github.com/iEvan-lhr/exciting-tool@v0.0.0-20230504054234-8e983f73cdd2/floatyu.go (about) 1 // Copyright 2021 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package tools 6 7 import ( 8 "math/bits" 9 ) 10 11 // binary to decimal conversion using the Ryū algorithm. 12 // 13 // See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369) 14 // 15 // Fixed precision formatting is a variant of the original paper's 16 // algorithm, where a single multiplication by 10^k is required, 17 // sharing the same rounding guarantees. 18 19 // ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits. 20 func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) { 21 if prec < 0 { 22 panic("ryuFtoaFixed32 called with negative prec") 23 } 24 if prec > 9 { 25 panic("ryuFtoaFixed32 called with prec > 9") 26 } 27 // Zero input. 28 if mant == 0 { 29 d.nd, d.dp = 0, 0 30 return 31 } 32 // Renormalize to a 25-bit mantissa. 33 e2 := exp 34 if b := bits.Len32(mant); b < 25 { 35 mant <<= uint(25 - b) 36 e2 += int(b) - 25 37 } 38 // Choose an exponent such that rounded mant*(2^e2)*(10^q) has 39 // at least prec decimal digits, i.e 40 // mant*(2^e2)*(10^q) >= 10^(prec-1) 41 // Because mant >= 2^24, it is enough to choose: 42 // 2^(e2+24) >= 10^(-q+prec-1) 43 // or q = -mulByLog2Log10(e2+24) + prec - 1 44 q := -mulByLog2Log10(e2+24) + prec - 1 45 46 // Now compute mant*(2^e2)*(10^q). 47 // Is it an exact computation? 48 // Only small positive powers of 10 are exact (5^28 has 66 bits). 49 exact := q <= 27 && q >= 0 50 51 di, dexp2, d0 := mult64bitPow10(mant, e2, q) 52 if dexp2 >= 0 { 53 panic("not enough significant bits after mult64bitPow10") 54 } 55 // As a special case, computation might still be exact, if exponent 56 // was negative and if it amounts to computing an exact division. 57 // In that case, we ignore all lower bits. 58 // Note that division by 10^11 cannot be exact as 5^11 has 26 bits. 59 if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) { 60 exact = true 61 d0 = true 62 } 63 // Remove extra lower bits and keep rounding info. 64 extra := uint(-dexp2) 65 extraMask := uint32(1<<extra - 1) 66 67 di, dfrac := di>>extra, di&extraMask 68 roundUp := false 69 if exact { 70 // If we computed an exact product, d + 1/2 71 // should round to d+1 if 'd' is odd. 72 roundUp = dfrac > 1<<(extra-1) || 73 (dfrac == 1<<(extra-1) && !d0) || 74 (dfrac == 1<<(extra-1) && d0 && di&1 == 1) 75 } else { 76 // otherwise, d+1/2 always rounds up because 77 // we truncated below. 78 roundUp = dfrac>>(extra-1) == 1 79 } 80 if dfrac != 0 { 81 d0 = false 82 } 83 // Proceed to the requested number of digits 84 formatDecimal(d, uint64(di), !d0, roundUp, prec) 85 // Adjust exponent 86 d.dp -= q 87 } 88 89 // ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits. 90 func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) { 91 if prec > 18 { 92 panic("ryuFtoaFixed64 called with prec > 18") 93 } 94 // Zero input. 95 if mant == 0 { 96 d.nd, d.dp = 0, 0 97 return 98 } 99 // Renormalize to a 55-bit mantissa. 100 e2 := exp 101 if b := bits.Len64(mant); b < 55 { 102 mant = mant << uint(55-b) 103 e2 += int(b) - 55 104 } 105 // Choose an exponent such that rounded mant*(2^e2)*(10^q) has 106 // at least prec decimal digits, i.e 107 // mant*(2^e2)*(10^q) >= 10^(prec-1) 108 // Because mant >= 2^54, it is enough to choose: 109 // 2^(e2+54) >= 10^(-q+prec-1) 110 // or q = -mulByLog2Log10(e2+54) + prec - 1 111 // 112 // The minimal required exponent is -mulByLog2Log10(1025)+18 = -291 113 // The maximal required exponent is mulByLog2Log10(1074)+18 = 342 114 q := -mulByLog2Log10(e2+54) + prec - 1 115 116 // Now compute mant*(2^e2)*(10^q). 117 // Is it an exact computation? 118 // Only small positive powers of 10 are exact (5^55 has 128 bits). 119 exact := q <= 55 && q >= 0 120 121 di, dexp2, d0 := mult128bitPow10(mant, e2, q) 122 if dexp2 >= 0 { 123 panic("not enough significant bits after mult128bitPow10") 124 } 125 // As a special case, computation might still be exact, if exponent 126 // was negative and if it amounts to computing an exact division. 127 // In that case, we ignore all lower bits. 128 // Note that division by 10^23 cannot be exact as 5^23 has 54 bits. 129 if q < 0 && q >= -22 && divisibleByPower5(mant, -q) { 130 exact = true 131 d0 = true 132 } 133 // Remove extra lower bits and keep rounding info. 134 extra := uint(-dexp2) 135 extraMask := uint64(1<<extra - 1) 136 137 di, dfrac := di>>extra, di&extraMask 138 roundUp := false 139 if exact { 140 // If we computed an exact product, d + 1/2 141 // should round to d+1 if 'd' is odd. 142 roundUp = dfrac > 1<<(extra-1) || 143 (dfrac == 1<<(extra-1) && !d0) || 144 (dfrac == 1<<(extra-1) && d0 && di&1 == 1) 145 } else { 146 // otherwise, d+1/2 always rounds up because 147 // we truncated below. 148 roundUp = dfrac>>(extra-1) == 1 149 } 150 if dfrac != 0 { 151 d0 = false 152 } 153 // Proceed to the requested number of digits 154 formatDecimal(d, di, !d0, roundUp, prec) 155 // Adjust exponent 156 d.dp -= q 157 } 158 159 var uint64pow10 = [...]uint64{ 160 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 161 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 162 } 163 164 // formatDecimal fills d with at most prec decimal digits 165 // of mantissa m. The boolean trunc indicates whether m 166 // is truncated compared to the original number being formatted. 167 func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) { 168 max := uint64pow10[prec] 169 trimmed := 0 170 for m >= max { 171 a, b := m/10, m%10 172 m = a 173 trimmed++ 174 if b > 5 { 175 roundUp = true 176 } else if b < 5 { 177 roundUp = false 178 } else { // b == 5 179 // round up if there are trailing digits, 180 // or if the new value of m is odd (round-to-even convention) 181 roundUp = trunc || m&1 == 1 182 } 183 if b != 0 { 184 trunc = true 185 } 186 } 187 if roundUp { 188 m++ 189 } 190 if m >= max { 191 // Happens if di was originally 99999....xx 192 m /= 10 193 trimmed++ 194 } 195 // render digits (similar to formatBits) 196 n := uint(prec) 197 d.nd = int(prec) 198 v := m 199 for v >= 100 { 200 var v1, v2 uint64 201 if v>>32 == 0 { 202 v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100) 203 } else { 204 v1, v2 = v/100, v%100 205 } 206 n -= 2 207 d.d[n+1] = smallsString[2*v2+1] 208 d.d[n+0] = smallsString[2*v2+0] 209 v = v1 210 } 211 if v > 0 { 212 n-- 213 d.d[n] = smallsString[2*v+1] 214 } 215 if v >= 10 { 216 n-- 217 d.d[n] = smallsString[2*v] 218 } 219 for d.d[d.nd-1] == '0' { 220 d.nd-- 221 trimmed++ 222 } 223 d.dp = d.nd + trimmed 224 } 225 226 // ryuFtoaShortest formats mant*2^exp with prec decimal digits. 227 func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) { 228 if mant == 0 { 229 d.nd, d.dp = 0, 0 230 return 231 } 232 // If input is an exact integer with fewer bits than the mantissa, 233 // the previous and next integer are not admissible representations. 