int, hdrs []byte) error {
  8016  	first := true // first frame written (HEADERS is first, then CONTINUATION)
  8017  	for len(hdrs) > 0 && cc.werr == nil {
  8018  		chunk := hdrs
  8019  		if len(chunk) > maxFrameSize {
  8020  			chunk = chunk[:maxFrameSize]
  8021  		}
  8022  		hdrs = hdrs[len(chunk):]
  8023  		endHeaders := len(hdrs) == 0
  8024  		if first {
  8025  			cc.fr.WriteHeaders(http2HeadersFrameParam{
  8026  				StreamID:      streamID,
  8027  				BlockFragment: chunk,
  8028  				EndStream:     endStream,
  8029  				EndHeaders:    endHeaders,
  8030  			})
  8031  			first = false
  8032  		} else {
  8033  			cc.fr.WriteContinuation(streamID, endHeaders, chunk)
  8034  		}
  8035  	}
  8036  	cc.bw.Flush()
  8037  	return cc.werr
  8038  }
  8039  
  8040  // internal error values; they don't escape to callers
  8041  var (
  8042  	// abort request body write; don't send cancel
  8043  	http2errStopReqBodyWrite = errors.New("http2: aborting request body write")
  8044  
  8045  	// abort request body write, but send stream reset of cancel.
  8046  	http2errStopReqBodyWriteAndCancel = errors.New("http2: canceling request")
  8047  
  8048  	http2errReqBodyTooLong = errors.New("http2: request body larger than specified content length")
  8049  )
  8050  
  8051  // frameScratchBufferLen returns the length of a buffer to use for
  8052  // outgoing request bodies to read/write to/from.
  8053  //
  8054  // It returns max(1, min(peer's advertised max frame size,
  8055  // Request.ContentLength+1, 512KB)).
  8056  func (cs *http2clientStream) frameScratchBufferLen(maxFrameSize int) int {
  8057  	const max = 512 << 10
  8058  	n := int64(maxFrameSize)
  8059  	if n > max {
  8060  		n = max
  8061  	}
  8062  	if cl := cs.reqBodyContentLength; cl != -1 && cl+1 < n {
  8063  		// Add an extra byte past the declared content-length to
  8064  		// give the caller's Request.Body io.Reader a chance to
  8065  		// give us more bytes than they declared, so we can catch it
  8066  		// early.
  8067  		n = cl + 1
  8068  	}
  8069  	if n < 1 {
  8070  		return 1
  8071  	}
  8072  	return int(n) // doesn't truncate; max is 512K
  8073  }
  8074  
  8075  var http2bufPool sync.Pool // of *[]byte
  8076  
  8077  func (cs *http2clientStream) writeRequestBody(req *Request) (err error) {
  8078  	cc := cs.cc
  8079  	body := cs.reqBody
  8080  	sentEnd := false // whether we sent the final DATA frame w/ END_STREAM
  8081  
  8082  	hasTrailers := req.Trailer != nil
  8083  	remainLen := cs.reqBodyContentLength
  8084  	hasContentLen := remainLen != -1
  8085  
  8086  	cc.mu.Lock()
  8087  	maxFrameSize := int(cc.maxFrameSize)
  8088  	cc.mu.Unlock()
  8089  
  8090  	// Scratch buffer for reading into & writing from.
  8091  	scratchLen := cs.frameScratchBufferLen(maxFrameSize)
  8092  	var buf []byte
  8093  	if bp, ok := http2bufPool.Get().(*[]byte); ok && len(*bp) >= scratchLen {
  8094  		defer http2bufPool.Put(bp)
  8095  		buf = *bp
  8096  	} else {
  8097  		buf = make([]byte, scratchLen)
  8098  		defer http2bufPool.Put(&buf)
  8099  	}
  8100  
  8101  	var sawEOF bool
  8102  	for !sawEOF {
  8103  		n, err := body.Read(buf[:len(buf)])
  8104  		if hasContentLen {
  8105  			remainLen -= int64(n)
  8106  			if remainLen == 0 && err == nil {
  8107  				// The request body's Content-Length was predeclared and
  8108  				// we just finished reading it all, but the underlying io.Reader
  8109  				// returned the final chunk with a nil error (which is one of
  8110  				// the two valid things a Reader can do at EOF). Because we'd prefer
  8111  				// to send the END_STREAM bit early, double-check that we're actually
  8112  				// at EOF. Subsequent reads should return (0, EOF) at this point.
  8113  				// If either value is different, we return an error in one of two ways below.
  8114  				var scratch [1]byte
  8115  				var n1 int
  8116  				n1, err = body.Read(scratch[:])
  8117  				remainLen -= int64(n1)
  8118  			}
  8119  			if remainLen < 0 {
  8120  				err = http2errReqBodyTooLong
  8121  				return err
  8122  			}
  8123  		}
  8124  		if err == io.EOF {
  8125  			sawEOF = true
  8126  			err = nil
  8127  		} else if err != nil {
  8128  			return err
  8129  		}
  8130  
  8131  		remain := buf[:n]
  8132  		for len(remain) > 0 && err == nil {
  8133  			var allowed int32
  8134  			allowed, err = cs.awaitFlowControl(len(remain))
  8135  			if err != nil {
  8136  				return err
  8137  			}
  8138  			cc.wmu.Lock()
  8139  			data := remain[:allowed]
  8140  			remain = remain[allowed:]
  8141  			sentEnd = sawEOF && len(remain) == 0 && !hasTrailers
  8142  			err = cc.fr.WriteData(cs.ID, sentEnd, data)
  8143  			if err == nil {
  8144  				// TODO(bradfitz): this flush is for latency, not bandwidth.
  8145  				// Most requests won't need this. Make this opt-in or
  8146  				// opt-out?  Use some heuristic on the body type? Nagel-like
  8147  				// timers?  Based on 'n'? Only last chunk of this for loop,
  8148  				// unless flow control tokens are low? For now, always.
  8149  				// If we change this, see comment below.
  8150  				err = cc.bw.Flush()
  8151  			}
  8152  			cc.wmu.Unlock()
  8153  		}
  8154  		if err != nil {
  8155  			return err
  8156  		}
  8157  	}
  8158  
  8159  	if sentEnd {
  8160  		// Already sent END_STREAM (which implies we have no
  8161  		// trailers) and flushed, because currently all
  8162  		// WriteData frames above get a flush. So we're done.
  8163  		return nil
  8164  	}
  8165  
  8166  	// Since the RoundTrip contract permits the caller to "mutate or reuse"
  8167  	// a request after the Response's Body is closed, verify that this hasn't
  8168  	// happened before accessing the trailers.
  8169  	cc.mu.Lock()
  8170  	trailer := req.Trailer
  8171  	err = cs.abortErr
  8172  	cc.mu.Unlock()
  8173  	if err != nil {
  8174  		return err
  8175  	}
  8176  
  8177  	cc.wmu.Lock()
  8178  	defer cc.wmu.Unlock()
  8179  	var trls []byte
  8180  	if len(trailer) > 0 {
  8181  		trls, err = cc.encodeTrailers(trailer)
  8182  		if err != nil {
  8183  			return err
  8184  		}
  8185  	}
  8186  
  8187  	// Two ways to send END_STREAM: either with trailers, or
  8188  	// with an empty DATA frame.
  8189  	if len(trls) > 0 {
  8190  		err = cc.writeHeaders(cs.ID, true, maxFrameSize, trls)
  8191  	} else {
  8192  		err = cc.fr.WriteData(cs.ID, true, nil)
  8193  	}
  8194  	if ferr := cc.bw.Flush(); ferr != nil && err == nil {
  8195  		err = ferr
  8196  	}
  8197  	return err
  8198  }
  8199  
  8200  // awaitFlowControl waits for [1, min(maxBytes, cc.cs.maxFrameSize)] flow
  8201  // control tokens from the server.
  8202  // It returns either the non-zero number of tokens taken or an error
  8203  // if the stream is dead.
  8204  func (cs *http2clientStream) awaitFlowControl(maxBytes int) (taken int32, err error) {
  8205  	cc := cs.cc
  8206  	ctx := cs.ctx
  8207  	cc.mu.Lock()
  8208  	defer cc.mu.Unlock()
  8209  	for {
  8210  		if cc.closed {
  8211  			return 0, http2errClientConnClosed
  8212  		}
  8213  		if cs.reqBodyClosed {
  8214  			return 0, http2errStopReqBodyWrite
  8215  		}
  8216  		select {
  8217  		case <-cs.abort:
  8218  			return 0, cs.abortErr
  8219  		case <-ctx.Done():
  8220  			return 0, ctx.Err()
  8221  		case <-cs.reqCancel:
  8222  			return 0, http2errRequestCanceled
  8223  		default:
  8224  		}
  8225  		if a := cs.flow.available(); a > 0 {
  8226  			take := a
  8227  			if int(take) > maxBytes {
  8228  
  8229  				take = int32(maxBytes) // can't truncate int; take is int32
  8230  			}
  8231  			if take > int32(cc.maxFrameSize) {
  8232  				take = int32(cc.maxFrameSize)
  8233  			}
  8234  			cs.flow.take(take)
  8235  			return take, nil
  8236  		}
  8237  		cc.cond.Wait()
  8238  	}
  8239  }
  8240  
  8241  var http2errNilRequestURL = errors.New("http2: Request.URI is nil")
  8242  
  8243  // requires cc.wmu be held.
  8244  func (cc *http2ClientConn) encodeHeaders(req *Request, addGzipHeader bool, trailers string, contentLength int64) ([]byte, error) {
  8245  	cc.hbuf.Reset()
  8246  	if req.URL == nil {
  8247  		return nil, http2errNilRequestURL
  8248  	}
  8249  
  8250  	host := req.Host
  8251  	if host == "" {
  8252  		host = req.URL.Host
  8253  	}
  8254  	host, err := httpguts.PunycodeHostPort(host)
  8255  	if err != nil {
  8256  		return nil, err
  8257  	}
  8258  
  8259  	var path string
  8260  	if req.Method != "CONNECT" {
  8261  		path = req.URL.RequestURI()
  8262  		if !http2validPseudoPath(path) {
  8263  			orig := path
  8264  			path = strings.TrimPrefix(path, req.URL.Scheme+"://"+host)
  8265  			if !http2validPseudoPath(path) {
  8266  				if req.URL.Opaque != "" {
  8267  					return nil, fmt.Errorf("invalid request :path %q from URL.Opaque = %q", orig, req.URL.Opaque)
  8268  				} else {
  8269  					return nil, fmt.Errorf("invalid request :path %q", orig)
  8270  				}
  8271  			}
  8272  		}
  8273  	}
  8274  
  8275  	// Check for any invalid headers and return an error before we
  8276  	// potentially pollute our hpack state. (We want to be able to
  8277  	// continue to reuse the hpack encoder for future requests)
  8278  	for k, vv := range req.Header {
  8279  		if !httpguts.ValidHeaderFieldName(k) {
  8280  			return nil, fmt.Errorf("invalid HTTP header name %q", k)
  8281  		}
  8282  		for _, v := range vv {
  8283  			if !httpguts.ValidHeaderFieldValue(v) {
  8284  				return nil, fmt.Errorf("invalid HTTP header value %q for header %q", v, k)
  8285  			}
  8286  		}
  8287  	}
  8288  
  8289  	enumerateHeaders := func(f func(name, value string)) {
  8290  		// 8.1.2.3 Request Pseudo-Header Fields
  8291  		// The :path pseudo-header field includes the path and query parts of the
  8292  		// target URI (the path-absolute production and optionally a '?' character
  8293  		// followed by the query production (see Sections 3.3 and 3.4 of
  8294  		// [RFC3986]).
  8295  		f(":authority", host)
  8296  		m := req.Method
  8297  		if m == "" {
  8298  			m = MethodGet
  8299  		}
  8300  		f(":method", m)
  8301  		if req.Method != "CONNECT" {
  8302  			f(":path", path)
  8303  			f(":scheme", req.URL.Scheme)
  8304  		}
  8305  		if trailers != "" {
  8306  			f("trailer", trailers)
  8307  		}
  8308  
  8309  		var didUA bool
  8310  		for k, vv := range req.Header {
  8311  			if http2asciiEqualFold(k, "host") || http2asciiEqualFold(k, "content-length") {
  8312  				// Host is :authority, already sent.
  8313  				// Content-Length is automatic, set below.
  8314  				continue
  8315  			} else if http2asciiEqualFold(k, "connection") ||
  8316  				http2asciiEqualFold(k, "proxy-connection") ||
  8317  				http2asciiEqualFold(k, "transfer-encoding") ||
  8318  				http2asciiEqualFold(k, "upgrade") ||
  8319  				http2asciiEqualFold(k, "keep-alive") {
  8320  				// Per 8.1.2.2 Connection-Specific Header
  8321  				// Fields, don't send connection-specific
  8322  				// fields. We have already checked if any
  8323  				// are error-worthy so just ignore the rest.
  8324  				continue
  8325  			} else if http2asciiEqualFold(k, "user-agent") {
  8326  				// Match Go's http1 behavior: at most one
  8327  				// User-Agent. If set to nil or empty string,
  8328  				// then omit it. Otherwise if not mentioned,
  8329  				// include the default (below).
  8330  				didUA = true
  8331  				if len(vv) < 1 {
  8332  					continue
  8333  				}
  8334  				vv = vv[:1]
  8335  				if vv[0] == "" {
  8336  					continue
  8337  				}
  8338  			} else if http2asciiEqualFold(k, "cookie") {
  8339  				// Per 8.1.2.5 To allow for better compression efficiency, the
  8340  				// Cookie header field MAY be split into separate header fields,
  8341  				// each with one or more cookie-pairs.
  8342  				for _, v := range vv {
  8343  					for {
  8344  						p := strings.IndexByte(v, ';')
  8345  						if p < 0 {
  8346  							break
  8347  						}
  8348  						f("cookie", v[:p])
  8349  						p++
  8350  						// strip space after semicolon if any.
