github.com/ice-blockchain/go/src@v0.0.0-20240403114104-1564d284e521/compress/flate/deflate.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package flate 6 7 import ( 8 "errors" 9 "fmt" 10 "io" 11 "math" 12 ) 13 14 const ( 15 NoCompression = 0 16 BestSpeed = 1 17 BestCompression = 9 18 DefaultCompression = -1 19 20 // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman 21 // entropy encoding. This mode is useful in compressing data that has 22 // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4) 23 // that lacks an entropy encoder. Compression gains are achieved when 24 // certain bytes in the input stream occur more frequently than others. 25 // 26 // Note that HuffmanOnly produces a compressed output that is 27 // RFC 1951 compliant. That is, any valid DEFLATE decompressor will 28 // continue to be able to decompress this output. 29 HuffmanOnly = -2 30 ) 31 32 const ( 33 logWindowSize = 15 34 windowSize = 1 << logWindowSize 35 windowMask = windowSize - 1 36 37 // The LZ77 step produces a sequence of literal tokens and <length, offset> 38 // pair tokens. The offset is also known as distance. The underlying wire 39 // format limits the range of lengths and offsets. For example, there are 40 // 256 legitimate lengths: those in the range [3, 258]. This package's 41 // compressor uses a higher minimum match length, enabling optimizations 42 // such as finding matches via 32-bit loads and compares. 43 baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5 44 minMatchLength = 4 // The smallest match length that the compressor actually emits 45 maxMatchLength = 258 // The largest match length 46 baseMatchOffset = 1 // The smallest match offset 47 maxMatchOffset = 1 << 15 // The largest match offset 48 49 // The maximum number of tokens we put into a single flate block, just to 50 // stop things from getting too large. 51 maxFlateBlockTokens = 1 << 14 52 maxStoreBlockSize = 65535 53 hashBits = 17 // After 17 performance degrades 54 hashSize = 1 << hashBits 55 hashMask = (1 << hashBits) - 1 56 maxHashOffset = 1 << 24 57 58 skipNever = math.MaxInt32 59 ) 60 61 type compressionLevel struct { 62 level, good, lazy, nice, chain, fastSkipHashing int 63 } 64 65 var levels = []compressionLevel{ 66 {0, 0, 0, 0, 0, 0}, // NoCompression. 67 {1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go. 68 // For levels 2-3 we don't bother trying with lazy matches. 69 {2, 4, 0, 16, 8, 5}, 70 {3, 4, 0, 32, 32, 6}, 71 // Levels 4-9 use increasingly more lazy matching 72 // and increasingly stringent conditions for "good enough". 73 {4, 4, 4, 16, 16, skipNever}, 74 {5, 8, 16, 32, 32, skipNever}, 75 {6, 8, 16, 128, 128, skipNever}, 76 {7, 8, 32, 128, 256, skipNever}, 77 {8, 32, 128, 258, 1024, skipNever}, 78 {9, 32, 258, 258, 4096, skipNever}, 79 } 80 81 type compressor struct { 82 compressionLevel 83 84 w *huffmanBitWriter 85 bulkHasher func([]byte, []uint32) 86 87 // compression algorithm 88 fill func(*compressor, []byte) int // copy data to window 89 step func(*compressor) // process window 90 sync bool // requesting flush 91 bestSpeed *deflateFast // Encoder for BestSpeed 92 93 // Input hash chains 94 // hashHead[hashValue] contains the largest inputIndex with the specified hash value 95 // If hashHead[hashValue] is within the current window, then 96 // hashPrev[hashHead[hashValue] & windowMask] contains the previous index 97 // with the same hash value. 98 chainHead int 99 hashHead [hashSize]uint32 100 hashPrev [windowSize]uint32 101 hashOffset int 102 103 // input window: unprocessed data is window[index:windowEnd] 104 index int 105 window []byte 106 windowEnd int 107 blockStart int // window index where current tokens start 108 byteAvailable bool // if true, still need to process window[index-1]. 