github.com/hxx258456/ccgo@v0.0.5-0.20230213014102-48b35f46f66f/grpc/xds/internal/balancer/ringhash/ring.go (about)

     1  /*
     2   *
     3   * Copyright 2021 gRPC authors.
     4   *
     5   * Licensed under the Apache License, Version 2.0 (the "License");
     6   * you may not use this file except in compliance with the License.
     7   * You may obtain a copy of the License at
     8   *
     9   *     http://www.apache.org/licenses/LICENSE-2.0
    10   *
    11   * Unless required by applicable law or agreed to in writing, software
    12   * distributed under the License is distributed on an "AS IS" BASIS,
    13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    14   * See the License for the specific language governing permissions and
    15   * limitations under the License.
    16   *
    17   */
    18  
    19  package ringhash
    20  
    21  import (
    22  	"fmt"
    23  	"math"
    24  	"sort"
    25  	"strconv"
    26  
    27  	xxhash "github.com/cespare/xxhash/v2"
    28  	"github.com/hxx258456/ccgo/grpc/resolver"
    29  )
    30  
    31  type ring struct {
    32  	items []*ringEntry
    33  }
    34  
    35  type subConnWithWeight struct {
    36  	sc     *subConn
    37  	weight float64
    38  }
    39  
    40  type ringEntry struct {
    41  	idx  int
    42  	hash uint64
    43  	sc   *subConn
    44  }
    45  
    46  // newRing creates a ring from the subConns. The ring size is limited by the
    47  // passed in max/min.
    48  //
    49  // ring entries will be created for each subConn, and subConn with high weight
    50  // (specified by the address) may have multiple entries.
    51  //
    52  // For example, for subConns with weights {a:3, b:3, c:4}, a generated ring of
    53  // size 10 could be:
    54  // - {idx:0 hash:3689675255460411075  b}
    55  // - {idx:1 hash:4262906501694543955  c}
    56  // - {idx:2 hash:5712155492001633497  c}
    57  // - {idx:3 hash:8050519350657643659  b}
    58  // - {idx:4 hash:8723022065838381142  b}
    59  // - {idx:5 hash:11532782514799973195 a}
    60  // - {idx:6 hash:13157034721563383607 c}
    61  // - {idx:7 hash:14468677667651225770 c}
    62  // - {idx:8 hash:17336016884672388720 a}
    63  // - {idx:9 hash:18151002094784932496 a}
    64  //
    65  // To pick from a ring, a binary search will be done for the given target hash,
    66  // and first item with hash >= given hash will be returned.
    67  func newRing(subConns map[resolver.Address]*subConn, minRingSize, maxRingSize uint64) (*ring, error) {
    68  	// https://github.com/envoyproxy/envoy/blob/765c970f06a4c962961a0e03a467e165b276d50f/source/common/upstream/ring_hash_lb.cc#L114
    69  	normalizedWeights, minWeight, err := normalizeWeights(subConns)
    70  	if err != nil {
    71  		return nil, err
    72  	}
    73  	// Normalized weights for {3,3,4} is {0.3,0.3,0.4}.
    74  
    75  	// Scale up the size of the ring such that the least-weighted host gets a
    76  	// whole number of hashes on the ring.
    77  	//
    78  	// Note that size is limited by the input max/min.
    79  	scale := math.Min(math.Ceil(minWeight*float64(minRingSize))/minWeight, float64(maxRingSize))
    80  	ringSize := math.Ceil(scale)
    81  	items := make([]*ringEntry, 0, int(ringSize))
    82  
    83  	// For each entry, scale*weight nodes are generated in the ring.
    84  	//
    85  	// Not all of these are whole numbers. E.g. for weights {a:3,b:3,c:4}, if
    86  	// ring size is 7, scale is 6.66. The numbers of nodes will be
    87  	// {a,a,b,b,c,c,c}.
    88  	//
    89  	// A hash is generated for each item, and later the results will be sorted
    90  	// based on the hash.
    91  	var (
    92  		idx       int
    93  		targetIdx float64
    94  	)
    95  	for _, scw := range normalizedWeights {
    96  		targetIdx += scale * scw.weight
    97  		for float64(idx) < targetIdx {
    98  			h := xxhash.Sum64String(scw.sc.addr + strconv.Itoa(len(items)))
    99  			items = append(items, &ringEntry{idx: idx, hash: h, sc: scw.sc})
   100  			idx++
   101  		}
   102  	}
   103  
   104  	// Sort items based on hash, to prepare for binary search.
   105  	sort.Slice(items, func(i, j int) bool { return items[i].hash < items[j].hash })
   106  	for i, ii := range items {
   107  		ii.idx = i
   108  	}
   109  	return &ring{items: items}, nil
   110  }
   111  
   112  // normalizeWeights divides all the weights by the sum, so that the total weight
   113  // is 1.
   114  func normalizeWeights(subConns map[resolver.Address]*subConn) (_ []subConnWithWeight, min float64, _ error) {
   115  	if len(subConns) == 0 {
   116  		return nil, 0, fmt.Errorf("number of subconns is 0")
   117  	}
   118  	var weightSum uint32
   119  	for a := range subConns {
   120  		// The address weight was moved from attributes to the Metadata field.
   121  		// This is necessary (all the attributes need to be stripped) for the
   122  		// balancer to detect identical {address+weight} combination.
   123  		weightSum += a.Metadata.(uint32)
   124  	}
   125  	if weightSum == 0 {
   126  		return nil, 0, fmt.Errorf("total weight of all subconns is 0")
   127  	}
   128  	weightSumF := float64(weightSum)
   129  	ret := make([]subConnWithWeight, 0, len(subConns))
   130  	min = math.MaxFloat64
   131  	for a, sc := range subConns {
   132  		nw := float64(a.Metadata.(uint32)) / weightSumF
   133  		ret = append(ret, subConnWithWeight{sc: sc, weight: nw})
   134  		if nw < min {
   135  			min = nw
   136  		}
   137  	}
   138  	// Sort the addresses to return consistent results.
   139  	//
   140  	// Note: this might not be necessary, but this makes sure the ring is
   141  	// consistent as long as the addresses are the same, for example, in cases
   142  	// where an address is added and then removed, the RPCs will still pick the
   143  	// same old SubConn.
   144  	sort.Slice(ret, func(i, j int) bool { return ret[i].sc.addr < ret[j].sc.addr })
   145  	return ret, min, nil
   146  }
   147  
   148  // pick does a binary search. It returns the item with smallest index i that
   149  // r.items[i].hash >= h.
   150  func (r *ring) pick(h uint64) *ringEntry {
   151  	i := sort.Search(len(r.items), func(i int) bool { return r.items[i].hash >= h })
   152  	if i == len(r.items) {
   153  		// If not found, and h is greater than the largest hash, return the
   154  		// first item.
   155  		i = 0
   156  	}
   157  	return r.items[i]
   158  }
   159  
   160  // next returns the next entry.
   161  func (r *ring) next(e *ringEntry) *ringEntry {
   162  	return r.items[(e.idx+1)%len(r.items)]
   163  }