234 if exp <= 0 && bits.TrailingZeros64(mant) >= -exp { 235 mant >>= uint(-exp) 236 ryuDigits(d, mant, mant, mant, true, false) 237 return 238 } 239 ml, mc, mu, e2 := computeBounds(mant, exp, flt) 240 if e2 == 0 { 241 ryuDigits(d, ml, mc, mu, true, false) 242 return 243 } 244 // Find 10^q *larger* than 2^-e2 245 q := mulByLog2Log10(-e2) + 1 246 247 // We are going to multiply by 10^q using 128-bit arithmetic. 248 // The exponent is the same for all 3 numbers. 249 var dl, dc, du uint64 250 var dl0, dc0, du0 bool 251 if flt == &float32info { 252 var dl32, dc32, du32 uint32 253 dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q) 254 dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q) 255 du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q) 256 dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32) 257 } else { 258 dl, _, dl0 = mult128bitPow10(ml, e2, q) 259 dc, _, dc0 = mult128bitPow10(mc, e2, q) 260 du, e2, du0 = mult128bitPow10(mu, e2, q) 261 } 262 if e2 >= 0 { 263 panic("not enough significant bits after mult128bitPow10") 264 } 265 // Is it an exact computation? 266 if q > 55 { 267 // Large positive powers of ten are not exact 268 dl0, dc0, du0 = false, false, false 269 } 270 if q < 0 && q >= -24 { 271 // Division by a power of ten may be exact. 272 // (note that 5^25 is a 59-bit number so division by 5^25 is never exact). 273 if divisibleByPower5(ml, -q) { 274 dl0 = true 275 } 276 if divisibleByPower5(mc, -q) { 277 dc0 = true 278 } 279 if divisibleByPower5(mu, -q) { 280 du0 = true 281 } 282 } 283 // Express the results (dl, dc, du)*2^e2 as integers. 284 // Extra bits must be removed and rounding hints computed. 285 extra := uint(-e2) 286 extraMask := uint64(1<<extra - 1) 287 // Now compute the floored, integral base 10 mantissas. 288 dl, fracl := dl>>extra, dl&extraMask 289 dc, fracc := dc>>extra, dc&extraMask 290 du, fracu := du>>extra, du&extraMask 291 // Is it allowed to use 'du' as a result? 292 // It is always allowed when it is truncated, but also 293 // if it is exact and the original binary mantissa is even 294 // When disallowed, we can subtract 1. 295 uok := !du0 || fracu > 0 296 if du0 && fracu == 0 { 297 uok = mant&1 == 0 298 } 299 if !uok { 300 du-- 301 } 302 // Is 'dc' the correctly rounded base 10 mantissa? 303 // The correct rounding might be dc+1 304 cup := false // don't round up. 305 if dc0 { 306 // If we computed an exact product, the half integer 307 // should round to next (even) integer if 'dc' is odd. 308 cup = fracc > 1<<(extra-1) || 309 (fracc == 1<<(extra-1) && dc&1 == 1) 310 } else { 311 // otherwise, the result is a lower truncation of the ideal 312 // result. 313 cup = fracc>>(extra-1) == 1 314 } 315 // Is 'dl' an allowed representation? 316 // Only if it is an exact value, and if the original binary mantissa 317 // was even. 318 lok := dl0 && fracl == 0 && (mant&1 == 0) 319 if !lok { 320 dl++ 321 } 322 // We need to remember whether the trimmed digits of 'dc' are zero. 323 c0 := dc0 && fracc == 0 324 // render digits 325 ryuDigits(d, dl, dc, du, c0, cup) 326 d.dp -= q 327 } 328 329 // mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in 330 // the range -1600 <= x && x <= +1600. 331 // 332 // The range restriction lets us work in faster integer arithmetic instead of 333 // slower floating point arithmetic. Correctness is verified by unit tests. 334 func mulByLog2Log10(x int) int { 335 // log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18 336 return (x * 78913) >> 18 337 } 338 339 // mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in 340 // the range -500 <= x && x <= +500. 341 // 342 // The range restriction lets us work in faster integer arithmetic instead of 343 // slower floating point arithmetic. Correctness is verified by unit tests. 344 func mulByLog10Log2(x int) int { 345 // log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15 346 return (x * 108853) >> 15 347 } 348 349 // computeBounds returns a floating-point vector (l, c, u)×2^e2 350 // where the mantissas are 55-bit (or 26-bit) integers, describing the interval 351 // represented by the input float64 or float32. 352 func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) { 353 if mant != 1<<flt.mantbits || exp == flt.bias+1-int(flt.mantbits) { 354 // regular case (or denormals) 355 lower, central, upper = 2*mant-1, 2*mant, 2*mant+1 356 e2 = exp - 1 357 return 358 } else { 359 // border of an exponent 360 lower, central, upper = 4*mant-1, 4*mant, 4*mant+2 361 e2 = exp - 2 362 return 363 } 364 } 365 366 func ryuDigits(d *decimalSlice, lower, central, upper uint64, 367 c0, cup bool) { 368 lhi, llo := divmod1e9(lower) 369 chi, clo := divmod1e9(central) 370 uhi, ulo := divmod1e9(upper) 371 if uhi == 0 { 372 // only low digits (for denormals) 373 ryuDigits32(d, llo, clo, ulo, c0, cup, 8) 374 } else if lhi < uhi { 375 // truncate 9 digits at once. 376 if llo != 0 { 377 lhi++ 378 } 379 c0 = c0 && clo == 0 380 cup = (clo > 5e8) || (clo == 5e8 && cup) 381 ryuDigits32(d, lhi, chi, uhi, c0, cup, 8) 382 d.dp += 9 383 } else { 384 d.nd = 0 385 // emit high part 386 n := uint(9) 387 for v := chi; v > 0; { 388 v1, v2 := v/10, v%10 389 v = v1 390 n-- 391 d.d[n] = byte(v2 + '0') 392 } 393 d.d = d.d[n:] 394 d.nd = int(9 - n) 395 // emit low part 396 ryuDigits32(d, llo, clo, ulo, 397 c0, cup, d.nd+8) 398 } 399 // trim trailing zeros 400 for d.nd > 0 && d.d[d.nd-1] == '0' { 401 d.nd-- 402 } 403 // trim initial zeros 404 for d.nd > 0 && d.d[0] == '0' { 405 d.nd-- 406 d.dp-- 407 d.d = d.d[1:] 408 } 409 } 410 411 // ryuDigits32 emits decimal digits for a number less than 1e9. 412 func ryuDigits32(d *decimalSlice, lower, central, upper uint32, 413 c0, cup bool, endindex int) { 414 if upper == 0 { 415 d.dp = endindex + 1 416 return 417 } 418 trimmed := 0 419 // Remember last trimmed digit to check for round-up. 420 // c0 will be used to remember zeroness of following digits. 421 cNextDigit := 0 422 for upper > 0 { 423 // Repeatedly compute: 424 // l = Ceil(lower / 10^k) 425 // c = Round(central / 10^k) 426 // u = Floor(upper / 10^k) 427 // and stop when c goes out of the (l, u) interval. 428 l := (lower + 9) / 10 429 c, cdigit := central/10, central%10 430 u := upper / 10 431 if l > u { 432 // don't trim the last digit as it is forbidden to go below l 433 // other, trim and exit now. 434 break 435 } 436 // Check that we didn't cross the lower boundary. 437 // The case where l < u but c == l-1 is essentially impossible, 438 // but may happen if: 439 // lower = ..11 440 // central = ..19 441 // upper = ..31 442 // and means that 'central' is very close but less than 443 // an integer ending with many zeros, and usually 444 // the "round-up" logic hides the problem. 