  8351  						for p+1 <= len(v) && v[p] == ' ' {
  8352  							p++
  8353  						}
  8354  						v = v[p:]
  8355  					}
  8356  					if len(v) > 0 {
  8357  						f("cookie", v)
  8358  					}
  8359  				}
  8360  				continue
  8361  			}
  8362  
  8363  			for _, v := range vv {
  8364  				f(k, v)
  8365  			}
  8366  		}
  8367  		if http2shouldSendReqContentLength(req.Method, contentLength) {
  8368  			f("content-length", strconv.FormatInt(contentLength, 10))
  8369  		}
  8370  		if addGzipHeader {
  8371  			f("accept-encoding", "gzip")
  8372  		}
  8373  		if !didUA {
  8374  			f("user-agent", http2defaultUserAgent)
  8375  		}
  8376  	}
  8377  
  8378  	// Do a first pass over the headers counting bytes to ensure
  8379  	// we don't exceed cc.peerMaxHeaderListSize. This is done as a
  8380  	// separate pass before encoding the headers to prevent
  8381  	// modifying the hpack state.
  8382  	hlSize := uint64(0)
  8383  	enumerateHeaders(func(name, value string) {
  8384  		hf := hpack.HeaderField{Name: name, Value: value}
  8385  		hlSize += uint64(hf.Size())
  8386  	})
  8387  
  8388  	if hlSize > cc.peerMaxHeaderListSize {
  8389  		return nil, http2errRequestHeaderListSize
  8390  	}
  8391  
  8392  	trace := httptrace.ContextClientTrace(req.Context())
  8393  	traceHeaders := http2traceHasWroteHeaderField(trace)
  8394  
  8395  	// Header list size is ok. Write the headers.
  8396  	enumerateHeaders(func(name, value string) {
  8397  		name, ascii := http2asciiToLower(name)
  8398  		if !ascii {
  8399  			// Skip writing invalid headers. Per RFC 7540, Section 8.1.2, header
  8400  			// field names have to be ASCII characters (just as in HTTP/1.x).
  8401  			return
  8402  		}
  8403  		cc.writeHeader(name, value)
  8404  		if traceHeaders {
  8405  			http2traceWroteHeaderField(trace, name, value)
  8406  		}
  8407  	})
  8408  
  8409  	return cc.hbuf.Bytes(), nil
  8410  }
  8411  
  8412  // shouldSendReqContentLength reports whether the http2.Transport should send
  8413  // a "content-length" request header. This logic is basically a copy of the net/http
  8414  // transferWriter.shouldSendContentLength.
  8415  // The contentLength is the corrected contentLength (so 0 means actually 0, not unknown).
  8416  // -1 means unknown.
  8417  func http2shouldSendReqContentLength(method string, contentLength int64) bool {
  8418  	if contentLength > 0 {
  8419  		return true
  8420  	}
  8421  	if contentLength < 0 {
  8422  		return false
  8423  	}
  8424  	// For zero bodies, whether we send a content-length depends on the method.
  8425  	// It also kinda doesn't matter for http2 either way, with END_STREAM.
  8426  	switch method {
  8427  	case "POST", "PUT", "PATCH":
  8428  		return true
  8429  	default:
  8430  		return false
  8431  	}
  8432  }
  8433  
  8434  // requires cc.wmu be held.
  8435  func (cc *http2ClientConn) encodeTrailers(trailer Header) ([]byte, error) {
  8436  	cc.hbuf.Reset()
  8437  
  8438  	hlSize := uint64(0)
  8439  	for k, vv := range trailer {
  8440  		for _, v := range vv {
  8441  			hf := hpack.HeaderField{Name: k, Value: v}
  8442  			hlSize += uint64(hf.Size())
  8443  		}
  8444  	}
  8445  	if hlSize > cc.peerMaxHeaderListSize {
  8446  		return nil, http2errRequestHeaderListSize
  8447  	}
  8448  
  8449  	for k, vv := range trailer {
  8450  		lowKey, ascii := http2asciiToLower(k)
  8451  		if !ascii {
  8452  			// Skip writing invalid headers. Per RFC 7540, Section 8.1.2, header
  8453  			// field names have to be ASCII characters (just as in HTTP/1.x).
  8454  			continue
  8455  		}
  8456  		// Transfer-Encoding, etc.. have already been filtered at the
  8457  		// start of RoundTrip
  8458  		for _, v := range vv {
  8459  			cc.writeHeader(lowKey, v)
  8460  		}
  8461  	}
  8462  	return cc.hbuf.Bytes(), nil
  8463  }
  8464  
  8465  func (cc *http2ClientConn) writeHeader(name, value string) {
  8466  	if http2VerboseLogs {
  8467  		log.Printf("http2: Transport encoding header %q = %q", name, value)
  8468  	}
  8469  	cc.henc.WriteField(hpack.HeaderField{Name: name, Value: value})
  8470  }
  8471  
  8472  type http2resAndError struct {
  8473  	_   http2incomparable
  8474  	res *Response
  8475  	err error
  8476  }
  8477  
  8478  // requires cc.mu be held.
  8479  func (cc *http2ClientConn) addStreamLocked(cs *http2clientStream) {
  8480  	cs.flow.add(int32(cc.initialWindowSize))
  8481  	cs.flow.setConnFlow(&cc.flow)
  8482  	cs.inflow.add(http2transportDefaultStreamFlow)
  8483  	cs.inflow.setConnFlow(&cc.inflow)
  8484  	cs.ID = cc.nextStreamID
  8485  	cc.nextStreamID += 2
  8486  	cc.streams[cs.ID] = cs
  8487  	if cs.ID == 0 {
  8488  		panic("assigned stream ID 0")
  8489  	}
  8490  }
  8491  
  8492  func (cc *http2ClientConn) forgetStreamID(id uint32) {
  8493  	cc.mu.Lock()
  8494  	slen := len(cc.streams)
  8495  	delete(cc.streams, id)
  8496  	if len(cc.streams) != slen-1 {
  8497  		panic("forgetting unknown stream id")
  8498  	}
  8499  	cc.lastActive = time.Now()
  8500  	if len(cc.streams) == 0 && cc.idleTimer != nil {
  8501  		cc.idleTimer.Reset(cc.idleTimeout)
  8502  		cc.lastIdle = time.Now()
  8503  	}
  8504  	// Wake up writeRequestBody via clientStream.awaitFlowControl and
  8505  	// wake up RoundTrip if there is a pending request.
  8506  	cc.cond.Broadcast()
  8507  
  8508  	closeOnIdle := cc.singleUse || cc.doNotReuse || cc.t.disableKeepAlives()
  8509  	if closeOnIdle && cc.streamsReserved == 0 && len(cc.streams) == 0 {
  8510  		if http2VerboseLogs {
  8511  			cc.vlogf("http2: Transport closing idle conn %p (forSingleUse=%v, maxStream=%v)", cc, cc.singleUse, cc.nextStreamID-2)
  8512  		}
  8513  		cc.closed = true
  8514  		defer cc.tconn.Close()
  8515  	}
  8516  
  8517  	cc.mu.Unlock()
  8518  }
  8519  
  8520  // clientConnReadLoop is the state owned by the clientConn's frame-reading readLoop.
  8521  type http2clientConnReadLoop struct {
  8522  	_  http2incomparable
  8523  	cc *http2ClientConn
  8524  }
  8525  
  8526  // readLoop runs in its own goroutine and reads and dispatches frames.
  8527  func (cc *http2ClientConn) readLoop() {
  8528  	rl := &http2clientConnReadLoop{cc: cc}
  8529  	defer rl.cleanup()
  8530  	cc.readerErr = rl.run()
  8531  	if ce, ok := cc.readerErr.(http2ConnectionError); ok {
  8532  		cc.wmu.Lock()
  8533  		cc.fr.WriteGoAway(0, http2ErrCode(ce), nil)
  8534  		cc.wmu.Unlock()
  8535  	}
  8536  }
  8537  
  8538  // GoAwayError is returned by the Transport when the server closes the
  8539  // TCP connection after sending a GOAWAY frame.
  8540  type http2GoAwayError struct {
  8541  	LastStreamID uint32
  8542  	ErrCode      http2ErrCode
  8543  	DebugData    string
  8544  }
  8545  
  8546  func (e http2GoAwayError) Error() string {
  8547  	return fmt.Sprintf("http2: server sent GOAWAY and closed the connection; LastStreamID=%v, ErrCode=%v, debug=%q",
  8548  		e.LastStreamID, e.ErrCode, e.DebugData)
  8549  }
  8550  
  8551  func http2isEOFOrNetReadError(err error) bool {
  8552  	if err == io.EOF {
  8553  		return true
  8554  	}
  8555  	ne, ok := err.(*net.OpError)
  8556  	return ok && ne.Op == "read"
  8557  }
  8558  
  8559  func (rl *http2clientConnReadLoop) cleanup() {
  8560  	cc := rl.cc
  8561  	defer cc.tconn.Close()
  8562  	defer cc.t.connPool().MarkDead(cc)
  8563  	defer close(cc.readerDone)
  8564  
  8565  	if cc.idleTimer != nil {
  8566  		cc.idleTimer.Stop()
  8567  	}
  8568  
  8569  	// Close any response bodies if the server closes prematurely.
  8570  	// TODO: also do this if we've written the headers but not
  8571  	// gotten a response yet.
  8572  	err := cc.readerErr
  8573  	cc.mu.Lock()
  8574  	if cc.goAway != nil && http2isEOFOrNetReadError(err) {
  8575  		err = http2GoAwayError{
  8576  			LastStreamID: cc.goAway.LastStreamID,
  8577  			ErrCode:      cc.goAway.ErrCode,
  8578  			DebugData:    cc.goAwayDebug,
  8579  		}
  8580  	} else if err == io.EOF {
  8581  		err = io.ErrUnexpectedEOF
  8582  	}
  8583  	cc.closed = true
  8584  	for _, cs := range cc.streams {
  8585  		select {
  8586  		case <-cs.peerClosed:
  8587  			// The server closed the stream before closing the conn,
  8588  			// so no need to interrupt it.
  8589  		default:
  8590  			cs.abortStreamLocked(err)
  8591  		}
  8592  	}
  8593  	cc.cond.Broadcast()
  8594  	cc.mu.Unlock()
  8595  }
  8596  
  8597  func (rl *http2clientConnReadLoop) run() error {
  8598  	cc := rl.cc
  8599  	gotSettings := false
  8600  	readIdleTimeout := cc.t.ReadIdleTimeout
  8601  	var t *time.Timer
  8602  	if readIdleTimeout != 0 {
  8603  		t = time.AfterFunc(readIdleTimeout, cc.healthCheck)
  8604  		defer t.Stop()
  8605  	}
  8606  	for {
  8607  		f, err := cc.fr.ReadFrame()
  8608  		if t != nil {
  8609  			t.Reset(readIdleTimeout)
  8610  		}
  8611  		if err != nil {
  8612  			cc.vlogf("http2: Transport readFrame error on conn %p: (%T) %v", cc, err, err)
  8613  		}
  8614  		if se, ok := err.(http2StreamError); ok {
  8615  			if cs := rl.streamByID(se.StreamID); cs != nil {
  8616  				if se.Cause == nil {
  8617  					se.Cause = cc.fr.errDetail
  8618  				}
  8619  				rl.endStreamError(cs, se)
  8620  			}
  8621  			continue
  8622  		} else if err != nil {
  8623  			return err
  8624  		}
  8625  		if http2VerboseLogs {
  8626  			cc.vlogf("http2: Transport received %s", http2summarizeFrame(f))
  8627  		}
  8628  		if !gotSettings {
  8629  			if _, ok := f.(*http2SettingsFrame); !ok {
  8630  				cc.logf("protocol error: received %T before a SETTINGS frame", f)
  8631  				return http2ConnectionError(http2ErrCodeProtocol)
  8632  			}
  8633  			gotSettings = true
  8634  		}
  8635  
  8636  		switch f := f.(type) {
  8637  		case *http2MetaHeadersFrame:
  8638  			err = rl.processHeaders(f)
  8639  		case *http2DataFrame:
  8640  			err = rl.processData(f)
  8641  		case *http2GoAwayFrame:
  8642  			err = rl.processGoAway(f)
  8643  		case *http2RSTStreamFrame:
  8644  			err = rl.processResetStream(f)
  8645  		case *http2SettingsFrame:
  8646  			err = rl.processSettings(f)
  8647  		case *http2PushPromiseFrame:
  8648  			err = rl.processPushPromise(f)
  8649  		case *http2WindowUpdateFrame:
  8650  			err = rl.processWindowUpdate(f)
  8651  		case *http2PingFrame:
  8652  			err = rl.processPing(f)
  8653  		default:
  8654  			cc.logf("Transport: unhandled response frame type %T", f)
  8655  		}
  8656  		if err != nil {
  8657  			if http2VerboseLogs {
  8658  				cc.vlogf("http2: Transport conn %p received error from processing frame %v: %v", cc, http2summarizeFrame(f), err)
  8659  			}
  8660  			return err
  8661  		}
  8662  	}
  8663  }
  8664  
  8665  func (rl *http2clientConnReadLoop) processHeaders(f *http2MetaHeadersFrame) error {
  8666  	cs := rl.streamByID(f.StreamID)
  8667  	if cs == nil {
  8668  		// We'd get here if we canceled a request while the
  8669  		// server had its response still in flight. So if this
  8670  		// was just something we canceled, ignore it.