109 110 // queued output tokens 111 tokens []token 112 113 // deflate state 114 length int 115 offset int 116 maxInsertIndex int 117 err error 118 119 // hashMatch must be able to contain hashes for the maximum match length. 120 hashMatch [maxMatchLength - 1]uint32 121 } 122 123 func (d *compressor) fillDeflate(b []byte) int { 124 if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) { 125 // shift the window by windowSize 126 copy(d.window, d.window[windowSize:2*windowSize]) 127 d.index -= windowSize 128 d.windowEnd -= windowSize 129 if d.blockStart >= windowSize { 130 d.blockStart -= windowSize 131 } else { 132 d.blockStart = math.MaxInt32 133 } 134 d.hashOffset += windowSize 135 if d.hashOffset > maxHashOffset { 136 delta := d.hashOffset - 1 137 d.hashOffset -= delta 138 d.chainHead -= delta 139 140 // Iterate over slices instead of arrays to avoid copying 141 // the entire table onto the stack (Issue #18625). 142 for i, v := range d.hashPrev[:] { 143 if int(v) > delta { 144 d.hashPrev[i] = uint32(int(v) - delta) 145 } else { 146 d.hashPrev[i] = 0 147 } 148 } 149 for i, v := range d.hashHead[:] { 150 if int(v) > delta { 151 d.hashHead[i] = uint32(int(v) - delta) 152 } else { 153 d.hashHead[i] = 0 154 } 155 } 156 } 157 } 158 n := copy(d.window[d.windowEnd:], b) 159 d.windowEnd += n 160 return n 161 } 162 163 func (d *compressor) writeBlock(tokens []token, index int) error { 164 if index > 0 { 165 var window []byte 166 if d.blockStart <= index { 167 window = d.window[d.blockStart:index] 168 } 169 d.blockStart = index 170 d.w.writeBlock(tokens, false, window) 171 return d.w.err 172 } 173 return nil 174 } 175 176 // fillWindow will fill the current window with the supplied 177 // dictionary and calculate all hashes. 178 // This is much faster than doing a full encode. 179 // Should only be used after a reset. 180 func (d *compressor) fillWindow(b []byte) { 181 // Do not fill window if we are in store-only mode. 182 if d.compressionLevel.level < 2 { 183 return 184 } 185 if d.index != 0 || d.windowEnd != 0 { 186 panic("internal error: fillWindow called with stale data") 187 } 188 189 // If we are given too much, cut it. 190 if len(b) > windowSize { 191 b = b[len(b)-windowSize:] 192 } 193 // Add all to window. 194 n := copy(d.window, b) 195 196 // Calculate 256 hashes at the time (more L1 cache hits) 197 loops := (n + 256 - minMatchLength) / 256 198 for j := 0; j < loops; j++ { 199 index := j * 256 200 end := index + 256 + minMatchLength - 1 201 if end > n { 202 end = n 203 } 204 toCheck := d.window[index:end] 205 dstSize := len(toCheck) - minMatchLength + 1 206 207 if dstSize <= 0 { 208 continue 209 } 210 211 dst := d.hashMatch[:dstSize] 212 d.bulkHasher(toCheck, dst) 213 for i, val := range dst { 214 di := i + index 215 hh := &d.hashHead[val&hashMask] 216 // Get previous value with the same hash. 217 // Our chain should point to the previous value. 218 d.hashPrev[di&windowMask] = *hh 219 // Set the head of the hash chain to us. 220 *hh = uint32(di + d.hashOffset) 221 } 222 } 223 // Update window information. 224 d.windowEnd = n 225 d.index = n 226 } 227 228 // Try to find a match starting at index whose length is greater than prevSize. 229 // We only look at chainCount possibilities before giving up. 230 func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) { 231 minMatchLook := maxMatchLength 232 if lookahead < minMatchLook { 233 minMatchLook = lookahead 234 } 235 236 win := d.window[0 : pos+minMatchLook] 237 238 // We quit when we get a match that's at least nice long 239 nice := len(win) - pos 240 if d.nice < nice { 241 nice = d.nice 242 } 243 244 // If we've got a match that's good enough, only look in 1/4 the chain. 