445 if l == c+1 && c < u { 446 c++ 447 cdigit = 0 448 cup = false 449 } 450 trimmed++ 451 // Remember trimmed digits of c 452 c0 = c0 && cNextDigit == 0 453 cNextDigit = int(cdigit) 454 lower, central, upper = l, c, u 455 } 456 // should we round up? 457 if trimmed > 0 { 458 cup = cNextDigit > 5 || 459 (cNextDigit == 5 && !c0) || 460 (cNextDigit == 5 && c0 && central&1 == 1) 461 } 462 if central < upper && cup { 463 central++ 464 } 465 // We know where the number ends, fill directly 466 endindex -= trimmed 467 v := central 468 n := endindex 469 for n > d.nd { 470 v1, v2 := v/100, v%100 471 d.d[n] = smallsString[2*v2+1] 472 d.d[n-1] = smallsString[2*v2+0] 473 n -= 2 474 v = v1 475 } 476 if n == d.nd { 477 d.d[n] = byte(v + '0') 478 } 479 d.nd = endindex + 1 480 d.dp = d.nd + trimmed 481 } 482 483 // mult64bitPow10 takes a floating-point input with a 25-bit 484 // mantissa and multiplies it with 10^q. The resulting mantissa 485 // is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables. 486 // It is typically 31 or 32-bit wide. 487 // The returned boolean is true if all trimmed bits were zero. 488 // 489 // That is: 490 // 491 // m*2^e2 * round(10^q) = resM * 2^resE + ε 492 // exact = ε == 0 493 494 // detailedPowersOfTen{Min,Max}Exp10 is the power of 10 represented by the 495 // first and last rows of detailedPowersOfTen. Both bounds are inclusive. 496 const ( 497 detailedPowersOfTenMinExp10 = -348 498 detailedPowersOfTenMaxExp10 = +347 499 ) 500 501 var detailedPowersOfTen = [...][2]uint64{ 502 {0x1732C869CD60E453, 0xFA8FD5A0081C0288}, // 1e-348 503 {0x0E7FBD42205C8EB4, 0x9C99E58405118195}, // 1e-347 504 {0x521FAC92A873B261, 0xC3C05EE50655E1FA}, // 1e-346 505 {0xE6A797B752909EF9, 0xF4B0769E47EB5A78}, // 1e-345 506 {0x9028BED2939A635C, 0x98EE4A22ECF3188B}, // 1e-344 507 {0x7432EE873880FC33, 0xBF29DCABA82FDEAE}, // 1e-343 508 {0x113FAA2906A13B3F, 0xEEF453D6923BD65A}, // 1e-342 509 {0x4AC7CA59A424C507, 0x9558B4661B6565F8}, // 1e-341 510 {0x5D79BCF00D2DF649, 0xBAAEE17FA23EBF76}, // 1e-340 511 {0xF4D82C2C107973DC, 0xE95A99DF8ACE6F53}, // 1e-339 512 {0x79071B9B8A4BE869, 0x91D8A02BB6C10594}, // 1e-338 513 {0x9748E2826CDEE284, 0xB64EC836A47146F9}, // 1e-337 514 {0xFD1B1B2308169B25, 0xE3E27A444D8D98B7}, // 1e-336 515 {0xFE30F0F5E50E20F7, 0x8E6D8C6AB0787F72}, // 1e-335 516 {0xBDBD2D335E51A935, 0xB208EF855C969F4F}, // 1e-334 517 {0xAD2C788035E61382, 0xDE8B2B66B3BC4723}, // 1e-333 518 {0x4C3BCB5021AFCC31, 0x8B16FB203055AC76}, // 1e-332 519 {0xDF4ABE242A1BBF3D, 0xADDCB9E83C6B1793}, // 1e-331 520 {0xD71D6DAD34A2AF0D, 0xD953E8624B85DD78}, // 1e-330 521 {0x8672648C40E5AD68, 0x87D4713D6F33AA6B}, // 1e-329 522 {0x680EFDAF511F18C2, 0xA9C98D8CCB009506}, // 1e-328 523 {0x0212BD1B2566DEF2, 0xD43BF0EFFDC0BA48}, // 1e-327 524 {0x014BB630F7604B57, 0x84A57695FE98746D}, // 1e-326 525 {0x419EA3BD35385E2D, 0xA5CED43B7E3E9188}, // 1e-325 526 {0x52064CAC828675B9, 0xCF42894A5DCE35EA}, // 1e-324 527 {0x7343EFEBD1940993, 0x818995CE7AA0E1B2}, // 1e-323 528 {0x1014EBE6C5F90BF8, 0xA1EBFB4219491A1F}, // 1e-322 529 {0xD41A26E077774EF6, 0xCA66FA129F9B60A6}, // 1e-321 530 {0x8920B098955522B4, 0xFD00B897478238D0}, // 1e-320 531 {0x55B46E5F5D5535B0, 0x9E20735E8CB16382}, // 1e-319 532 {0xEB2189F734AA831D, 0xC5A890362FDDBC62}, // 1e-318 533 {0xA5E9EC7501D523E4, 0xF712B443BBD52B7B}, // 1e-317 534 {0x47B233C92125366E, 0x9A6BB0AA55653B2D}, // 1e-316 535 {0x999EC0BB696E840A, 0xC1069CD4EABE89F8}, // 1e-315 536 {0xC00670EA43CA250D, 0xF148440A256E2C76}, // 1e-314 537 {0x380406926A5E5728, 0x96CD2A865764DBCA}, // 1e-313 538 {0xC605083704F5ECF2, 0xBC807527ED3E12BC}, // 1e-312 539 {0xF7864A44C633682E, 0xEBA09271E88D976B}, // 1e-311 540 {0x7AB3EE6AFBE0211D, 0x93445B8731587EA3}, // 1e-310 541 {0x5960EA05BAD82964, 0xB8157268FDAE9E4C}, // 1e-309 542 {0x6FB92487298E33BD, 0xE61ACF033D1A45DF}, // 1e-308 543 {0xA5D3B6D479F8E056, 0x8FD0C16206306BAB}, // 1e-307 544 {0x8F48A4899877186C, 0xB3C4F1BA87BC8696}, // 1e-306 545 {0x331ACDABFE94DE87, 0xE0B62E2929ABA83C}, // 1e-305 546 {0x9FF0C08B7F1D0B14, 0x8C71DCD9BA0B4925}, // 1e-304 547 {0x07ECF0AE5EE44DD9, 0xAF8E5410288E1B6F}, // 1e-303 548 {0xC9E82CD9F69D6150, 0xDB71E91432B1A24A}, // 1e-302 549 {0xBE311C083A225CD2, 0x892731AC9FAF056E}, // 1e-301 550 {0x6DBD630A48AAF406, 0xAB70FE17C79AC6CA}, // 1e-300 551 {0x092CBBCCDAD5B108, 0xD64D3D9DB981787D}, // 1e-299 552 {0x25BBF56008C58EA5, 0x85F0468293F0EB4E}, // 1e-298 553 {0xAF2AF2B80AF6F24E, 0xA76C582338ED2621}, // 1e-297 554 {0x1AF5AF660DB4AEE1, 0xD1476E2C07286FAA}, // 1e-296 555 {0x50D98D9FC890ED4D, 0x82CCA4DB847945CA}, // 1e-295 556 {0xE50FF107BAB528A0, 0xA37FCE126597973C}, // 1e-294 557 {0x1E53ED49A96272C8, 0xCC5FC196FEFD7D0C}, // 1e-293 558 {0x25E8E89C13BB0F7A, 0xFF77B1FCBEBCDC4F}, // 1e-292 559 {0x77B191618C54E9AC, 0x9FAACF3DF73609B1}, // 1e-291 560 {0xD59DF5B9EF6A2417, 0xC795830D75038C1D}, // 1e-290 561 {0x4B0573286B44AD1D, 0xF97AE3D0D2446F25}, // 1e-289 562 {0x4EE367F9430AEC32, 0x9BECCE62836AC577}, // 1e-288 563 {0x229C41F793CDA73F, 0xC2E801FB244576D5}, // 1e-287 564 {0x6B43527578C1110F, 0xF3A20279ED56D48A}, // 1e-286 565 {0x830A13896B78AAA9, 0x9845418C345644D6}, // 1e-285 566 {0x23CC986BC656D553, 0xBE5691EF416BD60C}, // 1e-284 567 {0x2CBFBE86B7EC8AA8, 0xEDEC366B11C6CB8F}, // 1e-283 568 {0x7BF7D71432F3D6A9, 0x94B3A202EB1C3F39}, // 1e-282 569 {0xDAF5CCD93FB0CC53, 0xB9E08A83A5E34F07}, // 1e-281 570 {0xD1B3400F8F9CFF68, 0xE858AD248F5C22C9}, // 1e-280 571 {0x23100809B9C21FA1, 0x91376C36D99995BE}, // 1e-279 572 {0xABD40A0C2832A78A, 0xB58547448FFFFB2D}, // 1e-278 573 {0x16C90C8F323F516C, 0xE2E69915B3FFF9F9}, // 1e-277 574 {0xAE3DA7D97F6792E3, 0x8DD01FAD907FFC3B}, // 1e-276 575 {0x99CD11CFDF41779C, 0xB1442798F49FFB4A}, // 1e-275 576 {0x40405643D711D583, 0xDD95317F31C7FA1D}, // 1e-274 577 {0x482835EA666B2572, 0x8A7D3EEF7F1CFC52}, // 1e-273 578 {0xDA3243650005EECF, 0xAD1C8EAB5EE43B66}, // 1e-272 579 {0x90BED43E40076A82, 0xD863B256369D4A40}, // 1e-271 580 {0x5A7744A6E804A291, 0x873E4F75E2224E68}, // 1e-270 581 {0x711515D0A205CB36, 0xA90DE3535AAAE202}, // 1e-269 582 {0x0D5A5B44CA873E03, 0xD3515C2831559A83}, // 1e-268 583 {0xE858790AFE9486C2, 0x8412D9991ED58091}, // 1e-267 584 {0x626E974DBE39A872, 0xA5178FFF668AE0B6}, // 1e-266 585 {0xFB0A3D212DC8128F, 0xCE5D73FF402D98E3}, // 1e-265 586 {0x7CE66634BC9D0B99, 0x80FA687F881C7F8E}, // 1e-264 587 {0x1C1FFFC1EBC44E80, 0xA139029F6A239F72}, // 1e-263 588 {0xA327FFB266B56220, 0xC987434744AC874E}, // 1e-262 589 {0x4BF1FF9F0062BAA8, 0xFBE9141915D7A922}, // 1e-261 590 {0x6F773FC3603DB4A9, 0x9D71AC8FADA6C9B5}, // 1e-260 591 {0xCB550FB4384D21D3, 0xC4CE17B399107C22}, // 1e-259 592 {0x7E2A53A146606A48, 0xF6019DA07F549B2B}, // 1e-258 593 {0x2EDA7444CBFC426D, 0x99C102844F94E0FB}, // 1e-257 594 {0xFA911155FEFB5308, 0xC0314325637A1939}, // 1e-256 595 {0x793555AB7EBA27CA, 0xF03D93EEBC589F88}, // 1e-255 596 {0x4BC1558B2F3458DE, 0x96267C7535B763B5}, // 1e-254 597 {0x9EB1AAEDFB016F16, 0xBBB01B9283253CA2}, // 1e-253 598 {0x465E15A979C1CADC, 0xEA9C227723EE8BCB}, // 1e-252 599 {0x0BFACD89EC191EC9, 0x92A1958A7675175F}, // 1e-251 600 {0xCEF980EC671F667B, 0xB749FAED14125D36}, // 1e-250 601 {0x82B7E12780E7401A, 0xE51C79A85916F484}, // 1e-249 602 {0xD1B2ECB8B0908810, 0x8F31CC0937AE58D2}, // 1e-248 603 {0x861FA7E6DCB4AA15, 0xB2FE3F0B8599EF07}, // 1e-247 604 {0x67A791E093E1D49A, 0xDFBDCECE67006AC9}, // 1e-246 605 {0xE0C8BB2C5C6D24E0, 0x8BD6A141006042BD}, // 1e-245 606 {0x58FAE9F773886E18, 0xAECC49914078536D}, // 1e-244 607 {0xAF39A475506A899E, 0xDA7F5BF590966848}, // 1e-243 608 {0x6D8406C952429603, 0x888F99797A5E012D}, // 