  8671  		return nil
  8672  	}
  8673  	if cs.readClosed {
  8674  		rl.endStreamError(cs, http2StreamError{
  8675  			StreamID: f.StreamID,
  8676  			Code:     http2ErrCodeProtocol,
  8677  			Cause:    errors.New("protocol error: headers after END_STREAM"),
  8678  		})
  8679  		return nil
  8680  	}
  8681  	if !cs.firstByte {
  8682  		if cs.trace != nil {
  8683  			// TODO(bradfitz): move first response byte earlier,
  8684  			// when we first read the 9 byte header, not waiting
  8685  			// until all the HEADERS+CONTINUATION frames have been
  8686  			// merged. This works for now.
  8687  			http2traceFirstResponseByte(cs.trace)
  8688  		}
  8689  		cs.firstByte = true
  8690  	}
  8691  	if !cs.pastHeaders {
  8692  		cs.pastHeaders = true
  8693  	} else {
  8694  		return rl.processTrailers(cs, f)
  8695  	}
  8696  
  8697  	res, err := rl.handleResponse(cs, f)
  8698  	if err != nil {
  8699  		if _, ok := err.(http2ConnectionError); ok {
  8700  			return err
  8701  		}
  8702  		// Any other error type is a stream error.
  8703  		rl.endStreamError(cs, http2StreamError{
  8704  			StreamID: f.StreamID,
  8705  			Code:     http2ErrCodeProtocol,
  8706  			Cause:    err,
  8707  		})
  8708  		return nil // return nil from process* funcs to keep conn alive
  8709  	}
  8710  	if res == nil {
  8711  		// (nil, nil) special case. See handleResponse docs.
  8712  		return nil
  8713  	}
  8714  	cs.resTrailer = &res.Trailer
  8715  	cs.res = res
  8716  	close(cs.respHeaderRecv)
  8717  	if f.StreamEnded() {
  8718  		rl.endStream(cs)
  8719  	}
  8720  	return nil
  8721  }
  8722  
  8723  // may return error types nil, or ConnectionError. Any other error value
  8724  // is a StreamError of type ErrCodeProtocol. The returned error in that case
  8725  // is the detail.
  8726  //
  8727  // As a special case, handleResponse may return (nil, nil) to skip the
  8728  // frame (currently only used for 1xx responses).
  8729  func (rl *http2clientConnReadLoop) handleResponse(cs *http2clientStream, f *http2MetaHeadersFrame) (*Response, error) {
  8730  	if f.Truncated {
  8731  		return nil, http2errResponseHeaderListSize
  8732  	}
  8733  
  8734  	status := f.PseudoValue("status")
  8735  	if status == "" {
  8736  		return nil, errors.New("malformed response from server: missing status pseudo header")
  8737  	}
  8738  	statusCode, err := strconv.Atoi(status)
  8739  	if err != nil {
  8740  		return nil, errors.New("malformed response from server: malformed non-numeric status pseudo header")
  8741  	}
  8742  
  8743  	regularFields := f.RegularFields()
  8744  	strs := make([]string, len(regularFields))
  8745  	header := make(Header, len(regularFields))
  8746  	res := &Response{
  8747  		Proto:      "HTTP/2.0",
  8748  		ProtoMajor: 2,
  8749  		Header:     header,
  8750  		StatusCode: statusCode,
  8751  		Status:     status + " " + StatusText(statusCode),
  8752  	}
  8753  	for _, hf := range regularFields {
  8754  		key := CanonicalHeaderKey(hf.Name)
  8755  		if key == "Trailer" {
  8756  			t := res.Trailer
  8757  			if t == nil {
  8758  				t = make(Header)
  8759  				res.Trailer = t
  8760  			}
  8761  			http2foreachHeaderElement(hf.Value, func(v string) {
  8762  				t[CanonicalHeaderKey(v)] = nil
  8763  			})
  8764  		} else {
  8765  			vv := header[key]
  8766  			if vv == nil && len(strs) > 0 {
  8767  				// More than likely this will be a single-element key.
  8768  				// Most headers aren't multi-valued.
  8769  				// Set the capacity on strs[0] to 1, so any future append
  8770  				// won't extend the slice into the other strings.
  8771  				vv, strs = strs[:1:1], strs[1:]
  8772  				vv[0] = hf.Value
  8773  				header[key] = vv
  8774  			} else {
  8775  				header[key] = append(vv, hf.Value)
  8776  			}
  8777  		}
  8778  	}
  8779  
  8780  	if statusCode >= 100 && statusCode <= 199 {
  8781  		if f.StreamEnded() {
  8782  			return nil, errors.New("1xx informational response with END_STREAM flag")
  8783  		}
  8784  		cs.num1xx++
  8785  		const max1xxResponses = 5 // arbitrary bound on number of informational responses, same as net/http
  8786  		if cs.num1xx > max1xxResponses {
  8787  			return nil, errors.New("http2: too many 1xx informational responses")
  8788  		}
  8789  		if fn := cs.get1xxTraceFunc(); fn != nil {
  8790  			if err := fn(statusCode, textproto.MIMEHeader(header)); err != nil {
  8791  				return nil, err
  8792  			}
  8793  		}
  8794  		if statusCode == 100 {
  8795  			http2traceGot100Continue(cs.trace)
  8796  			select {
  8797  			case cs.on100 <- struct{}{}:
  8798  			default:
  8799  			}
  8800  		}
  8801  		cs.pastHeaders = false // do it all again
  8802  		return nil, nil
  8803  	}
  8804  
  8805  	res.ContentLength = -1
  8806  	if clens := res.Header["Content-Length"]; len(clens) == 1 {
  8807  		if cl, err := strconv.ParseUint(clens[0], 10, 63); err == nil {
  8808  			res.ContentLength = int64(cl)
  8809  		} else {
  8810  			// TODO: care? unlike http/1, it won't mess up our framing, so it's
  8811  			// more safe smuggling-wise to ignore.
  8812  		}
  8813  	} else if len(clens) > 1 {
  8814  		// TODO: care? unlike http/1, it won't mess up our framing, so it's
  8815  		// more safe smuggling-wise to ignore.
  8816  	} else if f.StreamEnded() && !cs.isHead {
  8817  		res.ContentLength = 0
  8818  	}
  8819  
  8820  	if cs.isHead {
  8821  		res.Body = http2noBody
  8822  		return res, nil
  8823  	}
  8824  
  8825  	if f.StreamEnded() {
  8826  		if res.ContentLength > 0 {
  8827  			res.Body = http2missingBody{}
  8828  		} else {
  8829  			res.Body = http2noBody
  8830  		}
  8831  		return res, nil
  8832  	}
  8833  
  8834  	cs.bufPipe.setBuffer(&http2dataBuffer{expected: res.ContentLength})
  8835  	cs.bytesRemain = res.ContentLength
  8836  	res.Body = http2transportResponseBody{cs}
  8837  
  8838  	if cs.requestedGzip && res.Header.Get("Content-Encoding") == "gzip" {
  8839  		res.Header.Del("Content-Encoding")
  8840  		res.Header.Del("Content-Length")
  8841  		res.ContentLength = -1
  8842  		res.Body = &http2gzipReader{body: res.Body}
  8843  		res.Uncompressed = true
  8844  	}
  8845  	return res, nil
  8846  }
  8847  
  8848  func (rl *http2clientConnReadLoop) processTrailers(cs *http2clientStream, f *http2MetaHeadersFrame) error {
  8849  	if cs.pastTrailers {
  8850  		// Too many HEADERS frames for this stream.
  8851  		return http2ConnectionError(http2ErrCodeProtocol)
  8852  	}
  8853  	cs.pastTrailers = true
  8854  	if !f.StreamEnded() {
  8855  		// We expect that any headers for trailers also
  8856  		// has END_STREAM.
  8857  		return http2ConnectionError(http2ErrCodeProtocol)
  8858  	}
  8859  	if len(f.PseudoFields()) > 0 {
  8860  		// No pseudo header fields are defined for trailers.
  8861  		// TODO: ConnectionError might be overly harsh? Check.
  8862  		return http2ConnectionError(http2ErrCodeProtocol)
  8863  	}
  8864  
  8865  	trailer := make(Header)
  8866  	for _, hf := range f.RegularFields() {
  8867  		key := CanonicalHeaderKey(hf.Name)
  8868  		trailer[key] = append(trailer[key], hf.Value)
  8869  	}
  8870  	cs.trailer = trailer
  8871  
  8872  	rl.endStream(cs)
  8873  	return nil
  8874  }
  8875  
  8876  // transportResponseBody is the concrete type of Transport.RoundTrip's
  8877  // Response.Body. It is an io.ReadCloser.
  8878  type http2transportResponseBody struct {
  8879  	cs *http2clientStream
  8880  }
  8881  
  8882  func (b http2transportResponseBody) Read(p []byte) (n int, err error) {
  8883  	cs := b.cs
  8884  	cc := cs.cc
  8885  
  8886  	if cs.readErr != nil {
  8887  		return 0, cs.readErr
  8888  	}
  8889  	n, err = b.cs.bufPipe.Read(p)
  8890  	if cs.bytesRemain != -1 {
  8891  		if int64(n) > cs.bytesRemain {
  8892  			n = int(cs.bytesRemain)
  8893  			if err == nil {
  8894  				err = errors.New("github.com/hxx258456/ccgo/gmhttp: server replied with more than declared Content-Length; truncated")
  8895  				cs.abortStream(err)
  8896  			}
  8897  			cs.readErr = err
  8898  			return int(cs.bytesRemain), err
  8899  		}
  8900  		cs.bytesRemain -= int64(n)
  8901  		if err == io.EOF && cs.bytesRemain > 0 {
  8902  			err = io.ErrUnexpectedEOF
  8903  			cs.readErr = err
  8904  			return n, err
  8905  		}
  8906  	}
  8907  	if n == 0 {
  8908  		// No flow control tokens to send back.
  8909  		return
  8910  	}
  8911  
  8912  	cc.mu.Lock()
  8913  	var connAdd, streamAdd int32
  8914  	// Check the conn-level first, before the stream-level.
  8915  	if v := cc.inflow.available(); v < http2transportDefaultConnFlow/2 {
  8916  		connAdd = http2transportDefaultConnFlow - v
  8917  		cc.inflow.add(connAdd)
  8918  	}
  8919  	if err == nil { // No need to refresh if the stream is over or failed.
  8920  		// Consider any buffered body data (read from the conn but not
  8921  		// consumed by the client) when computing flow control for this
  8922  		// stream.
  8923  		v := int(cs.inflow.available()) + cs.bufPipe.Len()
  8924  		if v < http2transportDefaultStreamFlow-http2transportDefaultStreamMinRefresh {
  8925  			streamAdd = int32(http2transportDefaultStreamFlow - v)
  8926  			cs.inflow.add(streamAdd)
  8927  		}
  8928  	}
  8929  	cc.mu.Unlock()
  8930  
  8931  	if connAdd != 0 || streamAdd != 0 {
  8932  		cc.wmu.Lock()
  8933  		defer cc.wmu.Unlock()
  8934  		if connAdd != 0 {
  8935  			cc.fr.WriteWindowUpdate(0, http2mustUint31(connAdd))
  8936  		}
  8937  		if streamAdd != 0 {
  8938  			cc.fr.WriteWindowUpdate(cs.ID, http2mustUint31(streamAdd))
  8939  		}
  8940  		cc.bw.Flush()
  8941  	}
  8942  	return
  8943  }
  8944  
  8945  var http2errClosedResponseBody = errors.New("http2: response body closed")
  8946  
  8947  func (b http2transportResponseBody) Close() error {
  8948  	cs := b.cs
  8949  	cc := cs.cc
  8950  
  8951  	unread := cs.bufPipe.Len()
  8952  	if unread > 0 {
  8953  		cc.mu.Lock()
  8954  		// Return connection-level flow control.
  8955  		if unread > 0 {
  8956  			cc.inflow.add(int32(unread))
  8957  		}
  8958  		cc.mu.Unlock()
  8959  
  8960  		// TODO(dneil): Acquiring this mutex can block indefinitely.
  8961  		// Move flow control return to a goroutine?
  8962  		cc.wmu.Lock()
  8963  		// Return connection-level flow control.
  8964  		if unread > 0 {
  8965  			cc.fr.WriteWindowUpdate(0, uint32(unread))
  8966  		}
  8967  		cc.bw.Flush()
  8968  		cc.wmu.Unlock()
  8969  	}
  8970  
  8971  	cs.bufPipe.BreakWithError(http2errClosedResponseBody)
  8972  	cs.abortStream(http2errClosedResponseBody)
  8973  
  8974  	select {
  8975  	case <-cs.donec:
  8976  	case <-cs.ctx.Done():
  8977  		return cs.ctx.Err()
  8978  	case <-cs.reqCancel:
  8979  		return http2errRequestCanceled
  8980  	}
  8981  	return nil
  8982  }
  8983  
  8984  func (rl *http2clientConnReadLoop) processData(f *http2DataFrame) error {
  8985  	cc := rl.cc
  8986  	cs := rl.streamByID(f.StreamID)
  8987  	data := f.Data()
  8988  	if cs == nil {
  8989  		cc.mu.Lock()
  8990  		neverSent := cc.nextStreamID
  8991  		cc.mu.Unlock()
  8992  		if f.StreamID >= neverSent {
  8993  			// We never asked for this.
  8994  			cc.logf("http2: Transport received unsolicited DATA frame; closing connection")
  8995  			return http2ConnectionError(http2ErrCodeProtocol)
  8996  		}
  8997  		// We probably did ask for this, but canceled. Just ignore it.
  8998  		// TODO: be stricter here? only silently ignore things which
  8999  		// we canceled, but not things which were closed normally
  9000  		// by the peer? Tough without accumulating too much state.