245 tries := d.chain 246 length = prevLength 247 if length >= d.good { 248 tries >>= 2 249 } 250 251 wEnd := win[pos+length] 252 wPos := win[pos:] 253 minIndex := pos - windowSize 254 255 for i := prevHead; tries > 0; tries-- { 256 if wEnd == win[i+length] { 257 n := matchLen(win[i:], wPos, minMatchLook) 258 259 if n > length && (n > minMatchLength || pos-i <= 4096) { 260 length = n 261 offset = pos - i 262 ok = true 263 if n >= nice { 264 // The match is good enough that we don't try to find a better one. 265 break 266 } 267 wEnd = win[pos+n] 268 } 269 } 270 if i == minIndex { 271 // hashPrev[i & windowMask] has already been overwritten, so stop now. 272 break 273 } 274 i = int(d.hashPrev[i&windowMask]) - d.hashOffset 275 if i < minIndex || i < 0 { 276 break 277 } 278 } 279 return 280 } 281 282 func (d *compressor) writeStoredBlock(buf []byte) error { 283 if d.w.writeStoredHeader(len(buf), false); d.w.err != nil { 284 return d.w.err 285 } 286 d.w.writeBytes(buf) 287 return d.w.err 288 } 289 290 const hashmul = 0x1e35a7bd 291 292 // hash4 returns a hash representation of the first 4 bytes 293 // of the supplied slice. 294 // The caller must ensure that len(b) >= 4. 295 func hash4(b []byte) uint32 { 296 return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits) 297 } 298 299 // bulkHash4 will compute hashes using the same 300 // algorithm as hash4. 301 func bulkHash4(b []byte, dst []uint32) { 302 if len(b) < minMatchLength { 303 return 304 } 305 hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 306 dst[0] = (hb * hashmul) >> (32 - hashBits) 307 end := len(b) - minMatchLength + 1 308 for i := 1; i < end; i++ { 309 hb = (hb << 8) | uint32(b[i+3]) 310 dst[i] = (hb * hashmul) >> (32 - hashBits) 311 } 312 } 313 314 // matchLen returns the number of matching bytes in a and b 315 // up to length 'max'. Both slices must be at least 'max' 316 // bytes in size. 317 func matchLen(a, b []byte, max int) int { 318 a = a[:max] 319 b = b[:len(a)] 320 for i, av := range a { 321 if b[i] != av { 322 return i 323 } 324 } 325 return max 326 } 327 328 // encSpeed will compress and store the currently added data, 329 // if enough has been accumulated or we at the end of the stream. 330 // Any error that occurred will be in d.err 331 func (d *compressor) encSpeed() { 332 // We only compress if we have maxStoreBlockSize. 333 if d.windowEnd < maxStoreBlockSize { 334 if !d.sync { 335 return 336 } 337 338 // Handle small sizes. 339 if d.windowEnd < 128 { 340 switch { 341 case d.windowEnd == 0: 342 return 343 case d.windowEnd <= 16: 344 d.err = d.writeStoredBlock(d.window[:d.windowEnd]) 345 default: 346 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 347 d.err = d.w.err 348 } 349 d.windowEnd = 0 350 d.bestSpeed.reset() 351 return 352 } 353 354 } 355 // Encode the block. 356 d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd]) 357 358 // If we removed less than 1/16th, Huffman compress the block. 