1e-242 609 {0xC8E5087BA6D33B83, 0xAAB37FD7D8F58178}, // 1e-241 610 {0xFB1E4A9A90880A64, 0xD5605FCDCF32E1D6}, // 1e-240 611 {0x5CF2EEA09A55067F, 0x855C3BE0A17FCD26}, // 1e-239 612 {0xF42FAA48C0EA481E, 0xA6B34AD8C9DFC06F}, // 1e-238 613 {0xF13B94DAF124DA26, 0xD0601D8EFC57B08B}, // 1e-237 614 {0x76C53D08D6B70858, 0x823C12795DB6CE57}, // 1e-236 615 {0x54768C4B0C64CA6E, 0xA2CB1717B52481ED}, // 1e-235 616 {0xA9942F5DCF7DFD09, 0xCB7DDCDDA26DA268}, // 1e-234 617 {0xD3F93B35435D7C4C, 0xFE5D54150B090B02}, // 1e-233 618 {0xC47BC5014A1A6DAF, 0x9EFA548D26E5A6E1}, // 1e-232 619 {0x359AB6419CA1091B, 0xC6B8E9B0709F109A}, // 1e-231 620 {0xC30163D203C94B62, 0xF867241C8CC6D4C0}, // 1e-230 621 {0x79E0DE63425DCF1D, 0x9B407691D7FC44F8}, // 1e-229 622 {0x985915FC12F542E4, 0xC21094364DFB5636}, // 1e-228 623 {0x3E6F5B7B17B2939D, 0xF294B943E17A2BC4}, // 1e-227 624 {0xA705992CEECF9C42, 0x979CF3CA6CEC5B5A}, // 1e-226 625 {0x50C6FF782A838353, 0xBD8430BD08277231}, // 1e-225 626 {0xA4F8BF5635246428, 0xECE53CEC4A314EBD}, // 1e-224 627 {0x871B7795E136BE99, 0x940F4613AE5ED136}, // 1e-223 628 {0x28E2557B59846E3F, 0xB913179899F68584}, // 1e-222 629 {0x331AEADA2FE589CF, 0xE757DD7EC07426E5}, // 1e-221 630 {0x3FF0D2C85DEF7621, 0x9096EA6F3848984F}, // 1e-220 631 {0x0FED077A756B53A9, 0xB4BCA50B065ABE63}, // 1e-219 632 {0xD3E8495912C62894, 0xE1EBCE4DC7F16DFB}, // 1e-218 633 {0x64712DD7ABBBD95C, 0x8D3360F09CF6E4BD}, // 1e-217 634 {0xBD8D794D96AACFB3, 0xB080392CC4349DEC}, // 1e-216 635 {0xECF0D7A0FC5583A0, 0xDCA04777F541C567}, // 1e-215 636 {0xF41686C49DB57244, 0x89E42CAAF9491B60}, // 1e-214 637 {0x311C2875C522CED5, 0xAC5D37D5B79B6239}, // 1e-213 638 {0x7D633293366B828B, 0xD77485CB25823AC7}, // 1e-212 639 {0xAE5DFF9C02033197, 0x86A8D39EF77164BC}, // 1e-211 640 {0xD9F57F830283FDFC, 0xA8530886B54DBDEB}, // 1e-210 641 {0xD072DF63C324FD7B, 0xD267CAA862A12D66}, // 1e-209 642 {0x4247CB9E59F71E6D, 0x8380DEA93DA4BC60}, // 1e-208 643 {0x52D9BE85F074E608, 0xA46116538D0DEB78}, // 1e-207 644 {0x67902E276C921F8B, 0xCD795BE870516656}, // 1e-206 645 {0x00BA1CD8A3DB53B6, 0x806BD9714632DFF6}, // 1e-205 646 {0x80E8A40ECCD228A4, 0xA086CFCD97BF97F3}, // 1e-204 647 {0x6122CD128006B2CD, 0xC8A883C0FDAF7DF0}, // 1e-203 648 {0x796B805720085F81, 0xFAD2A4B13D1B5D6C}, // 1e-202 649 {0xCBE3303674053BB0, 0x9CC3A6EEC6311A63}, // 1e-201 650 {0xBEDBFC4411068A9C, 0xC3F490AA77BD60FC}, // 1e-200 651 {0xEE92FB5515482D44, 0xF4F1B4D515ACB93B}, // 1e-199 652 {0x751BDD152D4D1C4A, 0x991711052D8BF3C5}, // 1e-198 653 {0xD262D45A78A0635D, 0xBF5CD54678EEF0B6}, // 1e-197 654 {0x86FB897116C87C34, 0xEF340A98172AACE4}, // 1e-196 655 {0xD45D35E6AE3D4DA0, 0x9580869F0E7AAC0E}, // 1e-195 656 {0x8974836059CCA109, 0xBAE0A846D2195712}, // 1e-194 657 {0x2BD1A438703FC94B, 0xE998D258869FACD7}, // 1e-193 658 {0x7B6306A34627DDCF, 0x91FF83775423CC06}, // 1e-192 659 {0x1A3BC84C17B1D542, 0xB67F6455292CBF08}, // 1e-191 660 {0x20CABA5F1D9E4A93, 0xE41F3D6A7377EECA}, // 1e-190 661 {0x547EB47B7282EE9C, 0x8E938662882AF53E}, // 1e-189 662 {0xE99E619A4F23AA43, 0xB23867FB2A35B28D}, // 1e-188 663 {0x6405FA00E2EC94D4, 0xDEC681F9F4C31F31}, // 1e-187 664 {0xDE83BC408DD3DD04, 0x8B3C113C38F9F37E}, // 1e-186 665 {0x9624AB50B148D445, 0xAE0B158B4738705E}, // 1e-185 666 {0x3BADD624DD9B0957, 0xD98DDAEE19068C76}, // 1e-184 667 {0xE54CA5D70A80E5D6, 0x87F8A8D4CFA417C9}, // 1e-183 668 {0x5E9FCF4CCD211F4C, 0xA9F6D30A038D1DBC}, // 1e-182 669 {0x7647C3200069671F, 0xD47487CC8470652B}, // 1e-181 670 {0x29ECD9F40041E073, 0x84C8D4DFD2C63F3B}, // 1e-180 671 {0xF468107100525890, 0xA5FB0A17C777CF09}, // 1e-179 672 {0x7182148D4066EEB4, 0xCF79CC9DB955C2CC}, // 1e-178 673 {0xC6F14CD848405530, 0x81AC1FE293D599BF}, // 1e-177 674 {0xB8ADA00E5A506A7C, 0xA21727DB38CB002F}, // 1e-176 675 {0xA6D90811F0E4851C, 0xCA9CF1D206FDC03B}, // 1e-175 676 {0x908F4A166D1DA663, 0xFD442E4688BD304A}, // 1e-174 677 {0x9A598E4E043287FE, 0x9E4A9CEC15763E2E}, // 1e-173 678 {0x40EFF1E1853F29FD, 0xC5DD44271AD3CDBA}, // 1e-172 679 {0xD12BEE59E68EF47C, 0xF7549530E188C128}, // 1e-171 680 {0x82BB74F8301958CE, 0x9A94DD3E8CF578B9}, // 1e-170 681 {0xE36A52363C1FAF01, 0xC13A148E3032D6E7}, // 1e-169 682 {0xDC44E6C3CB279AC1, 0xF18899B1BC3F8CA1}, // 1e-168 683 {0x29AB103A5EF8C0B9, 0x96F5600F15A7B7E5}, // 1e-167 684 {0x7415D448F6B6F0E7, 0xBCB2B812DB11A5DE}, // 1e-166 685 {0x111B495B3464AD21, 0xEBDF661791D60F56}, // 1e-165 686 {0xCAB10DD900BEEC34, 0x936B9FCEBB25C995}, // 1e-164 687 {0x3D5D514F40EEA742, 0xB84687C269EF3BFB}, // 1e-163 688 {0x0CB4A5A3112A5112, 0xE65829B3046B0AFA}, // 1e-162 689 {0x47F0E785EABA72AB, 0x8FF71A0FE2C2E6DC}, // 1e-161 690 {0x59ED216765690F56, 0xB3F4E093DB73A093}, // 1e-160 691 {0x306869C13EC3532C, 0xE0F218B8D25088B8}, // 1e-159 692 {0x1E414218C73A13FB, 0x8C974F7383725573}, // 1e-158 693 {0xE5D1929EF90898FA, 0xAFBD2350644EEACF}, // 1e-157 694 {0xDF45F746B74ABF39, 0xDBAC6C247D62A583}, // 1e-156 695 {0x6B8BBA8C328EB783, 0x894BC396CE5DA772}, // 1e-155 696 {0x066EA92F3F326564, 0xAB9EB47C81F5114F}, // 1e-154 697 {0xC80A537B0EFEFEBD, 0xD686619BA27255A2}, // 1e-153 698 {0xBD06742CE95F5F36, 0x8613FD0145877585}, // 1e-152 699 {0x2C48113823B73704, 0xA798FC4196E952E7}, // 1e-151 700 {0xF75A15862CA504C5, 0xD17F3B51FCA3A7A0}, // 1e-150 701 {0x9A984D73DBE722FB, 0x82EF85133DE648C4}, // 1e-149 702 {0xC13E60D0D2E0EBBA, 0xA3AB66580D5FDAF5}, // 1e-148 703 {0x318DF905079926A8, 0xCC963FEE10B7D1B3}, // 1e-147 704 {0xFDF17746497F7052, 0xFFBBCFE994E5C61F}, // 1e-146 705 {0xFEB6EA8BEDEFA633, 0x9FD561F1FD0F9BD3}, // 1e-145 706 {0xFE64A52EE96B8FC0, 0xC7CABA6E7C5382C8}, // 1e-144 707 {0x3DFDCE7AA3C673B0, 0xF9BD690A1B68637B}, // 1e-143 708 {0x06BEA10CA65C084E, 0x9C1661A651213E2D}, // 1e-142 709 {0x486E494FCFF30A62, 0xC31BFA0FE5698DB8}, // 1e-141 710 {0x5A89DBA3C3EFCCFA, 0xF3E2F893DEC3F126}, // 1e-140 711 {0xF89629465A75E01C, 0x986DDB5C6B3A76B7}, // 1e-139 712 {0xF6BBB397F1135823, 0xBE89523386091465}, // 1e-138 713 {0x746AA07DED582E2C, 0xEE2BA6C0678B597F}, // 1e-137 714 {0xA8C2A44EB4571CDC, 0x94DB483840B717EF}, // 1e-136 715 {0x92F34D62616CE413, 0xBA121A4650E4DDEB}, // 1e-135 716 {0x77B020BAF9C81D17, 0xE896A0D7E51E1566}, // 1e-134 717 {0x0ACE1474DC1D122E, 0x915E2486EF32CD60}, // 1e-133 718 {0x0D819992132456BA, 0xB5B5ADA8AAFF80B8}, // 1e-132 719 {0x10E1FFF697ED6C69, 0xE3231912D5BF60E6}, // 1e-131 720 {0xCA8D3FFA1EF463C1, 0x8DF5EFABC5979C8F}, // 1e-130 721 {0xBD308FF8A6B17CB2, 0xB1736B96B6FD83B3}, // 1e-129 722 {0xAC7CB3F6D05DDBDE, 0xDDD0467C64BCE4A0}, // 1e-128 723 {0x6BCDF07A423AA96B, 0x8AA22C0DBEF60EE4}, // 1e-127 724 {0x86C16C98D2C953C6, 0xAD4AB7112EB3929D}, // 1e-126 725 {0xE871C7BF077BA8B7, 0xD89D64D57A607744}, // 1e-125 726 {0x11471CD764AD4972, 0x87625F056C7C4A8B}, // 1e-124 727 {0xD598E40D3DD89BCF, 0xA93AF6C6C79B5D2D}, // 1e-123 728 {0x4AFF1D108D4EC2C3, 0xD389B47879823479}, // 1e-122 729 {0xCEDF722A585139BA, 0x843610CB4BF160CB}, // 1e-121 730 {0xC2974EB4EE658828, 0xA54394FE1EEDB8FE}, // 1e-120 731 {0x733D226229FEEA32, 0xCE947A3DA6A9273E}, // 1e-119 732 {0x0806357D5A3F525F, 0x811CCC668829B887}, // 1e-118 733 {0xCA07C2DCB0CF26F7, 0xA163FF802A3426A8}, // 1e-117 734 {0xFC89B393DD02F0B5, 