  9001  
  9002  		// But at least return their flow control:
  9003  		if f.Length > 0 {
  9004  			cc.mu.Lock()
  9005  			cc.inflow.add(int32(f.Length))
  9006  			cc.mu.Unlock()
  9007  
  9008  			cc.wmu.Lock()
  9009  			cc.fr.WriteWindowUpdate(0, uint32(f.Length))
  9010  			cc.bw.Flush()
  9011  			cc.wmu.Unlock()
  9012  		}
  9013  		return nil
  9014  	}
  9015  	if cs.readClosed {
  9016  		cc.logf("protocol error: received DATA after END_STREAM")
  9017  		rl.endStreamError(cs, http2StreamError{
  9018  			StreamID: f.StreamID,
  9019  			Code:     http2ErrCodeProtocol,
  9020  		})
  9021  		return nil
  9022  	}
  9023  	if !cs.firstByte {
  9024  		cc.logf("protocol error: received DATA before a HEADERS frame")
  9025  		rl.endStreamError(cs, http2StreamError{
  9026  			StreamID: f.StreamID,
  9027  			Code:     http2ErrCodeProtocol,
  9028  		})
  9029  		return nil
  9030  	}
  9031  	if f.Length > 0 {
  9032  		if cs.isHead && len(data) > 0 {
  9033  			cc.logf("protocol error: received DATA on a HEAD request")
  9034  			rl.endStreamError(cs, http2StreamError{
  9035  				StreamID: f.StreamID,
  9036  				Code:     http2ErrCodeProtocol,
  9037  			})
  9038  			return nil
  9039  		}
  9040  		// Check connection-level flow control.
  9041  		cc.mu.Lock()
  9042  		if cs.inflow.available() >= int32(f.Length) {
  9043  			cs.inflow.take(int32(f.Length))
  9044  		} else {
  9045  			cc.mu.Unlock()
  9046  			return http2ConnectionError(http2ErrCodeFlowControl)
  9047  		}
  9048  		// Return any padded flow control now, since we won't
  9049  		// refund it later on body reads.
  9050  		var refund int
  9051  		if pad := int(f.Length) - len(data); pad > 0 {
  9052  			refund += pad
  9053  		}
  9054  
  9055  		didReset := false
  9056  		var err error
  9057  		if len(data) > 0 {
  9058  			if _, err = cs.bufPipe.Write(data); err != nil {
  9059  				// Return len(data) now if the stream is already closed,
  9060  				// since data will never be read.
  9061  				didReset = true
  9062  				refund += len(data)
  9063  			}
  9064  		}
  9065  
  9066  		if refund > 0 {
  9067  			cc.inflow.add(int32(refund))
  9068  			if !didReset {
  9069  				cs.inflow.add(int32(refund))
  9070  			}
  9071  		}
  9072  		cc.mu.Unlock()
  9073  
  9074  		if refund > 0 {
  9075  			cc.wmu.Lock()
  9076  			cc.fr.WriteWindowUpdate(0, uint32(refund))
  9077  			if !didReset {
  9078  				cc.fr.WriteWindowUpdate(cs.ID, uint32(refund))
  9079  			}
  9080  			cc.bw.Flush()
  9081  			cc.wmu.Unlock()
  9082  		}
  9083  
  9084  		if err != nil {
  9085  			rl.endStreamError(cs, err)
  9086  			return nil
  9087  		}
  9088  	}
  9089  
  9090  	if f.StreamEnded() {
  9091  		rl.endStream(cs)
  9092  	}
  9093  	return nil
  9094  }
  9095  
  9096  func (rl *http2clientConnReadLoop) endStream(cs *http2clientStream) {
  9097  	// TODO: check that any declared content-length matches, like
  9098  	// server.go's (*stream).endStream method.
  9099  	if !cs.readClosed {
  9100  		cs.readClosed = true
  9101  		cs.bufPipe.closeWithErrorAndCode(io.EOF, cs.copyTrailers)
  9102  		close(cs.peerClosed)
  9103  	}
  9104  }
  9105  
  9106  func (rl *http2clientConnReadLoop) endStreamError(cs *http2clientStream, err error) {
  9107  	cs.readAborted = true
  9108  	cs.abortStream(err)
  9109  }
  9110  
  9111  func (rl *http2clientConnReadLoop) streamByID(id uint32) *http2clientStream {
  9112  	rl.cc.mu.Lock()
  9113  	defer rl.cc.mu.Unlock()
  9114  	cs := rl.cc.streams[id]
  9115  	if cs != nil && !cs.readAborted {
  9116  		return cs
  9117  	}
  9118  	return nil
  9119  }
  9120  
  9121  func (cs *http2clientStream) copyTrailers() {
  9122  	for k, vv := range cs.trailer {
  9123  		t := cs.resTrailer
  9124  		if *t == nil {
  9125  			*t = make(Header)
  9126  		}
  9127  		(*t)[k] = vv
  9128  	}
  9129  }
  9130  
  9131  func (rl *http2clientConnReadLoop) processGoAway(f *http2GoAwayFrame) error {
  9132  	cc := rl.cc
  9133  	cc.t.connPool().MarkDead(cc)
  9134  	if f.ErrCode != 0 {
  9135  		// TODO: deal with GOAWAY more. particularly the error code
  9136  		cc.vlogf("transport got GOAWAY with error code = %v", f.ErrCode)
  9137  	}
  9138  	cc.setGoAway(f)
  9139  	return nil
  9140  }
  9141  
  9142  func (rl *http2clientConnReadLoop) processSettings(f *http2SettingsFrame) error {
  9143  	cc := rl.cc
  9144  	// Locking both mu and wmu here allows frame encoding to read settings with only wmu held.
  9145  	// Acquiring wmu when f.IsAck() is unnecessary, but convenient and mostly harmless.
  9146  	cc.wmu.Lock()
  9147  	defer cc.wmu.Unlock()
  9148  
  9149  	if err := rl.processSettingsNoWrite(f); err != nil {
  9150  		return err
  9151  	}
  9152  	if !f.IsAck() {
  9153  		cc.fr.WriteSettingsAck()
  9154  		cc.bw.Flush()
  9155  	}
  9156  	return nil
  9157  }
  9158  
  9159  func (rl *http2clientConnReadLoop) processSettingsNoWrite(f *http2SettingsFrame) error {
  9160  	cc := rl.cc
  9161  	cc.mu.Lock()
  9162  	defer cc.mu.Unlock()
  9163  
  9164  	if f.IsAck() {
  9165  		if cc.wantSettingsAck {
  9166  			cc.wantSettingsAck = false
  9167  			return nil
  9168  		}
  9169  		return http2ConnectionError(http2ErrCodeProtocol)
  9170  	}
  9171  
  9172  	var seenMaxConcurrentStreams bool
  9173  	err := f.ForeachSetting(func(s http2Setting) error {
  9174  		switch s.ID {
  9175  		case http2SettingMaxFrameSize:
  9176  			cc.maxFrameSize = s.Val
  9177  		case http2SettingMaxConcurrentStreams:
  9178  			cc.maxConcurrentStreams = s.Val
  9179  			seenMaxConcurrentStreams = true
  9180  		case http2SettingMaxHeaderListSize:
  9181  			cc.peerMaxHeaderListSize = uint64(s.Val)
  9182  		case http2SettingInitialWindowSize:
  9183  			// Values above the maximum flow-control
  9184  			// window size of 2^31-1 MUST be treated as a
  9185  			// connection error (Section 5.4.1) of type
  9186  			// FLOW_CONTROL_ERROR.
  9187  			if s.Val > math.MaxInt32 {
  9188  				return http2ConnectionError(http2ErrCodeFlowControl)
  9189  			}
  9190  
  9191  			// Adjust flow control of currently-open
  9192  			// frames by the difference of the old initial
  9193  			// window size and this one.
  9194  			delta := int32(s.Val) - int32(cc.initialWindowSize)
  9195  			for _, cs := range cc.streams {
  9196  				cs.flow.add(delta)
  9197  			}
  9198  			cc.cond.Broadcast()
  9199  
  9200  			cc.initialWindowSize = s.Val
  9201  		default:
  9202  			// TODO(bradfitz): handle more settings? SETTINGS_HEADER_TABLE_SIZE probably.
  9203  			cc.vlogf("Unhandled Setting: %v", s)
  9204  		}
  9205  		return nil
  9206  	})
  9207  	if err != nil {
  9208  		return err
  9209  	}
  9210  
  9211  	if !cc.seenSettings {
  9212  		if !seenMaxConcurrentStreams {
  9213  			// This was the servers initial SETTINGS frame and it
  9214  			// didn't contain a MAX_CONCURRENT_STREAMS field so
  9215  			// increase the number of concurrent streams this
  9216  			// connection can establish to our default.
  9217  			cc.maxConcurrentStreams = http2defaultMaxConcurrentStreams
  9218  		}
  9219  		cc.seenSettings = true
  9220  	}
  9221  
  9222  	return nil
  9223  }
  9224  
  9225  func (rl *http2clientConnReadLoop) processWindowUpdate(f *http2WindowUpdateFrame) error {
  9226  	cc := rl.cc
  9227  	cs := rl.streamByID(f.StreamID)
  9228  	if f.StreamID != 0 && cs == nil {
  9229  		return nil
  9230  	}
  9231  
  9232  	cc.mu.Lock()
  9233  	defer cc.mu.Unlock()
  9234  
  9235  	fl := &cc.flow
  9236  	if cs != nil {
  9237  		fl = &cs.flow
  9238  	}
  9239  	if !fl.add(int32(f.Increment)) {
  9240  		return http2ConnectionError(http2ErrCodeFlowControl)
  9241  	}
  9242  	cc.cond.Broadcast()
  9243  	return nil
  9244  }
  9245  
  9246  func (rl *http2clientConnReadLoop) processResetStream(f *http2RSTStreamFrame) error {
  9247  	cs := rl.streamByID(f.StreamID)
  9248  	if cs == nil {
  9249  		// TODO: return error if server tries to RST_STEAM an idle stream
  9250  		return nil
  9251  	}
  9252  	serr := http2streamError(cs.ID, f.ErrCode)
  9253  	serr.Cause = http2errFromPeer
  9254  	if f.ErrCode == http2ErrCodeProtocol {
  9255  		rl.cc.SetDoNotReuse()
  9256  	}
  9257  	cs.abortStream(serr)
  9258  
  9259  	cs.bufPipe.CloseWithError(serr)
  9260  	return nil
  9261  }
  9262  
  9263  // Ping sends a PING frame to the server and waits for the ack.
  9264  func (cc *http2ClientConn) Ping(ctx context.Context) error {
  9265  	c := make(chan struct{})
  9266  	// Generate a random payload
  9267  	var p [8]byte
  9268  	for {
  9269  		if _, err := rand.Read(p[:]); err != nil {
  9270  			return err
  9271  		}
  9272  		cc.mu.Lock()
  9273  		// check for dup before insert
  9274  		if _, found := cc.pings[p]; !found {
  9275  			cc.pings[p] = c
  9276  			cc.mu.Unlock()
  9277  			break
  9278  		}
  9279  		cc.mu.Unlock()
  9280  	}
  9281  	errc := make(chan error, 1)
  9282  	go func() {
  9283  		cc.wmu.Lock()
  9284  		defer cc.wmu.Unlock()
  9285  		if err := cc.fr.WritePing(false, p); err != nil {
  9286  			errc <- err
  9287  			return
  9288  		}
  9289  		if err := cc.bw.Flush(); err != nil {
  9290  			errc <- err
  9291  			return
  9292  		}
  9293  	}()
  9294  	select {
  9295  	case <-c:
  9296  		return nil
  9297  	case err := <-errc:
  9298  		return err
  9299  	case <-ctx.Done():
  9300  		return ctx.Err()
  9301  	case <-cc.readerDone:
  9302  		// connection closed
  9303  		return cc.readerErr
  9304  	}
  9305  }
  9306  
  9307  func (rl *http2clientConnReadLoop) processPing(f *http2PingFrame) error {
  9308  	if f.IsAck() {
  9309  		cc := rl.cc
  9310  		cc.mu.Lock()
  9311  		defer cc.mu.Unlock()
  9312  		// If ack, notify listener if any
  9313  		if c, ok := cc.pings[f.Data]; ok {
  9314  			close(c)
  9315  			delete(cc.pings, f.Data)
  9316  		}
  9317  		return nil
  9318  	}
  9319  	cc := rl.cc
  9320  	cc.wmu.Lock()
  9321  	defer cc.wmu.Unlock()
  9322  	if err := cc.fr.WritePing(true, f.Data); err != nil {
  9323  		return err
  9324  	}
  9325  	return cc.bw.Flush()
  9326  }
  9327  
  9328  func (rl *http2clientConnReadLoop) processPushPromise(f *http2PushPromiseFrame) error {
  9329  	// We told the peer we don't want them.
  9330  	// Spec says:
  9331  	// "PUSH_PROMISE MUST NOT be sent if the SETTINGS_ENABLE_PUSH
  9332  	// setting of the peer endpoint is set to 0. An endpoint that
  9333  	// has set this setting and has received acknowledgement MUST
  9334  	// treat the receipt of a PUSH_PROMISE frame as a connection
  9335  	// error (Section 5.4.1) of type PROTOCOL_ERROR."
  9336  	return http2ConnectionError(http2ErrCodeProtocol)
  9337  }
  9338  
  9339  func (cc *http2ClientConn) writeStreamReset(streamID uint32, code http2ErrCode, err error) {
  9340  	// TODO: map err to more interesting error codes, once the
  9341  	// HTTP community comes up with some. But currently for
  9342  	// RST_STREAM there's no equivalent to GOAWAY frame's debug
  9343  	// data, and the error codes are all pretty vague ("cancel").
  9344  	cc.wmu.Lock()
  9345  	cc.fr.WriteRSTStream(streamID, code)
  9346  	cc.bw.Flush()
  9347  	cc.wmu.Unlock()
  9348  }
  9349  
  9350  var (
  9351  	http2errResponseHeaderListSize = errors.New("http2: response header list larger than advertised limit")
  9352  	http2errRequestHeaderListSize  = errors.New("http2: request header list larger than peer's advertised limit")
  9353  )
  9354  
  9355  func (cc *http2ClientConn) logf(format string, args ...interface{}) {
  9356  	cc.t.logf(format, args...)
