github.com/ice-blockchain/go/src@v0.0.0-20240403114104-1564d284e521/compress/flate/huffman_code.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package flate 6 7 import ( 8 "math" 9 "math/bits" 10 "sort" 11 ) 12 13 // hcode is a huffman code with a bit code and bit length. 14 type hcode struct { 15 code, len uint16 16 } 17 18 type huffmanEncoder struct { 19 codes []hcode 20 freqcache []literalNode 21 bitCount [17]int32 22 lns byLiteral // stored to avoid repeated allocation in generate 23 lfs byFreq // stored to avoid repeated allocation in generate 24 } 25 26 type literalNode struct { 27 literal uint16 28 freq int32 29 } 30 31 // A levelInfo describes the state of the constructed tree for a given depth. 32 type levelInfo struct { 33 // Our level. for better printing 34 level int32 35 36 // The frequency of the last node at this level 37 lastFreq int32 38 39 // The frequency of the next character to add to this level 40 nextCharFreq int32 41 42 // The frequency of the next pair (from level below) to add to this level. 43 // Only valid if the "needed" value of the next lower level is 0. 44 nextPairFreq int32 45 46 // The number of chains remaining to generate for this level before moving 47 // up to the next level 48 needed int32 49 } 50 51 // set sets the code and length of an hcode. 52 func (h *hcode) set(code uint16, length uint16) { 53 h.len = length 54 h.code = code 55 } 56 57 func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} } 58 59 func newHuffmanEncoder(size int) *huffmanEncoder { 60 return &huffmanEncoder{codes: make([]hcode, size)} 61 } 62 63 // Generates a HuffmanCode corresponding to the fixed literal table. 64 func generateFixedLiteralEncoding() *huffmanEncoder { 65 h := newHuffmanEncoder(maxNumLit) 66 codes := h.codes 67 var ch uint16 68 for ch = 0; ch < maxNumLit; ch++ { 69 var bits uint16 70 var size uint16 71 switch { 72 case ch < 144: 73 // size 8, 000110000 .. 10111111 74 bits = ch + 48 75 size = 8 76 case ch < 256: 77 // size 9, 110010000 .. 111111111 78 bits = ch + 400 - 144 79 size = 9 80 case ch < 280: 81 // size 7, 0000000 .. 0010111 82 bits = ch - 256 83 size = 7 84 default: 85 // size 8, 11000000 .. 11000111 86 bits = ch + 192 - 280 87 size = 8 88 } 89 codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size} 90 } 91 return h 92 } 93 94 func generateFixedOffsetEncoding() *huffmanEncoder { 95 h := newHuffmanEncoder(30) 96 codes := h.codes 97 for ch := range codes { 98 codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5} 99 } 100 return h 101 } 102 103 var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding() 104 var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding() 105 106 func (h *huffmanEncoder) bitLength(freq []int32) int { 107 var total int 108 for i, f := range freq { 109 if f != 0 { 110 total += int(f) * int(h.codes[i].len) 111 } 112 } 113 return total 114 } 115 116 const maxBitsLimit = 16 117 118 // bitCounts computes the number of literals assigned to each bit size in the Huffman encoding. 119 // It is only called when list.length >= 3. 120 // The cases of 0, 1, and 2 literals are handled by special case code. 121 // 122 // list is an array of the literals with non-zero frequencies 123 // and their associated frequencies. The array is in order of increasing 124 // frequency and has as its last element a special element with frequency 125 // MaxInt32. 126 // 127 // maxBits is the maximum number of bits that should be used to encode any literal. 128 // It must be less than 16. 129 // 130 // bitCounts returns an integer slice in which slice[i] indicates the number of literals 131 // that should be encoded in i bits. 132 func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 { 133 if maxBits >= maxBitsLimit { 134 panic("flate: maxBits too large") 135 } 136 n := int32(len(list)) 137 list = list[0 : n+1] 138 list[n] = maxNode() 139 140 // The tree can't have greater depth than n - 1, no matter what. This 141 // saves a little bit of work in some small cases 142 if maxBits > n-1 { 143 maxBits = n - 1 144 } 145 146 // Create information about each of the levels. 147 // A bogus "Level 0" whose sole purpose is so that 148 // level1.prev.needed==0. This makes level1.nextPairFreq 149 // be a legitimate value that never gets chosen. 150 var levels [maxBitsLimit]levelInfo 151 // leafCounts[i] counts the number of literals at the left 152 // of ancestors of the rightmost node at level i. 153 // leafCounts[i][j] is the number of literals at the left 154 // of the level j ancestor. 155 var leafCounts [maxBitsLimit][maxBitsLimit]int32 156 157 for level := int32(1); level <= maxBits; level++ { 158 // For every level, the first two items are the first two characters. 159 // We initialize the levels as if we had already figured this out. 160 levels[level] = levelInfo{ 161 level: level, 162 lastFreq: list[1].freq, 163 nextCharFreq: list[2].freq, 164 nextPairFreq: list[0].freq + list[1].freq, 165 } 166 leafCounts[level][level] = 2 167 if level == 1 { 168 levels[level].nextPairFreq = math.MaxInt32 169 } 170 } 171 172 // We need a total of 2*n - 2 items at top level and have already generated 2. 