359 if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) { 360 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 361 } else { 362 d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd]) 363 } 364 d.err = d.w.err 365 d.windowEnd = 0 366 } 367 368 func (d *compressor) initDeflate() { 369 d.window = make([]byte, 2*windowSize) 370 d.hashOffset = 1 371 d.tokens = make([]token, 0, maxFlateBlockTokens+1) 372 d.length = minMatchLength - 1 373 d.offset = 0 374 d.byteAvailable = false 375 d.index = 0 376 d.chainHead = -1 377 d.bulkHasher = bulkHash4 378 } 379 380 func (d *compressor) deflate() { 381 if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync { 382 return 383 } 384 385 d.maxInsertIndex = d.windowEnd - (minMatchLength - 1) 386 387 Loop: 388 for { 389 if d.index > d.windowEnd { 390 panic("index > windowEnd") 391 } 392 lookahead := d.windowEnd - d.index 393 if lookahead < minMatchLength+maxMatchLength { 394 if !d.sync { 395 break Loop 396 } 397 if d.index > d.windowEnd { 398 panic("index > windowEnd") 399 } 400 if lookahead == 0 { 401 // Flush current output block if any. 402 if d.byteAvailable { 403 // There is still one pending token that needs to be flushed 404 d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1]))) 405 d.byteAvailable = false 406 } 407 if len(d.tokens) > 0 { 408 if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { 409 return 410 } 411 d.tokens = d.tokens[:0] 412 } 413 break Loop 414 } 415 } 416 if d.index < d.maxInsertIndex { 417 // Update the hash 418 hash := hash4(d.window[d.index : d.index+minMatchLength]) 419 hh := &d.hashHead[hash&hashMask] 420 d.chainHead = int(*hh) 421 d.hashPrev[d.index&windowMask] = uint32(d.chainHead) 422 *hh = uint32(d.index + d.hashOffset) 423 } 424 prevLength := d.length 425 prevOffset := d.offset 426 d.length = minMatchLength - 1 427 d.offset = 0 428 minIndex := d.index - windowSize 429 if minIndex < 0 { 430 minIndex = 0 431 } 432 433 if d.chainHead-d.hashOffset >= minIndex && 434 (d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 || 435 d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) { 436 if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok { 437 d.length = newLength 438 d.offset = newOffset 439 } 440 } 441 if d.fastSkipHashing != skipNever && d.length >= minMatchLength || 442 d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength { 443 // There was a match at the previous step, and the current match is 444 // not better. Output the previous match. 445 if d.fastSkipHashing != skipNever { 446 d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset))) 447 } else { 448 d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset))) 449 } 450 // Insert in the hash table all strings up to the end of the match. 451 // index and index-1 are already inserted. If there is not enough 452 // lookahead, the last two strings are not inserted into the hash 453 // table. 454 if d.length <= d.fastSkipHashing { 455 var newIndex int 456 if d.fastSkipHashing != skipNever { 457 newIndex = d.index + d.length 458 } else { 459 newIndex = d.index + prevLength - 1 460 } 461 index := d.index 462 for index++; index < newIndex; index++ { 463 if index < d.maxInsertIndex { 464 hash := hash4(d.window[index : index+minMatchLength]) 465 // Get previous value with the same hash. 466 // Our chain should point to the previous value. 467 hh := &d.hashHead[hash&hashMask] 468 d.hashPrev[index&windowMask] = *hh 469 // Set the head of the hash chain to us. 470 *hh = uint32(index + d.hashOffset) 471 } 472 } 473 d.index = index 474 475 if d.fastSkipHashing == skipNever { 476 d.byteAvailable = false 477 d.length = minMatchLength - 1 478 } 479 } else { 480 // For matches this long, we don't bother inserting each individual 481 // item into the table. 