  9357  }
  9358  
  9359  func (cc *http2ClientConn) vlogf(format string, args ...interface{}) {
  9360  	cc.t.vlogf(format, args...)
  9361  }
  9362  
  9363  func (t *http2Transport) vlogf(format string, args ...interface{}) {
  9364  	if http2VerboseLogs {
  9365  		t.logf(format, args...)
  9366  	}
  9367  }
  9368  
  9369  func (t *http2Transport) logf(format string, args ...interface{}) {
  9370  	log.Printf(format, args...)
  9371  }
  9372  
  9373  var http2noBody io.ReadCloser = ioutil.NopCloser(bytes.NewReader(nil))
  9374  
  9375  type http2missingBody struct{}
  9376  
  9377  func (http2missingBody) Close() error { return nil }
  9378  
  9379  func (http2missingBody) Read([]byte) (int, error) { return 0, io.ErrUnexpectedEOF }
  9380  
  9381  func http2strSliceContains(ss []string, s string) bool {
  9382  	for _, v := range ss {
  9383  		if v == s {
  9384  			return true
  9385  		}
  9386  	}
  9387  	return false
  9388  }
  9389  
  9390  type http2erringRoundTripper struct{ err error }
  9391  
  9392  func (rt http2erringRoundTripper) RoundTripErr() error { return rt.err }
  9393  
  9394  func (rt http2erringRoundTripper) RoundTrip(*Request) (*Response, error) { return nil, rt.err }
  9395  
  9396  // gzipReader wraps a response body so it can lazily
  9397  // call gzip.NewReader on the first call to Read
  9398  type http2gzipReader struct {
  9399  	_    http2incomparable
  9400  	body io.ReadCloser // underlying Response.Body
  9401  	zr   *gzip.Reader  // lazily-initialized gzip reader
  9402  	zerr error         // sticky error
  9403  }
  9404  
  9405  func (gz *http2gzipReader) Read(p []byte) (n int, err error) {
  9406  	if gz.zerr != nil {
  9407  		return 0, gz.zerr
  9408  	}
  9409  	if gz.zr == nil {
  9410  		gz.zr, err = gzip.NewReader(gz.body)
  9411  		if err != nil {
  9412  			gz.zerr = err
  9413  			return 0, err
  9414  		}
  9415  	}
  9416  	return gz.zr.Read(p)
  9417  }
  9418  
  9419  func (gz *http2gzipReader) Close() error {
  9420  	return gz.body.Close()
  9421  }
  9422  
  9423  type http2errorReader struct{ err error }
  9424  
  9425  func (r http2errorReader) Read(p []byte) (int, error) { return 0, r.err }
  9426  
  9427  // isConnectionCloseRequest reports whether req should use its own
  9428  // connection for a single request and then close the connection.
  9429  func http2isConnectionCloseRequest(req *Request) bool {
  9430  	return req.Close || httpguts.HeaderValuesContainsToken(req.Header["Connection"], "close")
  9431  }
  9432  
  9433  // registerHTTPSProtocol calls Transport.RegisterProtocol but
  9434  // converting panics into errors.
  9435  func http2registerHTTPSProtocol(t *Transport, rt http2noDialH2RoundTripper) (err error) {
  9436  	defer func() {
  9437  		if e := recover(); e != nil {
  9438  			err = fmt.Errorf("%v", e)
  9439  		}
  9440  	}()
  9441  	t.RegisterProtocol("https", rt)
  9442  	return nil
  9443  }
  9444  
  9445  // noDialH2RoundTripper is a RoundTripper which only tries to complete the request
  9446  // if there's already has a cached connection to the host.
  9447  // (The field is exported so it can be accessed via reflect from net/http; tested
  9448  // by TestNoDialH2RoundTripperType)
  9449  type http2noDialH2RoundTripper struct{ *http2Transport }
  9450  
  9451  func (rt http2noDialH2RoundTripper) RoundTrip(req *Request) (*Response, error) {
  9452  	res, err := rt.http2Transport.RoundTrip(req)
  9453  	if http2isNoCachedConnError(err) {
  9454  		return nil, ErrSkipAltProtocol
  9455  	}
  9456  	return res, err
  9457  }
  9458  
  9459  func (t *http2Transport) idleConnTimeout() time.Duration {
  9460  	if t.t1 != nil {
  9461  		return t.t1.IdleConnTimeout
  9462  	}
  9463  	return 0
  9464  }
  9465  
  9466  func http2traceGetConn(req *Request, hostPort string) {
  9467  	trace := httptrace.ContextClientTrace(req.Context())
  9468  	if trace == nil || trace.GetConn == nil {
  9469  		return
  9470  	}
  9471  	trace.GetConn(hostPort)
  9472  }
  9473  
  9474  func http2traceGotConn(req *Request, cc *http2ClientConn, reused bool) {
  9475  	trace := httptrace.ContextClientTrace(req.Context())
  9476  	if trace == nil || trace.GotConn == nil {
  9477  		return
  9478  	}
  9479  	ci := httptrace.GotConnInfo{Conn: cc.tconn}
  9480  	ci.Reused = reused
  9481  	cc.mu.Lock()
  9482  	ci.WasIdle = len(cc.streams) == 0 && reused
  9483  	if ci.WasIdle && !cc.lastActive.IsZero() {
  9484  		ci.IdleTime = time.Now().Sub(cc.lastActive)
  9485  	}
  9486  	cc.mu.Unlock()
  9487  
  9488  	trace.GotConn(ci)
  9489  }
  9490  
  9491  func http2traceWroteHeaders(trace *httptrace.ClientTrace) {
  9492  	if trace != nil && trace.WroteHeaders != nil {
  9493  		trace.WroteHeaders()
  9494  	}
  9495  }
  9496  
  9497  func http2traceGot100Continue(trace *httptrace.ClientTrace) {
  9498  	if trace != nil && trace.Got100Continue != nil {
  9499  		trace.Got100Continue()
  9500  	}
  9501  }
  9502  
  9503  func http2traceWait100Continue(trace *httptrace.ClientTrace) {
  9504  	if trace != nil && trace.Wait100Continue != nil {
  9505  		trace.Wait100Continue()
  9506  	}
  9507  }
  9508  
  9509  func http2traceWroteRequest(trace *httptrace.ClientTrace, err error) {
  9510  	if trace != nil && trace.WroteRequest != nil {
  9511  		trace.WroteRequest(httptrace.WroteRequestInfo{Err: err})
  9512  	}
  9513  }
  9514  
  9515  func http2traceFirstResponseByte(trace *httptrace.ClientTrace) {
  9516  	if trace != nil && trace.GotFirstResponseByte != nil {
  9517  		trace.GotFirstResponseByte()
  9518  	}
  9519  }
  9520  
  9521  // writeFramer is implemented by any type that is used to write frames.
  9522  type http2writeFramer interface {
  9523  	writeFrame(http2writeContext) error
  9524  
  9525  	// staysWithinBuffer reports whether this writer promises that
  9526  	// it will only write less than or equal to size bytes, and it
  9527  	// won't Flush the write context.
  9528  	staysWithinBuffer(size int) bool
  9529  }
  9530  
  9531  // writeContext is the interface needed by the various frame writer
  9532  // types below. All the writeFrame methods below are scheduled via the
  9533  // frame writing scheduler (see writeScheduler in writesched.go).
  9534  //
  9535  // This interface is implemented by *serverConn.
  9536  //
  9537  // TODO: decide whether to a) use this in the client code (which didn't
  9538  // end up using this yet, because it has a simpler design, not
  9539  // currently implementing priorities), or b) delete this and
  9540  // make the server code a bit more concrete.
  9541  type http2writeContext interface {
  9542  	Framer() *http2Framer
  9543  	Flush() error
  9544  	CloseConn() error
  9545  	// HeaderEncoder returns an HPACK encoder that writes to the
  9546  	// returned buffer.
  9547  	HeaderEncoder() (*hpack.Encoder, *bytes.Buffer)
  9548  }
  9549  
  9550  // writeEndsStream reports whether w writes a frame that will transition
  9551  // the stream to a half-closed local state. This returns false for RST_STREAM,
  9552  // which closes the entire stream (not just the local half).
  9553  func http2writeEndsStream(w http2writeFramer) bool {
  9554  	switch v := w.(type) {
  9555  	case *http2writeData:
  9556  		return v.endStream
  9557  	case *http2writeResHeaders:
  9558  		return v.endStream
  9559  	case nil:
  9560  		// This can only happen if the caller reuses w after it's
  9561  		// been intentionally nil'ed out to prevent use. Keep this
  9562  		// here to catch future refactoring breaking it.
  9563  		panic("writeEndsStream called on nil writeFramer")
  9564  	}
  9565  	return false
  9566  }
  9567  
  9568  type http2flushFrameWriter struct{}
  9569  
  9570  func (http2flushFrameWriter) writeFrame(ctx http2writeContext) error {
  9571  	return ctx.Flush()
  9572  }
  9573  
  9574  func (http2flushFrameWriter) staysWithinBuffer(max int) bool { return false }
  9575  
  9576  type http2writeSettings []http2Setting
  9577  
  9578  func (s http2writeSettings) staysWithinBuffer(max int) bool {
  9579  	const settingSize = 6 // uint16 + uint32
  9580  	return http2frameHeaderLen+settingSize*len(s) <= max
  9581  
  9582  }
  9583  
  9584  func (s http2writeSettings) writeFrame(ctx http2writeContext) error {
  9585  	return ctx.Framer().WriteSettings([]http2Setting(s)...)
  9586  }
  9587  
  9588  type http2writeGoAway struct {
  9589  	maxStreamID uint32
  9590  	code        http2ErrCode
  9591  }
  9592  
  9593  func (p *http2writeGoAway) writeFrame(ctx http2writeContext) error {
  9594  	err := ctx.Framer().WriteGoAway(p.maxStreamID, p.code, nil)
  9595  	ctx.Flush() // ignore error: we're hanging up on them anyway
  9596  	return err
  9597  }
  9598  
  9599  func (*http2writeGoAway) staysWithinBuffer(max int) bool { return false } // flushes
  9600  
  9601  type http2writeData struct {
  9602  	streamID  uint32
  9603  	p         []byte
  9604  	endStream bool
  9605  }
  9606  
  9607  func (w *http2writeData) String() string {
  9608  	return fmt.Sprintf("writeData(stream=%d, p=%d, endStream=%v)", w.streamID, len(w.p), w.endStream)
  9609  }
  9610  
  9611  func (w *http2writeData) writeFrame(ctx http2writeContext) error {
  9612  	return ctx.Framer().WriteData(w.streamID, w.endStream, w.p)
  9613  }
  9614  
  9615  func (w *http2writeData) staysWithinBuffer(max int) bool {
  9616  	return http2frameHeaderLen+len(w.p) <= max
  9617  }
  9618  
  9619  // handlerPanicRST is the message sent from handler goroutines when
  9620  // the handler panics.
  9621  type http2handlerPanicRST struct {
  9622  	StreamID uint32
  9623  }
  9624  
  9625  func (hp http2handlerPanicRST) writeFrame(ctx http2writeContext) error {
  9626  	return ctx.Framer().WriteRSTStream(hp.StreamID, http2ErrCodeInternal)
  9627  }
  9628  
  9629  func (hp http2handlerPanicRST) staysWithinBuffer(max int) bool { return http2frameHeaderLen+4 <= max }
  9630  
  9631  func (se http2StreamError) writeFrame(ctx http2writeContext) error {
  9632  	return ctx.Framer().WriteRSTStream(se.StreamID, se.Code)
  9633  }
  9634  
  9635  func (se http2StreamError) staysWithinBuffer(max int) bool { return http2frameHeaderLen+4 <= max }
  9636  
  9637  type http2writePingAck struct{ pf *http2PingFrame }
  9638  
  9639  func (w http2writePingAck) writeFrame(ctx http2writeContext) error {
  9640  	return ctx.Framer().WritePing(true, w.pf.Data)
  9641  }
  9642  
  9643  func (w http2writePingAck) staysWithinBuffer(max int) bool {
  9644  	return http2frameHeaderLen+len(w.pf.Data) <= max
  9645  }
  9646  
  9647  type http2writeSettingsAck struct{}
  9648  
  9649  func (http2writeSettingsAck) writeFrame(ctx http2writeContext) error {
  9650  	return ctx.Framer().WriteSettingsAck()
  9651  }
  9652  
  9653  func (http2writeSettingsAck) staysWithinBuffer(max int) bool { return http2frameHeaderLen <= max }
  9654  
  9655  // splitHeaderBlock splits headerBlock into fragments so that each fragment fits
  9656  // in a single frame, then calls fn for each fragment. firstFrag/lastFrag are true
  9657  // for the first/last fragment, respectively.
  9658  func http2splitHeaderBlock(ctx http2writeContext, headerBlock []byte, fn func(ctx http2writeContext, frag []byte, firstFrag, lastFrag bool) error) error {
  9659  	// For now we're lazy and just pick the minimum MAX_FRAME_SIZE
  9660  	// that all peers must support (16KB). Later we could care
  9661  	// more and send larger frames if the peer advertised it, but
  9662  	// there's little point. Most headers are small anyway (so we
  9663  	// generally won't have CONTINUATION frames), and extra frames
  9664  	// only waste 9 bytes anyway.
  9665  	const maxFrameSize = 16384
  9666  
  9667  	first := true
  9668  	for len(headerBlock) > 0 {
  9669  		frag := headerBlock
  9670  		if len(frag) > maxFrameSize {
  9671  			frag = frag[:maxFrameSize]
  9672  		}
  9673  		headerBlock = headerBlock[len(frag):]
  9674  		if err := fn(ctx, frag, first, len(headerBlock) == 0); err != nil {
  9675  			return err
  9676  		}
  9677  		first = false
  9678  	}
  9679  	return nil
  9680  }
  9681  
  9682  // writeResHeaders is a request to write a HEADERS and 0+ CONTINUATION frames
  9683  // for HTTP response headers or trailers from a server handler.
