github.com/hxx258456/ccgo@v0.0.5-0.20230213014102-48b35f46f66f/grpc/xds/internal/balancer/ringhash/ring.go (about) 1 /* 2 * 3 * Copyright 2021 gRPC authors. 4 * 5 * Licensed under the Apache License, Version 2.0 (the "License"); 6 * you may not use this file except in compliance with the License. 7 * You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 * 17 */ 18 19 package ringhash 20 21 import ( 22 "fmt" 23 "math" 24 "sort" 25 "strconv" 26 27 xxhash "github.com/cespare/xxhash/v2" 28 "github.com/hxx258456/ccgo/grpc/resolver" 29 ) 30 31 type ring struct { 32 items []*ringEntry 33 } 34 35 type subConnWithWeight struct { 36 sc *subConn 37 weight float64 38 } 39 40 type ringEntry struct { 41 idx int 42 hash uint64 43 sc *subConn 44 } 45 46 // newRing creates a ring from the subConns. The ring size is limited by the 47 // passed in max/min. 48 // 49 // ring entries will be created for each subConn, and subConn with high weight 50 // (specified by the address) may have multiple entries. 51 // 52 // For example, for subConns with weights {a:3, b:3, c:4}, a generated ring of 53 // size 10 could be: 54 // - {idx:0 hash:3689675255460411075 b} 55 // - {idx:1 hash:4262906501694543955 c} 56 // - {idx:2 hash:5712155492001633497 c} 57 // - {idx:3 hash:8050519350657643659 b} 58 // - {idx:4 hash:8723022065838381142 b} 59 // - {idx:5 hash:11532782514799973195 a} 60 // - {idx:6 hash:13157034721563383607 c} 61 // - {idx:7 hash:14468677667651225770 c} 62 // - {idx:8 hash:17336016884672388720 a} 63 // - {idx:9 hash:18151002094784932496 a} 64 // 65 // To pick from a ring, a binary search will be done for the given target hash, 66 // and first item with hash >= given hash will be returned. 67 func newRing(subConns map[resolver.Address]*subConn, minRingSize, maxRingSize uint64) (*ring, error) { 68 // https://github.com/envoyproxy/envoy/blob/765c970f06a4c962961a0e03a467e165b276d50f/source/common/upstream/ring_hash_lb.cc#L114 69 normalizedWeights, minWeight, err := normalizeWeights(subConns) 70 if err != nil { 71 return nil, err 72 } 73 // Normalized weights for {3,3,4} is {0.3,0.3,0.4}. 74 75 // Scale up the size of the ring such that the least-weighted host gets a 76 // whole number of hashes on the ring. 77 // 78 // Note that size is limited by the input max/min. 79 scale := math.Min(math.Ceil(minWeight*float64(minRingSize))/minWeight, float64(maxRingSize)) 80 ringSize := math.Ceil(scale) 81 items := make([]*ringEntry, 0, int(ringSize)) 82 83 // For each entry, scale*weight nodes are generated in the ring. 84 // 85 // Not all of these are whole numbers. E.g. for weights {a:3,b:3,c:4}, if 86 // ring size is 7, scale is 6.66. The numbers of nodes will be 87 // {a,a,b,b,c,c,c}. 88 // 89 // A hash is generated for each item, and later the results will be sorted 90 // based on the hash. 91 var ( 92 idx int 93 targetIdx float64 94 ) 95 for _, scw := range normalizedWeights { 96 targetIdx += scale * scw.weight 97 for float64(idx) < targetIdx { 98 h := xxhash.Sum64String(scw.sc.addr + strconv.Itoa(len(items))) 99 items = append(items, &ringEntry{idx: idx, hash: h, sc: scw.sc}) 100 idx++ 101 } 102 } 103 104 // Sort items based on hash, to prepare for binary search. 105 sort.Slice(items, func(i, j int) bool { return items[i].hash < items[j].hash }) 106 for i, ii := range items { 107 ii.idx = i 108 } 109 return &ring{items: items}, nil 110 } 111 112 // normalizeWeights divides all the weights by the sum, so that the total weight 113 // is 1. 114 func normalizeWeights(subConns map[resolver.Address]*subConn) (_ []subConnWithWeight, min float64, _ error) { 115 if len(subConns) == 0 { 116 return nil, 0, fmt.Errorf("number of subconns is 0") 117 } 118 var weightSum uint32 119 for a := range subConns { 120 // The address weight was moved from attributes to the Metadata field. 121 // This is necessary (all the attributes need to be stripped) for the 122 // balancer to detect identical {address+weight} combination. 123 weightSum += a.Metadata.(uint32) 124 } 125 if weightSum == 0 { 126 return nil, 0, fmt.Errorf("total weight of all subconns is 0") 127 } 128 weightSumF := float64(weightSum) 129 ret := make([]subConnWithWeight, 0, len(subConns)) 130 min = math.MaxFloat64 131 for a, sc := range subConns { 132 nw := float64(a.Metadata.(uint32)) / weightSumF 133 ret = append(ret, subConnWithWeight{sc: sc, weight: nw}) 134 if nw < min { 135 min = nw 136 } 137 } 138 // Sort the addresses to return consistent results. 139 // 140 // Note: this might not be necessary, but this makes sure the ring is 141 // consistent as long as the addresses are the same, for example, in cases 142 // where an address is added and then removed, the RPCs will still pick the 143 // same old SubConn. 144 sort.Slice(ret, func(i, j int) bool { return ret[i].sc.addr < ret[j].sc.addr }) 145 return ret, min, nil 146 } 147 148 // pick does a binary search. It returns the item with smallest index i that 149 // r.items[i].hash >= h. 150 func (r *ring) pick(h uint64) *ringEntry { 151 i := sort.Search(len(r.items), func(i int) bool { return r.items[i].hash >= h }) 152 if i == len(r.items) { 153 // If not found, and h is greater than the largest hash, return the 154 // first item. 155 i = 0 156 } 157 return r.items[i] 158 } 159 160 // next returns the next entry. 161 func (r *ring) next(e *ringEntry) *ringEntry { 162 return r.items[(e.idx+1)%len(r.items)] 163 }