0xC9BCFF6034C13052}, // 1e-116 735 {0xBBAC2078D443ACE2, 0xFC2C3F3841F17C67}, // 1e-115 736 {0xD54B944B84AA4C0D, 0x9D9BA7832936EDC0}, // 1e-114 737 {0x0A9E795E65D4DF11, 0xC5029163F384A931}, // 1e-113 738 {0x4D4617B5FF4A16D5, 0xF64335BCF065D37D}, // 1e-112 739 {0x504BCED1BF8E4E45, 0x99EA0196163FA42E}, // 1e-111 740 {0xE45EC2862F71E1D6, 0xC06481FB9BCF8D39}, // 1e-110 741 {0x5D767327BB4E5A4C, 0xF07DA27A82C37088}, // 1e-109 742 {0x3A6A07F8D510F86F, 0x964E858C91BA2655}, // 1e-108 743 {0x890489F70A55368B, 0xBBE226EFB628AFEA}, // 1e-107 744 {0x2B45AC74CCEA842E, 0xEADAB0ABA3B2DBE5}, // 1e-106 745 {0x3B0B8BC90012929D, 0x92C8AE6B464FC96F}, // 1e-105 746 {0x09CE6EBB40173744, 0xB77ADA0617E3BBCB}, // 1e-104 747 {0xCC420A6A101D0515, 0xE55990879DDCAABD}, // 1e-103 748 {0x9FA946824A12232D, 0x8F57FA54C2A9EAB6}, // 1e-102 749 {0x47939822DC96ABF9, 0xB32DF8E9F3546564}, // 1e-101 750 {0x59787E2B93BC56F7, 0xDFF9772470297EBD}, // 1e-100 751 {0x57EB4EDB3C55B65A, 0x8BFBEA76C619EF36}, // 1e-99 752 {0xEDE622920B6B23F1, 0xAEFAE51477A06B03}, // 1e-98 753 {0xE95FAB368E45ECED, 0xDAB99E59958885C4}, // 1e-97 754 {0x11DBCB0218EBB414, 0x88B402F7FD75539B}, // 1e-96 755 {0xD652BDC29F26A119, 0xAAE103B5FCD2A881}, // 1e-95 756 {0x4BE76D3346F0495F, 0xD59944A37C0752A2}, // 1e-94 757 {0x6F70A4400C562DDB, 0x857FCAE62D8493A5}, // 1e-93 758 {0xCB4CCD500F6BB952, 0xA6DFBD9FB8E5B88E}, // 1e-92 759 {0x7E2000A41346A7A7, 0xD097AD07A71F26B2}, // 1e-91 760 {0x8ED400668C0C28C8, 0x825ECC24C873782F}, // 1e-90 761 {0x728900802F0F32FA, 0xA2F67F2DFA90563B}, // 1e-89 762 {0x4F2B40A03AD2FFB9, 0xCBB41EF979346BCA}, // 1e-88 763 {0xE2F610C84987BFA8, 0xFEA126B7D78186BC}, // 1e-87 764 {0x0DD9CA7D2DF4D7C9, 0x9F24B832E6B0F436}, // 1e-86 765 {0x91503D1C79720DBB, 0xC6EDE63FA05D3143}, // 1e-85 766 {0x75A44C6397CE912A, 0xF8A95FCF88747D94}, // 1e-84 767 {0xC986AFBE3EE11ABA, 0x9B69DBE1B548CE7C}, // 1e-83 768 {0xFBE85BADCE996168, 0xC24452DA229B021B}, // 1e-82 769 {0xFAE27299423FB9C3, 0xF2D56790AB41C2A2}, // 1e-81 770 {0xDCCD879FC967D41A, 0x97C560BA6B0919A5}, // 1e-80 771 {0x5400E987BBC1C920, 0xBDB6B8E905CB600F}, // 1e-79 772 {0x290123E9AAB23B68, 0xED246723473E3813}, // 1e-78 773 {0xF9A0B6720AAF6521, 0x9436C0760C86E30B}, // 1e-77 774 {0xF808E40E8D5B3E69, 0xB94470938FA89BCE}, // 1e-76 775 {0xB60B1D1230B20E04, 0xE7958CB87392C2C2}, // 1e-75 776 {0xB1C6F22B5E6F48C2, 0x90BD77F3483BB9B9}, // 1e-74 777 {0x1E38AEB6360B1AF3, 0xB4ECD5F01A4AA828}, // 1e-73 778 {0x25C6DA63C38DE1B0, 0xE2280B6C20DD5232}, // 1e-72 779 {0x579C487E5A38AD0E, 0x8D590723948A535F}, // 1e-71 780 {0x2D835A9DF0C6D851, 0xB0AF48EC79ACE837}, // 1e-70 781 {0xF8E431456CF88E65, 0xDCDB1B2798182244}, // 1e-69 782 {0x1B8E9ECB641B58FF, 0x8A08F0F8BF0F156B}, // 1e-68 783 {0xE272467E3D222F3F, 0xAC8B2D36EED2DAC5}, // 1e-67 784 {0x5B0ED81DCC6ABB0F, 0xD7ADF884AA879177}, // 1e-66 785 {0x98E947129FC2B4E9, 0x86CCBB52EA94BAEA}, // 1e-65 786 {0x3F2398D747B36224, 0xA87FEA27A539E9A5}, // 1e-64 787 {0x8EEC7F0D19A03AAD, 0xD29FE4B18E88640E}, // 1e-63 788 {0x1953CF68300424AC, 0x83A3EEEEF9153E89}, // 1e-62 789 {0x5FA8C3423C052DD7, 0xA48CEAAAB75A8E2B}, // 1e-61 790 {0x3792F412CB06794D, 0xCDB02555653131B6}, // 1e-60 791 {0xE2BBD88BBEE40BD0, 0x808E17555F3EBF11}, // 1e-59 792 {0x5B6ACEAEAE9D0EC4, 0xA0B19D2AB70E6ED6}, // 1e-58 793 {0xF245825A5A445275, 0xC8DE047564D20A8B}, // 1e-57 794 {0xEED6E2F0F0D56712, 0xFB158592BE068D2E}, // 1e-56 795 {0x55464DD69685606B, 0x9CED737BB6C4183D}, // 1e-55 796 {0xAA97E14C3C26B886, 0xC428D05AA4751E4C}, // 1e-54 797 {0xD53DD99F4B3066A8, 0xF53304714D9265DF}, // 1e-53 798 {0xE546A8038EFE4029, 0x993FE2C6D07B7FAB}, // 1e-52 799 {0xDE98520472BDD033, 0xBF8FDB78849A5F96}, // 1e-51 800 {0x963E66858F6D4440, 0xEF73D256A5C0F77C}, // 1e-50 801 {0xDDE7001379A44AA8, 0x95A8637627989AAD}, // 1e-49 802 {0x5560C018580D5D52, 0xBB127C53B17EC159}, // 1e-48 803 {0xAAB8F01E6E10B4A6, 0xE9D71B689DDE71AF}, // 1e-47 804 {0xCAB3961304CA70E8, 0x9226712162AB070D}, // 1e-46 805 {0x3D607B97C5FD0D22, 0xB6B00D69BB55C8D1}, // 1e-45 806 {0x8CB89A7DB77C506A, 0xE45C10C42A2B3B05}, // 1e-44 807 {0x77F3608E92ADB242, 0x8EB98A7A9A5B04E3}, // 1e-43 808 {0x55F038B237591ED3, 0xB267ED1940F1C61C}, // 1e-42 809 {0x6B6C46DEC52F6688, 0xDF01E85F912E37A3}, // 1e-41 810 {0x2323AC4B3B3DA015, 0x8B61313BBABCE2C6}, // 1e-40 811 {0xABEC975E0A0D081A, 0xAE397D8AA96C1B77}, // 1e-39 812 {0x96E7BD358C904A21, 0xD9C7DCED53C72255}, // 1e-38 813 {0x7E50D64177DA2E54, 0x881CEA14545C7575}, // 1e-37 814 {0xDDE50BD1D5D0B9E9, 0xAA242499697392D2}, // 1e-36 815 {0x955E4EC64B44E864, 0xD4AD2DBFC3D07787}, // 1e-35 816 {0xBD5AF13BEF0B113E, 0x84EC3C97DA624AB4}, // 1e-34 817 {0xECB1AD8AEACDD58E, 0xA6274BBDD0FADD61}, // 1e-33 818 {0x67DE18EDA5814AF2, 0xCFB11EAD453994BA}, // 1e-32 819 {0x80EACF948770CED7, 0x81CEB32C4B43FCF4}, // 1e-31 820 {0xA1258379A94D028D, 0xA2425FF75E14FC31}, // 1e-30 821 {0x096EE45813A04330, 0xCAD2F7F5359A3B3E}, // 1e-29 822 {0x8BCA9D6E188853FC, 0xFD87B5F28300CA0D}, // 1e-28 823 {0x775EA264CF55347D, 0x9E74D1B791E07E48}, // 1e-27 824 {0x95364AFE032A819D, 0xC612062576589DDA}, // 1e-26 825 {0x3A83DDBD83F52204, 0xF79687AED3EEC551}, // 1e-25 826 {0xC4926A9672793542, 0x9ABE14CD44753B52}, // 1e-24 827 {0x75B7053C0F178293, 0xC16D9A0095928A27}, // 1e-23 828 {0x5324C68B12DD6338, 0xF1C90080BAF72CB1}, // 1e-22 829 {0xD3F6FC16EBCA5E03, 0x971DA05074DA7BEE}, // 1e-21 830 {0x88F4BB1CA6BCF584, 0xBCE5086492111AEA}, // 1e-20 831 {0x2B31E9E3D06C32E5, 0xEC1E4A7DB69561A5}, // 1e-19 832 {0x3AFF322E62439FCF, 0x9392EE8E921D5D07}, // 1e-18 833 {0x09BEFEB9FAD487C2, 0xB877AA3236A4B449}, // 1e-17 834 {0x4C2EBE687989A9B3, 0xE69594BEC44DE15B}, // 1e-16 835 {0x0F9D37014BF60A10, 0x901D7CF73AB0ACD9}, // 1e-15 836 {0x538484C19EF38C94, 0xB424DC35095CD80F}, // 1e-14 837 {0x2865A5F206B06FB9, 0xE12E13424BB40E13}, // 1e-13 838 {0xF93F87B7442E45D3, 0x8CBCCC096F5088CB}, // 1e-12 839 {0xF78F69A51539D748, 0xAFEBFF0BCB24AAFE}, // 1e-11 840 {0xB573440E5A884D1B, 0xDBE6FECEBDEDD5BE}, // 1e-10 841 {0x31680A88F8953030, 0x89705F4136B4A597}, // 1e-9 842 {0xFDC20D2B36BA7C3D, 0xABCC77118461CEFC}, // 1e-8 843 {0x3D32907604691B4C, 0xD6BF94D5E57A42BC}, // 1e-7 844 {0xA63F9A49C2C1B10F, 0x8637BD05AF6C69B5}, // 1e-6 845 {0x0FCF80DC33721D53, 0xA7C5AC471B478423}, // 1e-5 846 {0xD3C36113404EA4A8, 0xD1B71758E219652B}, // 1e-4 847 {0x645A1CAC083126E9, 0x83126E978D4FDF3B}, // 1e-3 848 {0x3D70A3D70A3D70A3, 0xA3D70A3D70A3D70A}, // 1e-2 849 {0xCCCCCCCCCCCCCCCC, 0xCCCCCCCCCCCCCCCC}, // 1e-1 850 {0x0000000000000000, 0x8000000000000000}, // 1e0 851 {0x0000000000000000, 0xA000000000000000}, // 1e1 852 {0x0000000000000000, 0xC800000000000000}, // 1e2 853 {0x0000000000000000, 0xFA00000000000000}, // 1e3 854 {0x0000000000000000, 0x9C40000000000000}, // 1e4 855 {0x0000000000000000, 0xC350000000000000}, // 1e5 856 {0x0000000000000000, 0xF424000000000000}, // 1e6 857 {0x0000000000000000, 0x9896800000000000}, // 1e7 858 {0x0000000000000000, 0xBEBC200000000000}, // 1e8 859 {0x0000000000000000, 0xEE6B280000000000}, // 1e9 860 {0x0000000000000000, 0x9502F90000000000}, // 1e10 861 {0x0000000000000000, 0xBA43B74000000000}, // 1e11 862 {0x0000000000000000, 