  9684  type http2writeResHeaders struct {
  9685  	streamID    uint32
  9686  	httpResCode int      // 0 means no ":status" line
  9687  	h           Header   // may be nil
  9688  	trailers    []string // if non-nil, which keys of h to write. nil means all.
  9689  	endStream   bool
  9690  
  9691  	date          string
  9692  	contentType   string
  9693  	contentLength string
  9694  }
  9695  
  9696  func http2encKV(enc *hpack.Encoder, k, v string) {
  9697  	if http2VerboseLogs {
  9698  		log.Printf("http2: server encoding header %q = %q", k, v)
  9699  	}
  9700  	enc.WriteField(hpack.HeaderField{Name: k, Value: v})
  9701  }
  9702  
  9703  func (w *http2writeResHeaders) staysWithinBuffer(max int) bool {
  9704  	// TODO: this is a common one. It'd be nice to return true
  9705  	// here and get into the fast path if we could be clever and
  9706  	// calculate the size fast enough, or at least a conservative
  9707  	// upper bound that usually fires. (Maybe if w.h and
  9708  	// w.trailers are nil, so we don't need to enumerate it.)
  9709  	// Otherwise I'm afraid that just calculating the length to
  9710  	// answer this question would be slower than the ~2µs benefit.
  9711  	return false
  9712  }
  9713  
  9714  func (w *http2writeResHeaders) writeFrame(ctx http2writeContext) error {
  9715  	enc, buf := ctx.HeaderEncoder()
  9716  	buf.Reset()
  9717  
  9718  	if w.httpResCode != 0 {
  9719  		http2encKV(enc, ":status", http2httpCodeString(w.httpResCode))
  9720  	}
  9721  
  9722  	http2encodeHeaders(enc, w.h, w.trailers)
  9723  
  9724  	if w.contentType != "" {
  9725  		http2encKV(enc, "content-type", w.contentType)
  9726  	}
  9727  	if w.contentLength != "" {
  9728  		http2encKV(enc, "content-length", w.contentLength)
  9729  	}
  9730  	if w.date != "" {
  9731  		http2encKV(enc, "date", w.date)
  9732  	}
  9733  
  9734  	headerBlock := buf.Bytes()
  9735  	if len(headerBlock) == 0 && w.trailers == nil {
  9736  		panic("unexpected empty hpack")
  9737  	}
  9738  
  9739  	return http2splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
  9740  }
  9741  
  9742  func (w *http2writeResHeaders) writeHeaderBlock(ctx http2writeContext, frag []byte, firstFrag, lastFrag bool) error {
  9743  	if firstFrag {
  9744  		return ctx.Framer().WriteHeaders(http2HeadersFrameParam{
  9745  			StreamID:      w.streamID,
  9746  			BlockFragment: frag,
  9747  			EndStream:     w.endStream,
  9748  			EndHeaders:    lastFrag,
  9749  		})
  9750  	} else {
  9751  		return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
  9752  	}
  9753  }
  9754  
  9755  // writePushPromise is a request to write a PUSH_PROMISE and 0+ CONTINUATION frames.
  9756  type http2writePushPromise struct {
  9757  	streamID uint32   // pusher stream
  9758  	method   string   // for :method
  9759  	url      *url.URL // for :scheme, :authority, :path
  9760  	h        Header
  9761  
  9762  	// Creates an ID for a pushed stream. This runs on serveG just before
  9763  	// the frame is written. The returned ID is copied to promisedID.
  9764  	allocatePromisedID func() (uint32, error)
  9765  	promisedID         uint32
  9766  }
  9767  
  9768  func (w *http2writePushPromise) staysWithinBuffer(max int) bool {
  9769  	// TODO: see writeResHeaders.staysWithinBuffer
  9770  	return false
  9771  }
  9772  
  9773  func (w *http2writePushPromise) writeFrame(ctx http2writeContext) error {
  9774  	enc, buf := ctx.HeaderEncoder()
  9775  	buf.Reset()
  9776  
  9777  	http2encKV(enc, ":method", w.method)
  9778  	http2encKV(enc, ":scheme", w.url.Scheme)
  9779  	http2encKV(enc, ":authority", w.url.Host)
  9780  	http2encKV(enc, ":path", w.url.RequestURI())
  9781  	http2encodeHeaders(enc, w.h, nil)
  9782  
  9783  	headerBlock := buf.Bytes()
  9784  	if len(headerBlock) == 0 {
  9785  		panic("unexpected empty hpack")
  9786  	}
  9787  
  9788  	return http2splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
  9789  }
  9790  
  9791  func (w *http2writePushPromise) writeHeaderBlock(ctx http2writeContext, frag []byte, firstFrag, lastFrag bool) error {
  9792  	if firstFrag {
  9793  		return ctx.Framer().WritePushPromise(http2PushPromiseParam{
  9794  			StreamID:      w.streamID,
  9795  			PromiseID:     w.promisedID,
  9796  			BlockFragment: frag,
  9797  			EndHeaders:    lastFrag,
  9798  		})
  9799  	} else {
  9800  		return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
  9801  	}
  9802  }
  9803  
  9804  type http2write100ContinueHeadersFrame struct {
  9805  	streamID uint32
  9806  }
  9807  
  9808  func (w http2write100ContinueHeadersFrame) writeFrame(ctx http2writeContext) error {
  9809  	enc, buf := ctx.HeaderEncoder()
  9810  	buf.Reset()
  9811  	http2encKV(enc, ":status", "100")
  9812  	return ctx.Framer().WriteHeaders(http2HeadersFrameParam{
  9813  		StreamID:      w.streamID,
  9814  		BlockFragment: buf.Bytes(),
  9815  		EndStream:     false,
  9816  		EndHeaders:    true,
  9817  	})
  9818  }
  9819  
  9820  func (w http2write100ContinueHeadersFrame) staysWithinBuffer(max int) bool {
  9821  	// Sloppy but conservative:
  9822  	return 9+2*(len(":status")+len("100")) <= max
  9823  }
  9824  
  9825  type http2writeWindowUpdate struct {
  9826  	streamID uint32 // or 0 for conn-level
  9827  	n        uint32
  9828  }
  9829  
  9830  func (wu http2writeWindowUpdate) staysWithinBuffer(max int) bool { return http2frameHeaderLen+4 <= max }
  9831  
  9832  func (wu http2writeWindowUpdate) writeFrame(ctx http2writeContext) error {
  9833  	return ctx.Framer().WriteWindowUpdate(wu.streamID, wu.n)
  9834  }
  9835  
  9836  // encodeHeaders encodes an http.Header. If keys is not nil, then (k, h[k])
  9837  // is encoded only if k is in keys.
  9838  func http2encodeHeaders(enc *hpack.Encoder, h Header, keys []string) {
  9839  	if keys == nil {
  9840  		sorter := http2sorterPool.Get().(*http2sorter)
  9841  		// Using defer here, since the returned keys from the
  9842  		// sorter.Keys method is only valid until the sorter
  9843  		// is returned:
  9844  		defer http2sorterPool.Put(sorter)
  9845  		keys = sorter.Keys(h)
  9846  	}
  9847  	for _, k := range keys {
  9848  		vv := h[k]
  9849  		k, ascii := http2lowerHeader(k)
  9850  		if !ascii {
  9851  			// Skip writing invalid headers. Per RFC 7540, Section 8.1.2, header
  9852  			// field names have to be ASCII characters (just as in HTTP/1.x).
  9853  			continue
  9854  		}
  9855  		if !http2validWireHeaderFieldName(k) {
  9856  			// Skip it as backup paranoia. Per
  9857  			// golang.org/issue/14048, these should
  9858  			// already be rejected at a higher level.
  9859  			continue
  9860  		}
  9861  		isTE := k == "transfer-encoding"
  9862  		for _, v := range vv {
  9863  			if !httpguts.ValidHeaderFieldValue(v) {
  9864  				// TODO: return an error? golang.org/issue/14048
  9865  				// For now just omit it.
  9866  				continue
  9867  			}
  9868  			// TODO: more of "8.1.2.2 Connection-Specific Header Fields"
  9869  			if isTE && v != "trailers" {
  9870  				continue
  9871  			}
  9872  			http2encKV(enc, k, v)
  9873  		}
  9874  	}
  9875  }
  9876  
  9877  // WriteScheduler is the interface implemented by HTTP/2 write schedulers.
  9878  // Methods are never called concurrently.
  9879  type http2WriteScheduler interface {
  9880  	// OpenStream opens a new stream in the write scheduler.
  9881  	// It is illegal to call this with streamID=0 or with a streamID that is
  9882  	// already open -- the call may panic.
  9883  	OpenStream(streamID uint32, options http2OpenStreamOptions)
  9884  
  9885  	// CloseStream closes a stream in the write scheduler. Any frames queued on
  9886  	// this stream should be discarded. It is illegal to call this on a stream
  9887  	// that is not open -- the call may panic.
  9888  	CloseStream(streamID uint32)
  9889  
  9890  	// AdjustStream adjusts the priority of the given stream. This may be called
  9891  	// on a stream that has not yet been opened or has been closed. Note that
  9892  	// RFC 7540 allows PRIORITY frames to be sent on streams in any state. See:
  9893  	// https://tools.ietf.org/html/rfc7540#section-5.1
  9894  	AdjustStream(streamID uint32, priority http2PriorityParam)
  9895  
  9896  	// Push queues a frame in the scheduler. In most cases, this will not be
  9897  	// called with wr.StreamID()!=0 unless that stream is currently open. The one
  9898  	// exception is RST_STREAM frames, which may be sent on idle or closed streams.
  9899  	Push(wr http2FrameWriteRequest)
  9900  
  9901  	// Pop dequeues the next frame to write. Returns false if no frames can
  9902  	// be written. Frames with a given wr.StreamID() are Pop'd in the same
  9903  	// order they are Push'd. No frames should be discarded except by CloseStream.
  9904  	Pop() (wr http2FrameWriteRequest, ok bool)
  9905  }
  9906  
  9907  // OpenStreamOptions specifies extra options for WriteScheduler.OpenStream.
  9908  type http2OpenStreamOptions struct {
  9909  	// PusherID is zero if the stream was initiated by the client. Otherwise,
  9910  	// PusherID names the stream that pushed the newly opened stream.
  9911  	PusherID uint32
  9912  }
  9913  
  9914  // FrameWriteRequest is a request to write a frame.
  9915  type http2FrameWriteRequest struct {
  9916  	// write is the interface value that does the writing, once the
  9917  	// WriteScheduler has selected this frame to write. The write
  9918  	// functions are all defined in write.go.
  9919  	write http2writeFramer
  9920  
  9921  	// stream is the stream on which this frame will be written.
  9922  	// nil for non-stream frames like PING and SETTINGS.
  9923  	stream *http2stream
  9924  
  9925  	// done, if non-nil, must be a buffered channel with space for
  9926  	// 1 message and is sent the return value from write (or an
  9927  	// earlier error) when the frame has been written.
  9928  	done chan error
  9929  }
  9930  
  9931  // StreamID returns the id of the stream this frame will be written to.
  9932  // 0 is used for non-stream frames such as PING and SETTINGS.
  9933  func (wr http2FrameWriteRequest) StreamID() uint32 {
  9934  	if wr.stream == nil {
  9935  		if se, ok := wr.write.(http2StreamError); ok {
  9936  			// (*serverConn).resetStream doesn't set
  9937  			// stream because it doesn't necessarily have
  9938  			// one. So special case this type of write
  9939  			// message.
  9940  			return se.StreamID
  9941  		}
  9942  		return 0
  9943  	}
  9944  	return wr.stream.id
  9945  }
  9946  
  9947  // isControl reports whether wr is a control frame for MaxQueuedControlFrames
  9948  // purposes. That includes non-stream frames and RST_STREAM frames.
  9949  func (wr http2FrameWriteRequest) isControl() bool {
  9950  	return wr.stream == nil
  9951  }
  9952  
  9953  // DataSize returns the number of flow control bytes that must be consumed
  9954  // to write this entire frame. This is 0 for non-DATA frames.
  9955  func (wr http2FrameWriteRequest) DataSize() int {
  9956  	if wd, ok := wr.write.(*http2writeData); ok {
  9957  		return len(wd.p)
  9958  	}
  9959  	return 0
  9960  }
  9961  
  9962  // Consume consumes min(n, available) bytes from this frame, where available
  9963  // is the number of flow control bytes available on the stream. Consume returns
  9964  // 0, 1, or 2 frames, where the integer return value gives the number of frames
  9965  // returned.
  9966  //
  9967  // If flow control prevents consuming any bytes, this returns (_, _, 0). If
  9968  // the entire frame was consumed, this returns (wr, _, 1). Otherwise, this
  9969  // returns (consumed, rest, 2), where 'consumed' contains the consumed bytes and
  9970  // 'rest' contains the remaining bytes. The consumed bytes are deducted from the
  9971  // underlying stream's flow control budget.
  9972  func (wr http2FrameWriteRequest) Consume(n int32) (http2FrameWriteRequest, http2FrameWriteRequest, int) {
  9973  	var empty http2FrameWriteRequest
  9974  
  9975  	// Non-DATA frames are always consumed whole.
  9976  	wd, ok := wr.write.(*http2writeData)
  9977  	if !ok || len(wd.p) == 0 {
  9978  		return wr, empty, 1
  9979  	}
  9980  
  9981  	// Might need to split after applying limits.