482 d.index += d.length 483 } 484 if len(d.tokens) == maxFlateBlockTokens { 485 // The block includes the current character 486 if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { 487 return 488 } 489 d.tokens = d.tokens[:0] 490 } 491 } else { 492 if d.fastSkipHashing != skipNever || d.byteAvailable { 493 i := d.index - 1 494 if d.fastSkipHashing != skipNever { 495 i = d.index 496 } 497 d.tokens = append(d.tokens, literalToken(uint32(d.window[i]))) 498 if len(d.tokens) == maxFlateBlockTokens { 499 if d.err = d.writeBlock(d.tokens, i+1); d.err != nil { 500 return 501 } 502 d.tokens = d.tokens[:0] 503 } 504 } 505 d.index++ 506 if d.fastSkipHashing == skipNever { 507 d.byteAvailable = true 508 } 509 } 510 } 511 } 512 513 func (d *compressor) fillStore(b []byte) int { 514 n := copy(d.window[d.windowEnd:], b) 515 d.windowEnd += n 516 return n 517 } 518 519 func (d *compressor) store() { 520 if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) { 521 d.err = d.writeStoredBlock(d.window[:d.windowEnd]) 522 d.windowEnd = 0 523 } 524 } 525 526 // storeHuff compresses and stores the currently added data 527 // when the d.window is full or we are at the end of the stream. 528 // Any error that occurred will be in d.err 529 func (d *compressor) storeHuff() { 530 if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 { 531 return 532 } 533 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 534 d.err = d.w.err 535 d.windowEnd = 0 536 } 537 538 func (d *compressor) write(b []byte) (n int, err error) { 539 if d.err != nil { 540 return 0, d.err 541 } 542 n = len(b) 543 for len(b) > 0 { 544 d.step(d) 545 b = b[d.fill(d, b):] 546 if d.err != nil { 547 return 0, d.err 548 } 549 } 550 return n, nil 551 } 552 553 func (d *compressor) syncFlush() error { 554 if d.err != nil { 555 return d.err 556 } 557 d.sync = true 558 d.step(d) 559 if d.err == nil { 560 d.w.writeStoredHeader(0, false) 561 d.w.flush() 562 d.err = d.w.err 563 } 564 d.sync = false 565 return d.err 566 } 567 568 func (d *compressor) init(w io.Writer, level int) (err error) { 569 d.w = newHuffmanBitWriter(w) 570 571 switch { 572 case level == NoCompression: 573 d.window = make([]byte, maxStoreBlockSize) 574 d.fill = (*compressor).fillStore 575 d.step = (*compressor).store 576 case level == HuffmanOnly: 577 d.window = make([]byte, maxStoreBlockSize) 578 d.fill = (*compressor).fillStore 579 d.step = (*compressor).storeHuff 580 case level == BestSpeed: 581 d.compressionLevel = levels[level] 582 d.window = make([]byte, maxStoreBlockSize) 583 d.fill = (*compressor).fillStore 584 d.step = (*compressor).encSpeed 585 d.bestSpeed = newDeflateFast() 586 d.tokens = make([]token, maxStoreBlockSize) 587 case level == DefaultCompression: 588 level = 6 589 fallthrough 590 case 2 <= level && level <= 9: 591 d.compressionLevel = levels[level] 592 d.initDeflate() 593 d.fill = (*compressor).fillDeflate 594 d.step = (*compressor).deflate 595 default: 596 return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level) 597 } 598 return nil 599 } 600 601 func (d *compressor) reset(w io.Writer) { 602 d.w.reset(w) 603 d.sync = false 604 d.err = nil 605 switch d.compressionLevel.level { 606 case NoCompression: 607 d.windowEnd = 0 608 case BestSpeed: 609 d.windowEnd = 0 610 d.tokens = d.tokens[:0] 611 d.bestSpeed.reset() 612 default: 613 d.chainHead = -1 614 for i := range d.hashHead { 615 d.hashHead[i] = 0 616 } 617 for i := range d.hashPrev { 618 d.hashPrev[i] = 0 619 } 620 d.hashOffset = 1 621 d.index, d.windowEnd = 0, 0 622 d.blockStart, d.byteAvailable = 0, false 623 d.tokens = d.tokens[:0] 624 d.length = minMatchLength - 1 625 d.offset = 0 626 d.maxInsertIndex = 0 627 } 628 } 629 630 func (d *compressor) close() error { 631 if d.err == errWriterClosed { 632 return nil 633 } 634 if d.err != nil { 635 return d.err 636 } 637 d.sync = true 638 d.step(d) 639 if d.err != nil { 640 return d.err 641 } 642 if d.w.writeStoredHeader(0, true); d.w.err != nil { 643 return d.w.err 644 } 645 d.w.flush() 646 if d.w.err != nil { 647 return d.w.err 648 } 649 d.err = errWriterClosed 650 return nil 651 } 652 653 // NewWriter returns a new [Writer] compressing data at the given level. 