0xE8D4A51000000000}, // 1e12 863 {0x0000000000000000, 0x9184E72A00000000}, // 1e13 864 {0x0000000000000000, 0xB5E620F480000000}, // 1e14 865 {0x0000000000000000, 0xE35FA931A0000000}, // 1e15 866 {0x0000000000000000, 0x8E1BC9BF04000000}, // 1e16 867 {0x0000000000000000, 0xB1A2BC2EC5000000}, // 1e17 868 {0x0000000000000000, 0xDE0B6B3A76400000}, // 1e18 869 {0x0000000000000000, 0x8AC7230489E80000}, // 1e19 870 {0x0000000000000000, 0xAD78EBC5AC620000}, // 1e20 871 {0x0000000000000000, 0xD8D726B7177A8000}, // 1e21 872 {0x0000000000000000, 0x878678326EAC9000}, // 1e22 873 {0x0000000000000000, 0xA968163F0A57B400}, // 1e23 874 {0x0000000000000000, 0xD3C21BCECCEDA100}, // 1e24 875 {0x0000000000000000, 0x84595161401484A0}, // 1e25 876 {0x0000000000000000, 0xA56FA5B99019A5C8}, // 1e26 877 {0x0000000000000000, 0xCECB8F27F4200F3A}, // 1e27 878 {0x4000000000000000, 0x813F3978F8940984}, // 1e28 879 {0x5000000000000000, 0xA18F07D736B90BE5}, // 1e29 880 {0xA400000000000000, 0xC9F2C9CD04674EDE}, // 1e30 881 {0x4D00000000000000, 0xFC6F7C4045812296}, // 1e31 882 {0xF020000000000000, 0x9DC5ADA82B70B59D}, // 1e32 883 {0x6C28000000000000, 0xC5371912364CE305}, // 1e33 884 {0xC732000000000000, 0xF684DF56C3E01BC6}, // 1e34 885 {0x3C7F400000000000, 0x9A130B963A6C115C}, // 1e35 886 {0x4B9F100000000000, 0xC097CE7BC90715B3}, // 1e36 887 {0x1E86D40000000000, 0xF0BDC21ABB48DB20}, // 1e37 888 {0x1314448000000000, 0x96769950B50D88F4}, // 1e38 889 {0x17D955A000000000, 0xBC143FA4E250EB31}, // 1e39 890 {0x5DCFAB0800000000, 0xEB194F8E1AE525FD}, // 1e40 891 {0x5AA1CAE500000000, 0x92EFD1B8D0CF37BE}, // 1e41 892 {0xF14A3D9E40000000, 0xB7ABC627050305AD}, // 1e42 893 {0x6D9CCD05D0000000, 0xE596B7B0C643C719}, // 1e43 894 {0xE4820023A2000000, 0x8F7E32CE7BEA5C6F}, // 1e44 895 {0xDDA2802C8A800000, 0xB35DBF821AE4F38B}, // 1e45 896 {0xD50B2037AD200000, 0xE0352F62A19E306E}, // 1e46 897 {0x4526F422CC340000, 0x8C213D9DA502DE45}, // 1e47 898 {0x9670B12B7F410000, 0xAF298D050E4395D6}, // 1e48 899 {0x3C0CDD765F114000, 0xDAF3F04651D47B4C}, // 1e49 900 {0xA5880A69FB6AC800, 0x88D8762BF324CD0F}, // 1e50 901 {0x8EEA0D047A457A00, 0xAB0E93B6EFEE0053}, // 1e51 902 {0x72A4904598D6D880, 0xD5D238A4ABE98068}, // 1e52 903 {0x47A6DA2B7F864750, 0x85A36366EB71F041}, // 1e53 904 {0x999090B65F67D924, 0xA70C3C40A64E6C51}, // 1e54 905 {0xFFF4B4E3F741CF6D, 0xD0CF4B50CFE20765}, // 1e55 906 {0xBFF8F10E7A8921A4, 0x82818F1281ED449F}, // 1e56 907 {0xAFF72D52192B6A0D, 0xA321F2D7226895C7}, // 1e57 908 {0x9BF4F8A69F764490, 0xCBEA6F8CEB02BB39}, // 1e58 909 {0x02F236D04753D5B4, 0xFEE50B7025C36A08}, // 1e59 910 {0x01D762422C946590, 0x9F4F2726179A2245}, // 1e60 911 {0x424D3AD2B7B97EF5, 0xC722F0EF9D80AAD6}, // 1e61 912 {0xD2E0898765A7DEB2, 0xF8EBAD2B84E0D58B}, // 1e62 913 {0x63CC55F49F88EB2F, 0x9B934C3B330C8577}, // 1e63 914 {0x3CBF6B71C76B25FB, 0xC2781F49FFCFA6D5}, // 1e64 915 {0x8BEF464E3945EF7A, 0xF316271C7FC3908A}, // 1e65 916 {0x97758BF0E3CBB5AC, 0x97EDD871CFDA3A56}, // 1e66 917 {0x3D52EEED1CBEA317, 0xBDE94E8E43D0C8EC}, // 1e67 918 {0x4CA7AAA863EE4BDD, 0xED63A231D4C4FB27}, // 1e68 919 {0x8FE8CAA93E74EF6A, 0x945E455F24FB1CF8}, // 1e69 920 {0xB3E2FD538E122B44, 0xB975D6B6EE39E436}, // 1e70 921 {0x60DBBCA87196B616, 0xE7D34C64A9C85D44}, // 1e71 922 {0xBC8955E946FE31CD, 0x90E40FBEEA1D3A4A}, // 1e72 923 {0x6BABAB6398BDBE41, 0xB51D13AEA4A488DD}, // 1e73 924 {0xC696963C7EED2DD1, 0xE264589A4DCDAB14}, // 1e74 925 {0xFC1E1DE5CF543CA2, 0x8D7EB76070A08AEC}, // 1e75 926 {0x3B25A55F43294BCB, 0xB0DE65388CC8ADA8}, // 1e76 927 {0x49EF0EB713F39EBE, 0xDD15FE86AFFAD912}, // 1e77 928 {0x6E3569326C784337, 0x8A2DBF142DFCC7AB}, // 1e78 929 {0x49C2C37F07965404, 0xACB92ED9397BF996}, // 1e79 930 {0xDC33745EC97BE906, 0xD7E77A8F87DAF7FB}, // 1e80 931 {0x69A028BB3DED71A3, 0x86F0AC99B4E8DAFD}, // 1e81 932 {0xC40832EA0D68CE0C, 0xA8ACD7C0222311BC}, // 1e82 933 {0xF50A3FA490C30190, 0xD2D80DB02AABD62B}, // 1e83 934 {0x792667C6DA79E0FA, 0x83C7088E1AAB65DB}, // 1e84 935 {0x577001B891185938, 0xA4B8CAB1A1563F52}, // 1e85 936 {0xED4C0226B55E6F86, 0xCDE6FD5E09ABCF26}, // 1e86 937 {0x544F8158315B05B4, 0x80B05E5AC60B6178}, // 1e87 938 {0x696361AE3DB1C721, 0xA0DC75F1778E39D6}, // 1e88 939 {0x03BC3A19CD1E38E9, 0xC913936DD571C84C}, // 1e89 940 {0x04AB48A04065C723, 0xFB5878494ACE3A5F}, // 1e90 941 {0x62EB0D64283F9C76, 0x9D174B2DCEC0E47B}, // 1e91 942 {0x3BA5D0BD324F8394, 0xC45D1DF942711D9A}, // 1e92 943 {0xCA8F44EC7EE36479, 0xF5746577930D6500}, // 1e93 944 {0x7E998B13CF4E1ECB, 0x9968BF6ABBE85F20}, // 1e94 945 {0x9E3FEDD8C321A67E, 0xBFC2EF456AE276E8}, // 1e95 946 {0xC5CFE94EF3EA101E, 0xEFB3AB16C59B14A2}, // 1e96 947 {0xBBA1F1D158724A12, 0x95D04AEE3B80ECE5}, // 1e97 948 {0x2A8A6E45AE8EDC97, 0xBB445DA9CA61281F}, // 1e98 949 {0xF52D09D71A3293BD, 0xEA1575143CF97226}, // 1e99 950 {0x593C2626705F9C56, 0x924D692CA61BE758}, // 1e100 951 {0x6F8B2FB00C77836C, 0xB6E0C377CFA2E12E}, // 1e101 952 {0x0B6DFB9C0F956447, 0xE498F455C38B997A}, // 1e102 953 {0x4724BD4189BD5EAC, 0x8EDF98B59A373FEC}, // 1e103 954 {0x58EDEC91EC2CB657, 0xB2977EE300C50FE7}, // 1e104 955 {0x2F2967B66737E3ED, 0xDF3D5E9BC0F653E1}, // 1e105 956 {0xBD79E0D20082EE74, 0x8B865B215899F46C}, // 1e106 957 {0xECD8590680A3AA11, 0xAE67F1E9AEC07187}, // 1e107 958 {0xE80E6F4820CC9495, 0xDA01EE641A708DE9}, // 1e108 959 {0x3109058D147FDCDD, 0x884134FE908658B2}, // 1e109 960 {0xBD4B46F0599FD415, 0xAA51823E34A7EEDE}, // 1e110 961 {0x6C9E18AC7007C91A, 0xD4E5E2CDC1D1EA96}, // 1e111 962 {0x03E2CF6BC604DDB0, 0x850FADC09923329E}, // 1e112 963 {0x84DB8346B786151C, 0xA6539930BF6BFF45}, // 1e113 964 {0xE612641865679A63, 0xCFE87F7CEF46FF16}, // 1e114 965 {0x4FCB7E8F3F60C07E, 0x81F14FAE158C5F6E}, // 1e115 966 {0xE3BE5E330F38F09D, 0xA26DA3999AEF7749}, // 1e116 967 {0x5CADF5BFD3072CC5, 0xCB090C8001AB551C}, // 1e117 968 {0x73D9732FC7C8F7F6, 0xFDCB4FA002162A63}, // 1e118 969 {0x2867E7FDDCDD9AFA, 0x9E9F11C4014DDA7E}, // 1e119 970 {0xB281E1FD541501B8, 0xC646D63501A1511D}, // 1e120 971 {0x1F225A7CA91A4226, 0xF7D88BC24209A565}, // 1e121 972 {0x3375788DE9B06958, 0x9AE757596946075F}, // 1e122 973 {0x0052D6B1641C83AE, 0xC1A12D2FC3978937}, // 1e123 974 {0xC0678C5DBD23A49A, 0xF209787BB47D6B84}, // 1e124 975 {0xF840B7BA963646E0, 0x9745EB4D50CE6332}, // 1e125 976 {0xB650E5A93BC3D898, 0xBD176620A501FBFF}, // 1e126 977 {0xA3E51F138AB4CEBE, 0xEC5D3FA8CE427AFF}, // 1e127 978 {0xC66F336C36B10137, 0x93BA47C980E98CDF}, // 1e128 979 {0xB80B0047445D4184, 0xB8A8D9BBE123F017}, // 1e129 980 {0xA60DC059157491E5, 0xE6D3102AD96CEC1D}, // 1e130 981 {0x87C89837AD68DB2F, 0x9043EA1AC7E41392}, // 1e131 982 {0x29BABE4598C311FB, 0xB454E4A179DD1877}, // 1e132 983 {0xF4296DD6FEF3D67A, 0xE16A1DC9D8545E94}, // 1e133 984 {0x1899E4A65F58660C, 0x8CE2529E2734BB1D}, // 1e134 985 {0x5EC05DCFF72E7F8F, 0xB01AE745B101E9E4}, // 1e135 986 {0x76707543F4FA1F73, 0xDC21A1171D42645D}, // 1e136 987 {0x6A06494A791C53A8, 0x899504AE72497EBA}, // 1e137 988 {0x0487DB9D17636892, 0xABFA45DA0EDBDE69}, // 1e138 989 {0x45A9D2845D3C42B6, 0xD6F8D7509292D603}, // 1e139 990 {0x0B8A2392BA45A9B2, 0x865B86925B9BC5C2}, // 1e140 991 {0x8E6CAC7768D7141E, 0xA7F26836F282B732}, // 1e141 992 {0x3207D795430CD926, 0xD1EF0244AF2364FF}, // 1e142 993 {0x7F44E6BD49E807B8, 0x8335616AED761F1F}, // 1e143 994 {0x5F16206C9C6209A6, 0xA402B9C5A8D3A6E7}, // 1e144 995 {0x36DBA887C37A8C0F, 0xCD036837130890A1}, // 1e145 996 {0xC2494954DA2C9789, 0x802221226BE55A64}, // 1e146 997 {0xF2DB9BAA10B7BD6C, 0xA02AA96B06DEB0FD}, // 1e147 998 {0x6F92829494E5ACC7, 0xC83553C5C8965D3D}, // 1e148 999 {0xCB772339BA1F17F9, 0xFA42A8B73ABBF48C}, // 1e149 1000 {0xFF2A760414536EFB, 0x9C69A97284B578D7}, // 1e150 1001 {0xFEF5138519684ABA, 0xC38413CF25E2D70D}, // 1e151 1002 {0x7EB258665FC25D69, 0xF46518C2EF5B8CD1}, // 1e152 1003 {0xEF2F773FFBD97A61, 0x98BF2F79D5993802}, // 1e153 1004 {0xAAFB550FFACFD8FA, 0xBEEEFB584AFF8603}, // 1e154 1005 {0x95BA2A53F983CF38, 0xEEAABA2E5DBF6784}, // 1e155 1006 {0xDD945A747BF26183, 0x952AB45CFA97A0B2}, // 1e156 1007 {0x94F971119AEEF9E4, 0xBA756174393D88DF}, // 1e157 1008 {0x7A37CD5601AAB85D, 0xE912B9D1478CEB17}, // 1e158 1009 {0xAC62E055C10AB33A, 0x91ABB422CCB812EE}, // 1e159 1010 {0x577B986B314D6009, 0xB616A12B7FE617AA}, // 1e160 1011 {0xED5A7E85FDA0B80B, 0xE39C49765FDF9D94}, // 1e161 1012 {0x14588F13BE847307, 0x8E41ADE9FBEBC27D}, // 1e162 1013 {0x596EB2D8AE258FC8, 0xB1D219647AE6B31C}, // 1e163 1014 {0x6FCA5F8ED9AEF3BB, 0xDE469FBD99A05FE3}, // 1e164 1015 {0x25DE7BB9480D5854, 0x8AEC23D680043BEE}, // 1e165 1016 {0xAF561AA79A10AE6A, 0xADA72CCC20054AE9}, // 1e166 1017 {0x1B2BA1518094DA04, 0xD910F7FF28069DA4}, // 1e167 1018 {0x90FB44D2F05D0842, 0x87AA9AFF79042286}, // 1e168 1019 {0x353A1607AC744A53, 0xA99541BF57452B28}, // 1e169 1020 {0x42889B8997915CE8, 0xD3FA922F2D1675F2}, // 1e170 1021 {0x69956135FEBADA11, 0x847C9B5D7C2E09B7}, // 1e171 1022 {0x43FAB9837E699095, 0xA59BC234DB398C25}, // 1e172 1023 {0x94F967E45E03F4BB, 0xCF02B2C21207EF2E}, // 1e173 1024 {0x1D1BE0EEBAC278F5, 0x8161AFB94B44F57D}, // 1e174 1025 {0x6462D92A69731732, 0xA1BA1BA79E1632DC}, // 1e175 1026 {0x7D7B8F7503CFDCFE, 0xCA28A291859BBF93}, // 1e176 1027 {0x5CDA735244C3D43E, 0xFCB2CB35E702AF78}, // 1e177 1028 {0x3A0888136AFA64A7, 0x9DEFBF01B061ADAB}, // 1e178 1029 {0x088AAA1845B8FDD0, 0xC56BAEC21C7A1916}, // 1e179 1030 {0x8AAD549E57273D45, 0xF6C69A72A3989F5B}, // 1e180 1031 {0x36AC54E2F678864B, 0x9A3C2087A63F6399}, // 1e181 1032 {0x84576A1BB416A7DD, 0xC0CB28A98FCF3C7F}, // 1e182 1033 {0x656D44A2A11C51D5, 0xF0FDF2D3F3C30B9F}, // 1e183 1034 {0x9F644AE5A4B1B325, 0x969EB7C47859E743}, // 1e184 1035 {0x873D5D9F0DDE1FEE, 0xBC4665B596706114}, // 1e185 1036 {0xA90CB506D155A7EA, 0xEB57FF22FC0C7959}, // 1e186 1037 {0x09A7F12442D588F2, 0x9316FF75DD87CBD8}, // 1e187 1038 {0x0C11ED6D538AEB2F, 0xB7DCBF5354E9BECE}, // 1e188 1039 {0x8F1668C8A86DA5FA, 0xE5D3EF282A242E81}, // 1e189 1040 {0xF96E017D694487BC, 0x8FA475791A569D10}, // 1e190 1041 {0x37C981DCC395A9AC, 0xB38D92D760EC4455}, // 1e191 1042 {0x85BBE253F47B1417, 0xE070F78D3927556A}, // 1e192 1043 {0x93956D7478CCEC8E, 0x8C469AB843B89562}, // 1e193 1044 {0x387AC8D1970027B2, 0xAF58416654A6BABB}, // 1e194 1045 {0x06997B05FCC0319E, 0xDB2E51BFE9D0696A}, // 1e195 1046 {0x441FECE3BDF81F03, 0x88FCF317F22241E2}, // 1e196 1047 {0xD527E81CAD7626C3, 0xAB3C2FDDEEAAD25A}, // 1e197 1048 {0x8A71E223D8D3B074, 0xD60B3BD56A5586F1}, // 1e198 1049 {0xF6872D5667844E49, 0x85C7056562757456}, // 1e199 1050 {0xB428F8AC016561DB, 0xA738C6BEBB12D16C}, // 1e200 1051 {0xE13336D701BEBA52, 0xD106F86E69D785C7}, // 1e201 1052 {0xECC0024661173473, 0x82A45B450226B39C}, // 1e202 1053 {0x27F002D7F95D0190, 0xA34D721642B06084}, // 1e203 1054 {0x31EC038DF7B441F4, 0xCC20CE9BD35C78A5}, // 1e204 1055 {0x7E67047175A15271, 0xFF290242C83396CE}, // 1e205 1056 {0x0F0062C6E984D386, 0x9F79A169BD203E41}, // 1e206 1057 {0x52C07B78A3E60868, 0xC75809C42C684DD1}, // 1e207 1058 {0xA7709A56CCDF8A82, 0xF92E0C3537826145}, // 1e208 1059 {0x88A66076400BB691, 0x9BBCC7A142B17CCB}, // 1e209 1060 {0x6ACFF893D00EA435, 0xC2ABF989935DDBFE}, // 1e210 1061 {0x0583F6B8C4124D43, 0xF356F7EBF83552FE}, // 1e211 1062 {0xC3727A337A8B704A, 0x98165AF37B2153DE}, // 1e212 1063 {0x744F18C0592E4C5C, 0xBE1BF1B059E9A8D6}, // 1e213 1064 {0x1162DEF06F79DF73, 0xEDA2EE1C7064130C}, // 1e214 1065 {0x8ADDCB5645AC2BA8, 0x9485D4D1C63E8BE7}, // 1e215 1066 {0x6D953E2BD7173692, 0xB9A74A0637CE2EE1}, // 1e216 1067 {0xC8FA8DB6CCDD0437, 0xE8111C87C5C1BA99}, // 1e217 1068 {0x1D9C9892400A22A2, 0x910AB1D4DB9914A0}, // 1e218 1069 {0x2503BEB6D00CAB4B, 0xB54D5E4A127F59C8}, // 1e219 1070 {0x2E44AE64840FD61D, 0xE2A0B5DC971F303A}, // 1e220 1071 {0x5CEAECFED289E5D2, 0x8DA471A9DE737E24}, // 1e221 1072 {0x7425A83E872C5F47, 0xB10D8E1456105DAD}, // 1e222 1073 {0xD12F124E28F77719, 0xDD50F1996B947518}, // 1e223 1074 {0x82BD6B70D99AAA6F, 0x8A5296FFE33CC92F}, // 1e224 1075 {0x636CC64D1001550B, 0xACE73CBFDC0BFB7B}, // 1e225 1076 {0x3C47F7E05401AA4E, 0xD8210BEFD30EFA5A}, // 1e226 1077 {0x65ACFAEC34810A71, 0x8714A775E3E95C78}, // 1e227 1078 {0x7F1839A741A14D0D, 0xA8D9D1535CE3B396}, // 1e228 1079 {0x1EDE48111209A050, 0xD31045A8341CA07C}, // 1e229 1080 {0x934AED0AAB460432, 0x83EA2B892091E44D}, // 1e230 1081 {0xF81DA84D5617853F, 0xA4E4B66B68B65D60}, // 1e231 1082 {0x36251260AB9D668E, 0xCE1DE40642E3F4B9}, // 1e232 1083 {0xC1D72B7C6B426019, 0x80D2AE83E9CE78F3}, // 1e233 1084 {0xB24CF65B8612F81F, 0xA1075A24E4421730}, // 1e234 1085 {0xDEE033F26797B627, 0xC94930AE1D529CFC}, // 1e235 1086 {0x169840EF017DA3B1, 0xFB9B7CD9A4A7443C}, // 1e236 1087 {0x8E1F289560EE864E, 0x9D412E0806E88AA5}, // 1e237 1088 {0xF1A6F2BAB92A27E2, 0xC491798A08A2AD4E}, // 1e238 1089 {0xAE10AF696774B1DB, 0xF5B5D7EC8ACB58A2}, // 1e239 1090 {0xACCA6DA1E0A8EF29, 0x9991A6F3D6BF1765}, // 1e240 1091 {0x17FD090A58D32AF3, 0xBFF610B0CC6EDD3F}, // 1e241 1092 {0xDDFC4B4CEF07F5B0, 0xEFF394DCFF8A948E}, // 1e242 1093 {0x4ABDAF101564F98E, 0x95F83D0A1FB69CD9}, // 1e243 1094 {0x9D6D1AD41ABE37F1, 0xBB764C4CA7A4440F}, // 1e244 1095 {0x84C86189216DC5ED, 0xEA53DF5FD18D5513}, // 1e245 1096 {0x32FD3CF5B4E49BB4, 0x92746B9BE2F8552C}, // 1e246 1097 {0x3FBC8C33221DC2A1, 0xB7118682DBB66A77}, // 1e247 1098 {0x0FABAF3FEAA5334A, 0xE4D5E82392A40515}, // 1e248 1099 {0x29CB4D87F2A7400E, 0x8F05B1163BA6832D}, // 1e249 1100 {0x743E20E9EF511012, 0xB2C71D5BCA9023F8}, // 1e250 1101 {0x914DA9246B255416, 0xDF78E4B2BD342CF6}, // 1e251 1102 {0x1AD089B6C2F7548E, 0x8BAB8EEFB6409C1A}, // 1e252 1103 {0xA184AC2473B529B1, 0xAE9672ABA3D0C320}, // 1e253 1104 {0xC9E5D72D90A2741E, 0xDA3C0F568CC4F3E8}, // 1e254 1105 {0x7E2FA67C7A658892, 0x8865899617FB1871}, // 1e255 1106 {0xDDBB901B98FEEAB7, 0xAA7EEBFB9DF9DE8D}, // 1e256 1107 {0x552A74227F3EA565, 0xD51EA6FA85785631}, // 1e257 1108 {0xD53A88958F87275F, 0x8533285C936B35DE}, // 1e258 1109 {0x8A892ABAF368F137, 0xA67FF273B8460356}, // 1e259 1110 {0x2D2B7569B0432D85, 0xD01FEF10A657842C}, // 1e260 1111 {0x9C3B29620E29FC73, 0x8213F56A67F6B29B}, // 1e261 1112 {0x8349F3BA91B47B8F, 0xA298F2C501F45F42}, // 1e262 1113 {0x241C70A936219A73, 0xCB3F2F7642717713}, // 1e263 1114 {0xED238CD383AA0110, 0xFE0EFB53D30DD4D7}, // 1e264 1115 {0xF4363804324A40AA, 0x9EC95D1463E8A506}, // 1e265 1116 {0xB143C6053EDCD0D5, 0xC67BB4597CE2CE48}, // 1e266 1117 {0xDD94B7868E94050A, 0xF81AA16FDC1B81DA}, // 