  9982  	allowed := wr.stream.flow.available()
  9983  	if n < allowed {
  9984  		allowed = n
  9985  	}
  9986  	if wr.stream.sc.maxFrameSize < allowed {
  9987  		allowed = wr.stream.sc.maxFrameSize
  9988  	}
  9989  	if allowed <= 0 {
  9990  		return empty, empty, 0
  9991  	}
  9992  	if len(wd.p) > int(allowed) {
  9993  		wr.stream.flow.take(allowed)
  9994  		consumed := http2FrameWriteRequest{
  9995  			stream: wr.stream,
  9996  			write: &http2writeData{
  9997  				streamID: wd.streamID,
  9998  				p:        wd.p[:allowed],
  9999  				// Even if the original had endStream set, there
 10000  				// are bytes remaining because len(wd.p) > allowed,
 10001  				// so we know endStream is false.
 10002  				endStream: false,
 10003  			},
 10004  			// Our caller is blocking on the final DATA frame, not
 10005  			// this intermediate frame, so no need to wait.
 10006  			done: nil,
 10007  		}
 10008  		rest := http2FrameWriteRequest{
 10009  			stream: wr.stream,
 10010  			write: &http2writeData{
 10011  				streamID:  wd.streamID,
 10012  				p:         wd.p[allowed:],
 10013  				endStream: wd.endStream,
 10014  			},
 10015  			done: wr.done,
 10016  		}
 10017  		return consumed, rest, 2
 10018  	}
 10019  
 10020  	// The frame is consumed whole.
 10021  	// NB: This cast cannot overflow because allowed is <= math.MaxInt32.
 10022  	wr.stream.flow.take(int32(len(wd.p)))
 10023  	return wr, empty, 1
 10024  }
 10025  
 10026  // String is for debugging only.
 10027  func (wr http2FrameWriteRequest) String() string {
 10028  	var des string
 10029  	if s, ok := wr.write.(fmt.Stringer); ok {
 10030  		des = s.String()
 10031  	} else {
 10032  		des = fmt.Sprintf("%T", wr.write)
 10033  	}
 10034  	return fmt.Sprintf("[FrameWriteRequest stream=%d, ch=%v, writer=%v]", wr.StreamID(), wr.done != nil, des)
 10035  }
 10036  
 10037  // replyToWriter sends err to wr.done and panics if the send must block
 10038  // This does nothing if wr.done is nil.
 10039  func (wr *http2FrameWriteRequest) replyToWriter(err error) {
 10040  	if wr.done == nil {
 10041  		return
 10042  	}
 10043  	select {
 10044  	case wr.done <- err:
 10045  	default:
 10046  		panic(fmt.Sprintf("unbuffered done channel passed in for type %T", wr.write))
 10047  	}
 10048  	wr.write = nil // prevent use (assume it's tainted after wr.done send)
 10049  }
 10050  
 10051  // writeQueue is used by implementations of WriteScheduler.
 10052  type http2writeQueue struct {
 10053  	s []http2FrameWriteRequest
 10054  }
 10055  
 10056  func (q *http2writeQueue) empty() bool { return len(q.s) == 0 }
 10057  
 10058  func (q *http2writeQueue) push(wr http2FrameWriteRequest) {
 10059  	q.s = append(q.s, wr)
 10060  }
 10061  
 10062  func (q *http2writeQueue) shift() http2FrameWriteRequest {
 10063  	if len(q.s) == 0 {
 10064  		panic("invalid use of queue")
 10065  	}
 10066  	wr := q.s[0]
 10067  	// TODO: less copy-happy queue.
 10068  	copy(q.s, q.s[1:])
 10069  	q.s[len(q.s)-1] = http2FrameWriteRequest{}
 10070  	q.s = q.s[:len(q.s)-1]
 10071  	return wr
 10072  }
 10073  
 10074  // consume consumes up to n bytes from q.s[0]. If the frame is
 10075  // entirely consumed, it is removed from the queue. If the frame
 10076  // is partially consumed, the frame is kept with the consumed
 10077  // bytes removed. Returns true iff any bytes were consumed.
 10078  func (q *http2writeQueue) consume(n int32) (http2FrameWriteRequest, bool) {
 10079  	if len(q.s) == 0 {
 10080  		return http2FrameWriteRequest{}, false
 10081  	}
 10082  	consumed, rest, numresult := q.s[0].Consume(n)
 10083  	switch numresult {
 10084  	case 0:
 10085  		return http2FrameWriteRequest{}, false
 10086  	case 1:
 10087  		q.shift()
 10088  	case 2:
 10089  		q.s[0] = rest
 10090  	}
 10091  	return consumed, true
 10092  }
 10093  
 10094  type http2writeQueuePool []*http2writeQueue
 10095  
 10096  // put inserts an unused writeQueue into the pool.
 10097  
 10098  // put inserts an unused writeQueue into the pool.
 10099  func (p *http2writeQueuePool) put(q *http2writeQueue) {
 10100  	for i := range q.s {
 10101  		q.s[i] = http2FrameWriteRequest{}
 10102  	}
 10103  	q.s = q.s[:0]
 10104  	*p = append(*p, q)
 10105  }
 10106  
 10107  // get returns an empty writeQueue.
 10108  func (p *http2writeQueuePool) get() *http2writeQueue {
 10109  	ln := len(*p)
 10110  	if ln == 0 {
 10111  		return new(http2writeQueue)
 10112  	}
 10113  	x := ln - 1
 10114  	q := (*p)[x]
 10115  	(*p)[x] = nil
 10116  	*p = (*p)[:x]
 10117  	return q
 10118  }
 10119  
 10120  // RFC 7540, Section 5.3.5: the default weight is 16.
 10121  const http2priorityDefaultWeight = 15 // 16 = 15 + 1
 10122  
 10123  // PriorityWriteSchedulerConfig configures a priorityWriteScheduler.
 10124  type http2PriorityWriteSchedulerConfig struct {
 10125  	// MaxClosedNodesInTree controls the maximum number of closed streams to
 10126  	// retain in the priority tree. Setting this to zero saves a small amount
 10127  	// of memory at the cost of performance.
 10128  	//
 10129  	// See RFC 7540, Section 5.3.4:
 10130  	//   "It is possible for a stream to become closed while prioritization
 10131  	//   information ... is in transit. ... This potentially creates suboptimal
 10132  	//   prioritization, since the stream could be given a priority that is
 10133  	//   different from what is intended. To avoid these problems, an endpoint
 10134  	//   SHOULD retain stream prioritization state for a period after streams
 10135  	//   become closed. The longer state is retained, the lower the chance that
 10136  	//   streams are assigned incorrect or default priority values."
 10137  	MaxClosedNodesInTree int
 10138  
 10139  	// MaxIdleNodesInTree controls the maximum number of idle streams to
 10140  	// retain in the priority tree. Setting this to zero saves a small amount
 10141  	// of memory at the cost of performance.
 10142  	//
 10143  	// See RFC 7540, Section 5.3.4:
 10144  	//   Similarly, streams that are in the "idle" state can be assigned
 10145  	//   priority or become a parent of other streams. This allows for the
 10146  	//   creation of a grouping node in the dependency tree, which enables
 10147  	//   more flexible expressions of priority. Idle streams begin with a
 10148  	//   default priority (Section 5.3.5).
 10149  	MaxIdleNodesInTree int
 10150  
 10151  	// ThrottleOutOfOrderWrites enables write throttling to help ensure that
 10152  	// data is delivered in priority order. This works around a race where
 10153  	// stream B depends on stream A and both streams are about to call Write
 10154  	// to queue DATA frames. If B wins the race, a naive scheduler would eagerly
 10155  	// write as much data from B as possible, but this is suboptimal because A
 10156  	// is a higher-priority stream. With throttling enabled, we write a small
 10157  	// amount of data from B to minimize the amount of bandwidth that B can
 10158  	// steal from A.
 10159  	ThrottleOutOfOrderWrites bool
 10160  }
 10161  
 10162  // NewPriorityWriteScheduler constructs a WriteScheduler that schedules
 10163  // frames by following HTTP/2 priorities as described in RFC 7540 Section 5.3.
 10164  // If cfg is nil, default options are used.
 10165  func http2NewPriorityWriteScheduler(cfg *http2PriorityWriteSchedulerConfig) http2WriteScheduler {
 10166  	if cfg == nil {
 10167  		// For justification of these defaults, see:
 10168  		// https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY
 10169  		cfg = &http2PriorityWriteSchedulerConfig{
 10170  			MaxClosedNodesInTree:     10,
 10171  			MaxIdleNodesInTree:       10,
 10172  			ThrottleOutOfOrderWrites: false,
 10173  		}
 10174  	}
 10175  
 10176  	ws := &http2priorityWriteScheduler{
 10177  		nodes:                make(map[uint32]*http2priorityNode),
 10178  		maxClosedNodesInTree: cfg.MaxClosedNodesInTree,
 10179  		maxIdleNodesInTree:   cfg.MaxIdleNodesInTree,
 10180  		enableWriteThrottle:  cfg.ThrottleOutOfOrderWrites,
 10181  	}
 10182  	ws.nodes[0] = &ws.root
 10183  	if cfg.ThrottleOutOfOrderWrites {
 10184  		ws.writeThrottleLimit = 1024
 10185  	} else {
 10186  		ws.writeThrottleLimit = math.MaxInt32
 10187  	}
 10188  	return ws
 10189  }
 10190  
 10191  type http2priorityNodeState int
 10192  
 10193  const (
 10194  	http2priorityNodeOpen http2priorityNodeState = iota
 10195  	http2priorityNodeClosed
 10196  	http2priorityNodeIdle
 10197  )
 10198  
 10199  // priorityNode is a node in an HTTP/2 priority tree.
 10200  // Each node is associated with a single stream ID.
 10201  // See RFC 7540, Section 5.3.
 10202  type http2priorityNode struct {
 10203  	q            http2writeQueue        // queue of pending frames to write
 10204  	id           uint32                 // id of the stream, or 0 for the root of the tree
 10205  	weight       uint8                  // the actual weight is weight+1, so the value is in [1,256]
 10206  	state        http2priorityNodeState // open | closed | idle
 10207  	bytes        int64                  // number of bytes written by this node, or 0 if closed
 10208  	subtreeBytes int64                  // sum(node.bytes) of all nodes in this subtree
 10209  
 10210  	// These links form the priority tree.
 10211  	parent     *http2priorityNode
 10212  	kids       *http2priorityNode // start of the kids list
 10213  	prev, next *http2priorityNode // doubly-linked list of siblings
 10214  }
 10215  
 10216  func (n *http2priorityNode) setParent(parent *http2priorityNode) {
 10217  	if n == parent {
 10218  		panic("setParent to self")
 10219  	}
 10220  	if n.parent == parent {
 10221  		return
 10222  	}
 10223  	// Unlink from current parent.
 10224  	if parent := n.parent; parent != nil {
 10225  		if n.prev == nil {
 10226  			parent.kids = n.next
 10227  		} else {
 10228  			n.prev.next = n.next
 10229  		}
 10230  		if n.next != nil {
 10231  			n.next.prev = n.prev
 10232  		}
 10233  	}
 10234  	// Link to new parent.
 10235  	// If parent=nil, remove n from the tree.
 10236  	// Always insert at the head of parent.kids (this is assumed by walkReadyInOrder).
 10237  	n.parent = parent
 10238  	if parent == nil {
 10239  		n.next = nil
 10240  		n.prev = nil
 10241  	} else {
 10242  		n.next = parent.kids
 10243  		n.prev = nil
 10244  		if n.next != nil {
 10245  			n.next.prev = n
 10246  		}
 10247  		parent.kids = n
 10248  	}
 10249  }
 10250  
 10251  func (n *http2priorityNode) addBytes(b int64) {
 10252  	n.bytes += b
 10253  	for ; n != nil; n = n.parent {
 10254  		n.subtreeBytes += b
 10255  	}
 10256  }
 10257  
 10258  // walkReadyInOrder iterates over the tree in priority order, calling f for each node
 10259  // with a non-empty write queue. When f returns true, this function returns true and the
 10260  // walk halts. tmp is used as scratch space for sorting.
 10261  //
 10262  // f(n, openParent) takes two arguments: the node to visit, n, and a bool that is true
 10263  // if any ancestor p of n is still open (ignoring the root node).
 10264  func (n *http2priorityNode) walkReadyInOrder(openParent bool, tmp *[]*http2priorityNode, f func(*http2priorityNode, bool) bool) bool {
 10265  	if !n.q.empty() && f(n, openParent) {
 10266  		return true
 10267  	}
 10268  	if n.kids == nil {
 10269  		return false
 10270  	}
 10271  
 10272  	// Don't consider the root "open" when updating openParent since
 10273  	// we can't send data frames on the root stream (only control frames).
 10274  	if n.id != 0 {
 10275  		openParent = openParent || (n.state == http2priorityNodeOpen)
 10276  	}
 10277  
 10278  	// Common case: only one kid or all kids have the same weight.
 10279  	// Some clients don't use weights; other clients (like web browsers)
 10280  	// use mostly-linear priority trees.
 10281  	w := n.kids.weight
 10282  	needSort := false
 10283  	for k := n.kids.next; k != nil; k = k.next {
 10284  		if k.weight != w {
 10285  			needSort = true
 10286  			break
 10287  		}
 10288  	}
 10289  	if !needSort {
 10290  		for k := n.kids; k != nil; k = k.next {
 10291  			if k.walkReadyInOrder(openParent, tmp, f) {
 10292  				return true
 10293  			}
 10294  		}
 10295  		return false
 10296  	}
 10297  
 10298  	// Uncommon case: sort the child nodes. We remove the kids from the parent,
 10299  	// then re-insert after sorting so we can reuse tmp for future sort calls.