654 // Following zlib, levels range from 1 ([BestSpeed]) to 9 ([BestCompression]); 655 // higher levels typically run slower but compress more. Level 0 656 // ([NoCompression]) does not attempt any compression; it only adds the 657 // necessary DEFLATE framing. 658 // Level -1 ([DefaultCompression]) uses the default compression level. 659 // Level -2 ([HuffmanOnly]) will use Huffman compression only, giving 660 // a very fast compression for all types of input, but sacrificing considerable 661 // compression efficiency. 662 // 663 // If level is in the range [-2, 9] then the error returned will be nil. 664 // Otherwise the error returned will be non-nil. 665 func NewWriter(w io.Writer, level int) (*Writer, error) { 666 var dw Writer 667 if err := dw.d.init(w, level); err != nil { 668 return nil, err 669 } 670 return &dw, nil 671 } 672 673 // NewWriterDict is like [NewWriter] but initializes the new 674 // [Writer] with a preset dictionary. The returned [Writer] behaves 675 // as if the dictionary had been written to it without producing 676 // any compressed output. The compressed data written to w 677 // can only be decompressed by a [Reader] initialized with the 678 // same dictionary. 679 func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) { 680 dw := &dictWriter{w} 681 zw, err := NewWriter(dw, level) 682 if err != nil { 683 return nil, err 684 } 685 zw.d.fillWindow(dict) 686 zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method. 687 return zw, err 688 } 689 690 type dictWriter struct { 691 w io.Writer 692 } 693 694 func (w *dictWriter) Write(b []byte) (n int, err error) { 695 return w.w.Write(b) 696 } 697 698 var errWriterClosed = errors.New("flate: closed writer") 699 700 // A Writer takes data written to it and writes the compressed 701 // form of that data to an underlying writer (see [NewWriter]). 702 type Writer struct { 703 d compressor 704 dict []byte 705 } 706 707 // Write writes data to w, which will eventually write the 708 // compressed form of data to its underlying writer. 709 func (w *Writer) Write(data []byte) (n int, err error) { 710 return w.d.write(data) 711 } 712 713 // Flush flushes any pending data to the underlying writer. 714 // It is useful mainly in compressed network protocols, to ensure that 715 // a remote reader has enough data to reconstruct a packet. 716 // Flush does not return until the data has been written. 717 // Calling Flush when there is no pending data still causes the [Writer] 718 // to emit a sync marker of at least 4 bytes. 719 // If the underlying writer returns an error, Flush returns that error. 720 // 721 // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH. 722 func (w *Writer) Flush() error { 723 // For more about flushing: 724 // https://www.bolet.org/~pornin/deflate-flush.html 725 return w.d.syncFlush() 726 } 727 728 // Close flushes and closes the writer. 729 func (w *Writer) Close() error { 730 return w.d.close() 731 } 732 733 // Reset discards the writer's state and makes it equivalent to 734 // the result of [NewWriter] or [NewWriterDict] called with dst 735 // and w's level and dictionary. 736 func (w *Writer) Reset(dst io.Writer) { 737 if dw, ok := w.d.w.writer.(*dictWriter); ok { 738 // w was created with NewWriterDict 739 dw.w = dst 740 w.d.reset(dw) 741 w.d.fillWindow(w.dict) 742 } else { 743 // w was created with NewWriter 744 w.d.reset(dst) 745 } 746 }