1e267 1118 {0xCA7CF2B4191C8326, 0x9B10A4E5E9913128}, // 1e268 1119 {0xFD1C2F611F63A3F0, 0xC1D4CE1F63F57D72}, // 1e269 1120 {0xBC633B39673C8CEC, 0xF24A01A73CF2DCCF}, // 1e270 1121 {0xD5BE0503E085D813, 0x976E41088617CA01}, // 1e271 1122 {0x4B2D8644D8A74E18, 0xBD49D14AA79DBC82}, // 1e272 1123 {0xDDF8E7D60ED1219E, 0xEC9C459D51852BA2}, // 1e273 1124 {0xCABB90E5C942B503, 0x93E1AB8252F33B45}, // 1e274 1125 {0x3D6A751F3B936243, 0xB8DA1662E7B00A17}, // 1e275 1126 {0x0CC512670A783AD4, 0xE7109BFBA19C0C9D}, // 1e276 1127 {0x27FB2B80668B24C5, 0x906A617D450187E2}, // 1e277 1128 {0xB1F9F660802DEDF6, 0xB484F9DC9641E9DA}, // 1e278 1129 {0x5E7873F8A0396973, 0xE1A63853BBD26451}, // 1e279 1130 {0xDB0B487B6423E1E8, 0x8D07E33455637EB2}, // 1e280 1131 {0x91CE1A9A3D2CDA62, 0xB049DC016ABC5E5F}, // 1e281 1132 {0x7641A140CC7810FB, 0xDC5C5301C56B75F7}, // 1e282 1133 {0xA9E904C87FCB0A9D, 0x89B9B3E11B6329BA}, // 1e283 1134 {0x546345FA9FBDCD44, 0xAC2820D9623BF429}, // 1e284 1135 {0xA97C177947AD4095, 0xD732290FBACAF133}, // 1e285 1136 {0x49ED8EABCCCC485D, 0x867F59A9D4BED6C0}, // 1e286 1137 {0x5C68F256BFFF5A74, 0xA81F301449EE8C70}, // 1e287 1138 {0x73832EEC6FFF3111, 0xD226FC195C6A2F8C}, // 1e288 1139 {0xC831FD53C5FF7EAB, 0x83585D8FD9C25DB7}, // 1e289 1140 {0xBA3E7CA8B77F5E55, 0xA42E74F3D032F525}, // 1e290 1141 {0x28CE1BD2E55F35EB, 0xCD3A1230C43FB26F}, // 1e291 1142 {0x7980D163CF5B81B3, 0x80444B5E7AA7CF85}, // 1e292 1143 {0xD7E105BCC332621F, 0xA0555E361951C366}, // 1e293 1144 {0x8DD9472BF3FEFAA7, 0xC86AB5C39FA63440}, // 1e294 1145 {0xB14F98F6F0FEB951, 0xFA856334878FC150}, // 1e295 1146 {0x6ED1BF9A569F33D3, 0x9C935E00D4B9D8D2}, // 1e296 1147 {0x0A862F80EC4700C8, 0xC3B8358109E84F07}, // 1e297 1148 {0xCD27BB612758C0FA, 0xF4A642E14C6262C8}, // 1e298 1149 {0x8038D51CB897789C, 0x98E7E9CCCFBD7DBD}, // 1e299 1150 {0xE0470A63E6BD56C3, 0xBF21E44003ACDD2C}, // 1e300 1151 {0x1858CCFCE06CAC74, 0xEEEA5D5004981478}, // 1e301 1152 {0x0F37801E0C43EBC8, 0x95527A5202DF0CCB}, // 1e302 1153 {0xD30560258F54E6BA, 0xBAA718E68396CFFD}, // 1e303 1154 {0x47C6B82EF32A2069, 0xE950DF20247C83FD}, // 1e304 1155 {0x4CDC331D57FA5441, 0x91D28B7416CDD27E}, // 1e305 1156 {0xE0133FE4ADF8E952, 0xB6472E511C81471D}, // 1e306 1157 {0x58180FDDD97723A6, 0xE3D8F9E563A198E5}, // 1e307 1158 {0x570F09EAA7EA7648, 0x8E679C2F5E44FF8F}, // 1e308 1159 {0x2CD2CC6551E513DA, 0xB201833B35D63F73}, // 1e309 1160 {0xF8077F7EA65E58D1, 0xDE81E40A034BCF4F}, // 1e310 1161 {0xFB04AFAF27FAF782, 0x8B112E86420F6191}, // 1e311 1162 {0x79C5DB9AF1F9B563, 0xADD57A27D29339F6}, // 1e312 1163 {0x18375281AE7822BC, 0xD94AD8B1C7380874}, // 1e313 1164 {0x8F2293910D0B15B5, 0x87CEC76F1C830548}, // 1e314 1165 {0xB2EB3875504DDB22, 0xA9C2794AE3A3C69A}, // 1e315 1166 {0x5FA60692A46151EB, 0xD433179D9C8CB841}, // 1e316 1167 {0xDBC7C41BA6BCD333, 0x849FEEC281D7F328}, // 1e317 1168 {0x12B9B522906C0800, 0xA5C7EA73224DEFF3}, // 1e318 1169 {0xD768226B34870A00, 0xCF39E50FEAE16BEF}, // 1e319 1170 {0xE6A1158300D46640, 0x81842F29F2CCE375}, // 1e320 1171 {0x60495AE3C1097FD0, 0xA1E53AF46F801C53}, // 1e321 1172 {0x385BB19CB14BDFC4, 0xCA5E89B18B602368}, // 1e322 1173 {0x46729E03DD9ED7B5, 0xFCF62C1DEE382C42}, // 1e323 1174 {0x6C07A2C26A8346D1, 0x9E19DB92B4E31BA9}, // 1e324 1175 {0xC7098B7305241885, 0xC5A05277621BE293}, // 1e325 1176 {0xB8CBEE4FC66D1EA7, 0xF70867153AA2DB38}, // 1e326 1177 {0x737F74F1DC043328, 0x9A65406D44A5C903}, // 1e327 1178 {0x505F522E53053FF2, 0xC0FE908895CF3B44}, // 1e328 1179 {0x647726B9E7C68FEF, 0xF13E34AABB430A15}, // 1e329 1180 {0x5ECA783430DC19F5, 0x96C6E0EAB509E64D}, // 1e330 1181 {0xB67D16413D132072, 0xBC789925624C5FE0}, // 1e331 1182 {0xE41C5BD18C57E88F, 0xEB96BF6EBADF77D8}, // 1e332 1183 {0x8E91B962F7B6F159, 0x933E37A534CBAAE7}, // 1e333 1184 {0x723627BBB5A4ADB0, 0xB80DC58E81FE95A1}, // 1e334 1185 {0xCEC3B1AAA30DD91C, 0xE61136F2227E3B09}, // 1e335 1186 {0x213A4F0AA5E8A7B1, 0x8FCAC257558EE4E6}, // 1e336 1187 {0xA988E2CD4F62D19D, 0xB3BD72ED2AF29E1F}, // 1e337 1188 {0x93EB1B80A33B8605, 0xE0ACCFA875AF45A7}, // 1e338 1189 {0xBC72F130660533C3, 0x8C6C01C9498D8B88}, // 1e339 1190 {0xEB8FAD7C7F8680B4, 0xAF87023B9BF0EE6A}, // 1e340 1191 {0xA67398DB9F6820E1, 0xDB68C2CA82ED2A05}, // 1e341 1192 {0x88083F8943A1148C, 0x892179BE91D43A43}, // 1e342 1193 {0x6A0A4F6B948959B0, 0xAB69D82E364948D4}, // 1e343 1194 {0x848CE34679ABB01C, 0xD6444E39C3DB9B09}, // 1e344 1195 {0xF2D80E0C0C0B4E11, 0x85EAB0E41A6940E5}, // 1e345 1196 {0x6F8E118F0F0E2195, 0xA7655D1D2103911F}, // 1e346 1197 {0x4B7195F2D2D1A9FB, 0xD13EB46469447567}, // 1e347 1198 } 1199 1200 func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) { 1201 if q == 0 { 1202 // P == 1<<63 1203 return m << 6, e2 - 6, true 1204 } 1205 if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q { 1206 // This never happens due to the range of float32/float64 exponent 1207 panic("mult64bitPow10: power of 10 is out of range") 1208 } 1209 pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1] 1210 if q < 0 { 1211 // Inverse powers of ten must be rounded up. 1212 pow += 1 1213 } 1214 hi, lo := bits.Mul64(uint64(m), pow) 1215 e2 += mulByLog10Log2(q) - 63 + 57 1216 return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0 1217 } 1218 1219 // mult128bitPow10 takes a floating-point input with a 55-bit 1220 // mantissa and multiplies it with 10^q. The resulting mantissa 1221 // is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables. 1222 // It is typically 63 or 64-bit wide. 1223 // The returned boolean is true is all trimmed bits were zero. 1224 // 1225 // That is: 1226 // 1227 // m*2^e2 * round(10^q) = resM * 2^resE + ε 1228 // exact = ε == 0 1229 func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) { 1230 if q == 0 { 1231 // P == 1<<127 1232 return m << 8, e2 - 8, true 1233 } 1234 if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q { 1235 // This never happens due to the range of float32/float64 exponent 1236 panic("mult128bitPow10: power of 10 is out of range") 1237 } 1238 pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10] 1239 if q < 0 { 1240 // Inverse powers of ten must be rounded up. 1241 pow[0] += 1 1242 } 1243 e2 += mulByLog10Log2(q) - 127 + 119 1244 1245 // long multiplication 1246 l1, l0 := bits.Mul64(m, pow[0]) 1247 h1, h0 := bits.Mul64(m, pow[1]) 1248 mid, carry := bits.Add64(l1, h0, 0) 1249 h1 += carry 1250 return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0 1251 } 1252 1253 func divisibleByPower5(m uint64, k int) bool { 1254 if m == 0 { 1255 return true 1256 } 1257 for i := 0; i < k; i++ { 1258 if m%5 != 0 { 1259 return false 1260 } 1261 m /= 5 1262 } 1263 return true 1264 } 1265 1266 // divmod1e9 computes quotient and remainder of division by 1e9, 1267 // avoiding runtime uint64 division on 32-bit platforms. 1268 func divmod1e9(x uint64) (uint32, uint32) { 1269 if !host32bit { 1270 return uint32(x / 1e9), uint32(x % 1e9) 1271 } 1272 // Use the same sequence of operations as the amd64 compiler. 1273 hi, _ := bits.Mul64(x>>1, 0x89705f4136b4a598) // binary digits of 1e-9 1274 q := hi >> 28 1275 return uint32(q), uint32(x - q*1e9) 1276 }