 10300  	*tmp = (*tmp)[:0]
 10301  	for n.kids != nil {
 10302  		*tmp = append(*tmp, n.kids)
 10303  		n.kids.setParent(nil)
 10304  	}
 10305  	sort.Sort(http2sortPriorityNodeSiblings(*tmp))
 10306  	for i := len(*tmp) - 1; i >= 0; i-- {
 10307  		(*tmp)[i].setParent(n) // setParent inserts at the head of n.kids
 10308  	}
 10309  	for k := n.kids; k != nil; k = k.next {
 10310  		if k.walkReadyInOrder(openParent, tmp, f) {
 10311  			return true
 10312  		}
 10313  	}
 10314  	return false
 10315  }
 10316  
 10317  type http2sortPriorityNodeSiblings []*http2priorityNode
 10318  
 10319  func (z http2sortPriorityNodeSiblings) Len() int { return len(z) }
 10320  
 10321  func (z http2sortPriorityNodeSiblings) Swap(i, k int) { z[i], z[k] = z[k], z[i] }
 10322  
 10323  func (z http2sortPriorityNodeSiblings) Less(i, k int) bool {
 10324  	// Prefer the subtree that has sent fewer bytes relative to its weight.
 10325  	// See sections 5.3.2 and 5.3.4.
 10326  	wi, bi := float64(z[i].weight+1), float64(z[i].subtreeBytes)
 10327  	wk, bk := float64(z[k].weight+1), float64(z[k].subtreeBytes)
 10328  	if bi == 0 && bk == 0 {
 10329  		return wi >= wk
 10330  	}
 10331  	if bk == 0 {
 10332  		return false
 10333  	}
 10334  	return bi/bk <= wi/wk
 10335  }
 10336  
 10337  type http2priorityWriteScheduler struct {
 10338  	// root is the root of the priority tree, where root.id = 0.
 10339  	// The root queues control frames that are not associated with any stream.
 10340  	root http2priorityNode
 10341  
 10342  	// nodes maps stream ids to priority tree nodes.
 10343  	nodes map[uint32]*http2priorityNode
 10344  
 10345  	// maxID is the maximum stream id in nodes.
 10346  	maxID uint32
 10347  
 10348  	// lists of nodes that have been closed or are idle, but are kept in
 10349  	// the tree for improved prioritization. When the lengths exceed either
 10350  	// maxClosedNodesInTree or maxIdleNodesInTree, old nodes are discarded.
 10351  	closedNodes, idleNodes []*http2priorityNode
 10352  
 10353  	// From the config.
 10354  	maxClosedNodesInTree int
 10355  	maxIdleNodesInTree   int
 10356  	writeThrottleLimit   int32
 10357  	enableWriteThrottle  bool
 10358  
 10359  	// tmp is scratch space for priorityNode.walkReadyInOrder to reduce allocations.
 10360  	tmp []*http2priorityNode
 10361  
 10362  	// pool of empty queues for reuse.
 10363  	queuePool http2writeQueuePool
 10364  }
 10365  
 10366  func (ws *http2priorityWriteScheduler) OpenStream(streamID uint32, options http2OpenStreamOptions) {
 10367  	// The stream may be currently idle but cannot be opened or closed.
 10368  	if curr := ws.nodes[streamID]; curr != nil {
 10369  		if curr.state != http2priorityNodeIdle {
 10370  			panic(fmt.Sprintf("stream %d already opened", streamID))
 10371  		}
 10372  		curr.state = http2priorityNodeOpen
 10373  		return
 10374  	}
 10375  
 10376  	// RFC 7540, Section 5.3.5:
 10377  	//  "All streams are initially assigned a non-exclusive dependency on stream 0x0.
 10378  	//  Pushed streams initially depend on their associated stream. In both cases,
 10379  	//  streams are assigned a default weight of 16."
 10380  	parent := ws.nodes[options.PusherID]
 10381  	if parent == nil {
 10382  		parent = &ws.root
 10383  	}
 10384  	n := &http2priorityNode{
 10385  		q:      *ws.queuePool.get(),
 10386  		id:     streamID,
 10387  		weight: http2priorityDefaultWeight,
 10388  		state:  http2priorityNodeOpen,
 10389  	}
 10390  	n.setParent(parent)
 10391  	ws.nodes[streamID] = n
 10392  	if streamID > ws.maxID {
 10393  		ws.maxID = streamID
 10394  	}
 10395  }
 10396  
 10397  func (ws *http2priorityWriteScheduler) CloseStream(streamID uint32) {
 10398  	if streamID == 0 {
 10399  		panic("violation of WriteScheduler interface: cannot close stream 0")
 10400  	}
 10401  	if ws.nodes[streamID] == nil {
 10402  		panic(fmt.Sprintf("violation of WriteScheduler interface: unknown stream %d", streamID))
 10403  	}
 10404  	if ws.nodes[streamID].state != http2priorityNodeOpen {
 10405  		panic(fmt.Sprintf("violation of WriteScheduler interface: stream %d already closed", streamID))
 10406  	}
 10407  
 10408  	n := ws.nodes[streamID]
 10409  	n.state = http2priorityNodeClosed
 10410  	n.addBytes(-n.bytes)
 10411  
 10412  	q := n.q
 10413  	ws.queuePool.put(&q)
 10414  	n.q.s = nil
 10415  	if ws.maxClosedNodesInTree > 0 {
 10416  		ws.addClosedOrIdleNode(&ws.closedNodes, ws.maxClosedNodesInTree, n)
 10417  	} else {
 10418  		ws.removeNode(n)
 10419  	}
 10420  }
 10421  
 10422  func (ws *http2priorityWriteScheduler) AdjustStream(streamID uint32, priority http2PriorityParam) {
 10423  	if streamID == 0 {
 10424  		panic("adjustPriority on root")
 10425  	}
 10426  
 10427  	// If streamID does not exist, there are two cases:
 10428  	// - A closed stream that has been removed (this will have ID <= maxID)
 10429  	// - An idle stream that is being used for "grouping" (this will have ID > maxID)
 10430  	n := ws.nodes[streamID]
 10431  	if n == nil {
 10432  		if streamID <= ws.maxID || ws.maxIdleNodesInTree == 0 {
 10433  			return
 10434  		}
 10435  		ws.maxID = streamID
 10436  		n = &http2priorityNode{
 10437  			q:      *ws.queuePool.get(),
 10438  			id:     streamID,
 10439  			weight: http2priorityDefaultWeight,
 10440  			state:  http2priorityNodeIdle,
 10441  		}
 10442  		n.setParent(&ws.root)
 10443  		ws.nodes[streamID] = n
 10444  		ws.addClosedOrIdleNode(&ws.idleNodes, ws.maxIdleNodesInTree, n)
 10445  	}
 10446  
 10447  	// Section 5.3.1: A dependency on a stream that is not currently in the tree
 10448  	// results in that stream being given a default priority (Section 5.3.5).
 10449  	parent := ws.nodes[priority.StreamDep]
 10450  	if parent == nil {
 10451  		n.setParent(&ws.root)
 10452  		n.weight = http2priorityDefaultWeight
 10453  		return
 10454  	}
 10455  
 10456  	// Ignore if the client tries to make a node its own parent.
 10457  	if n == parent {
 10458  		return
 10459  	}
 10460  
 10461  	// Section 5.3.3:
 10462  	//   "If a stream is made dependent on one of its own dependencies, the
 10463  	//   formerly dependent stream is first moved to be dependent on the
 10464  	//   reprioritized stream's previous parent. The moved dependency retains
 10465  	//   its weight."
 10466  	//
 10467  	// That is: if parent depends on n, move parent to depend on n.parent.
 10468  	for x := parent.parent; x != nil; x = x.parent {
 10469  		if x == n {
 10470  			parent.setParent(n.parent)
 10471  			break
 10472  		}
 10473  	}
 10474  
 10475  	// Section 5.3.3: The exclusive flag causes the stream to become the sole
 10476  	// dependency of its parent stream, causing other dependencies to become
 10477  	// dependent on the exclusive stream.
 10478  	if priority.Exclusive {
 10479  		k := parent.kids
 10480  		for k != nil {
 10481  			next := k.next
 10482  			if k != n {
 10483  				k.setParent(n)
 10484  			}
 10485  			k = next
 10486  		}
 10487  	}
 10488  
 10489  	n.setParent(parent)
 10490  	n.weight = priority.Weight
 10491  }
 10492  
 10493  func (ws *http2priorityWriteScheduler) Push(wr http2FrameWriteRequest) {
 10494  	var n *http2priorityNode
 10495  	if id := wr.StreamID(); id == 0 {
 10496  		n = &ws.root
 10497  	} else {
 10498  		n = ws.nodes[id]
 10499  		if n == nil {
 10500  			// id is an idle or closed stream. wr should not be a HEADERS or
 10501  			// DATA frame. However, wr can be a RST_STREAM. In this case, we
 10502  			// push wr onto the root, rather than creating a new priorityNode,
 10503  			// since RST_STREAM is tiny and the stream's priority is unknown
 10504  			// anyway. See issue #17919.
 10505  			if wr.DataSize() > 0 {
 10506  				panic("add DATA on non-open stream")
 10507  			}
 10508  			n = &ws.root
 10509  		}
 10510  	}
 10511  	n.q.push(wr)
 10512  }
 10513  
 10514  func (ws *http2priorityWriteScheduler) Pop() (wr http2FrameWriteRequest, ok bool) {
 10515  	ws.root.walkReadyInOrder(false, &ws.tmp, func(n *http2priorityNode, openParent bool) bool {
 10516  		limit := int32(math.MaxInt32)
 10517  		if openParent {
 10518  			limit = ws.writeThrottleLimit
 10519  		}
 10520  		wr, ok = n.q.consume(limit)
 10521  		if !ok {
 10522  			return false
 10523  		}
 10524  		n.addBytes(int64(wr.DataSize()))
 10525  		// If B depends on A and B continuously has data available but A
 10526  		// does not, gradually increase the throttling limit to allow B to
 10527  		// steal more and more bandwidth from A.
 10528  		if openParent {
 10529  			ws.writeThrottleLimit += 1024
 10530  			if ws.writeThrottleLimit < 0 {
 10531  				ws.writeThrottleLimit = math.MaxInt32
 10532  			}
 10533  		} else if ws.enableWriteThrottle {
 10534  			ws.writeThrottleLimit = 1024
 10535  		}
 10536  		return true
 10537  	})
 10538  	return wr, ok
 10539  }
 10540  
 10541  func (ws *http2priorityWriteScheduler) addClosedOrIdleNode(list *[]*http2priorityNode, maxSize int, n *http2priorityNode) {
 10542  	if maxSize == 0 {
 10543  		return
 10544  	}
 10545  	if len(*list) == maxSize {
 10546  		// Remove the oldest node, then shift left.
 10547  		ws.removeNode((*list)[0])
 10548  		x := (*list)[1:]
 10549  		copy(*list, x)
 10550  		*list = (*list)[:len(x)]
 10551  	}
 10552  	*list = append(*list, n)
 10553  }
 10554  
 10555  func (ws *http2priorityWriteScheduler) removeNode(n *http2priorityNode) {
 10556  	for k := n.kids; k != nil; k = k.next {
 10557  		k.setParent(n.parent)
 10558  	}
 10559  	n.setParent(nil)
 10560  	delete(ws.nodes, n.id)
 10561  }
 10562  
 10563  // NewRandomWriteScheduler constructs a WriteScheduler that ignores HTTP/2
 10564  // priorities. Control frames like SETTINGS and PING are written before DATA
 10565  // frames, but if no control frames are queued and multiple streams have queued
 10566  // HEADERS or DATA frames, Pop selects a ready stream arbitrarily.
 10567  func http2NewRandomWriteScheduler() http2WriteScheduler {
 10568  	return &http2randomWriteScheduler{sq: make(map[uint32]*http2writeQueue)}
 10569  }
 10570  
 10571  type http2randomWriteScheduler struct {
 10572  	// zero are frames not associated with a specific stream.
 10573  	zero http2writeQueue
 10574  
 10575  	// sq contains the stream-specific queues, keyed by stream ID.
 10576  	// When a stream is idle, closed, or emptied, it's deleted
 10577  	// from the map.
 10578  	sq map[uint32]*http2writeQueue
 10579  
 10580  	// pool of empty queues for reuse.
 10581  	queuePool http2writeQueuePool
 10582  }
 10583  
 10584  func (ws *http2randomWriteScheduler) OpenStream(streamID uint32, options http2OpenStreamOptions) {
 10585  	// no-op: idle streams are not tracked
 10586  }
 10587  
 10588  func (ws *http2randomWriteScheduler) CloseStream(streamID uint32) {
 10589  	q, ok := ws.sq[streamID]
 10590  	if !ok {
 10591  		return
 10592  	}
 10593  	delete(ws.sq, streamID)
 10594  	ws.queuePool.put(q)
 10595  }
 10596  
 10597  func (ws *http2randomWriteScheduler) AdjustStream(streamID uint32, priority http2PriorityParam) {
 10598  	// no-op: priorities are ignored
 10599  }
 10600  
 10601  func (ws *http2randomWriteScheduler) Push(wr http2FrameWriteRequest) {
 10602  	id := wr.StreamID()
 10603  	if id == 0 {
 10604  		ws.zero.push(wr)
 10605  		return
 10606  	}
 10607  	q, ok := ws.sq[id]
 10608  	if !ok {
 10609  		q = ws.queuePool.get()
 10610  		ws.sq[id] = q
 10611  	}
 10612  	q.push(wr)
 10613  }
 10614  
 10615  func (ws *http2randomWriteScheduler) Pop() (http2FrameWriteRequest, bool) {
 10616  	// Control frames first.
 10617  	if !ws.zero.empty() {
 10618  		return ws.zero.shift(), true
 10619  	}
 10620  	// Iterate over all non-idle streams until finding one that can be consumed.
 10621  	for streamID, q := range ws.sq {
 10622  		if wr, ok := q.consume(math.MaxInt32); ok {
 10623  			if q.empty() {
 10624  				delete(ws.sq, streamID)
 10625  				ws.queuePool.put(q)
 10626  			}
 10627  			return wr, true
 10628  		}
 10629  	}
 10630  	return http2FrameWriteRequest{}, false
 10631  }