173 levels[maxBits].needed = 2*n - 4 174 175 level := maxBits 176 for { 177 l := &levels[level] 178 if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { 179 // We've run out of both leafs and pairs. 180 // End all calculations for this level. 181 // To make sure we never come back to this level or any lower level, 182 // set nextPairFreq impossibly large. 183 l.needed = 0 184 levels[level+1].nextPairFreq = math.MaxInt32 185 level++ 186 continue 187 } 188 189 prevFreq := l.lastFreq 190 if l.nextCharFreq < l.nextPairFreq { 191 // The next item on this row is a leaf node. 192 n := leafCounts[level][level] + 1 193 l.lastFreq = l.nextCharFreq 194 // Lower leafCounts are the same of the previous node. 195 leafCounts[level][level] = n 196 l.nextCharFreq = list[n].freq 197 } else { 198 // The next item on this row is a pair from the previous row. 199 // nextPairFreq isn't valid until we generate two 200 // more values in the level below 201 l.lastFreq = l.nextPairFreq 202 // Take leaf counts from the lower level, except counts[level] remains the same. 203 copy(leafCounts[level][:level], leafCounts[level-1][:level]) 204 levels[l.level-1].needed = 2 205 } 206 207 if l.needed--; l.needed == 0 { 208 // We've done everything we need to do for this level. 209 // Continue calculating one level up. Fill in nextPairFreq 210 // of that level with the sum of the two nodes we've just calculated on 211 // this level. 212 if l.level == maxBits { 213 // All done! 214 break 215 } 216 levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq 217 level++ 218 } else { 219 // If we stole from below, move down temporarily to replenish it. 220 for levels[level-1].needed > 0 { 221 level-- 222 } 223 } 224 } 225 226 // Somethings is wrong if at the end, the top level is null or hasn't used 227 // all of the leaves. 228 if leafCounts[maxBits][maxBits] != n { 229 panic("leafCounts[maxBits][maxBits] != n") 230 } 231 232 bitCount := h.bitCount[:maxBits+1] 233 bits := 1 234 counts := &leafCounts[maxBits] 235 for level := maxBits; level > 0; level-- { 236 // chain.leafCount gives the number of literals requiring at least "bits" 237 // bits to encode. 238 bitCount[bits] = counts[level] - counts[level-1] 239 bits++ 240 } 241 return bitCount 242 } 243 244 // Look at the leaves and assign them a bit count and an encoding as specified 245 // in RFC 1951 3.2.2 246 func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) { 247 code := uint16(0) 248 for n, bits := range bitCount { 249 code <<= 1 250 if n == 0 || bits == 0 { 251 continue 252 } 253 // The literals list[len(list)-bits] .. list[len(list)-bits] 254 // are encoded using "bits" bits, and get the values 255 // code, code + 1, .... The code values are 256 // assigned in literal order (not frequency order). 257 chunk := list[len(list)-int(bits):] 258 259 h.lns.sort(chunk) 260 for _, node := range chunk { 261 h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)} 262 code++ 263 } 264 list = list[0 : len(list)-int(bits)] 265 } 266 } 267 268 // Update this Huffman Code object to be the minimum code for the specified frequency count. 269 // 270 // freq is an array of frequencies, in which freq[i] gives the frequency of literal i. 271 // maxBits The maximum number of bits to use for any literal. 272 func (h *huffmanEncoder) generate(freq []int32, maxBits int32) { 273 if h.freqcache == nil { 274 // Allocate a reusable buffer with the longest possible frequency table. 275 // Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit. 276 // The largest of these is maxNumLit, so we allocate for that case. 277 h.freqcache = make([]literalNode, maxNumLit+1) 278 } 279 list := h.freqcache[:len(freq)+1] 280 // Number of non-zero literals 281 count := 0 282 // Set list to be the set of all non-zero literals and their frequencies 283 for i, f := range freq { 284 if f != 0 { 285 list[count] = literalNode{uint16(i), f} 286 count++ 287 } else { 288 h.codes[i].len = 0 289 } 290 } 291 292 list = list[:count] 293 if count <= 2 { 294 // Handle the small cases here, because they are awkward for the general case code. With 295 // two or fewer literals, everything has bit length 1. 296 for i, node := range list { 297 // "list" is in order of increasing literal value. 298 h.codes[node.literal].set(uint16(i), 1) 299 } 300 return 301 } 302 h.lfs.sort(list) 303 304 // Get the number of literals for each bit count 305 bitCount := h.bitCounts(list, maxBits) 306 // And do the assignment 307 h.assignEncodingAndSize(bitCount, list) 308 } 309 310 type byLiteral []literalNode 311 312 func (s *byLiteral) sort(a []literalNode) { 313 *s = byLiteral(a) 314 sort.Sort(s) 315 } 316 317 func (s byLiteral) Len() int { return len(s) } 318 319 func (s byLiteral) Less(i, j int) bool { 320 return s[i].literal < s[j].literal 321 } 322 323 func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] } 324 325 type byFreq []literalNode 326 327 func (s *byFreq) sort(a []literalNode) { 328 *s = byFreq(a) 329 sort.Sort(s) 330 } 331 332 func (s byFreq) Len() int { return len(s) } 333 334 func (s byFreq) Less(i, j int) bool { 335 if s[i].freq == s[j].freq { 336 return s[i].literal < s[j].literal 337 } 338 return s[i].freq < s[j].freq 339 } 340 341 func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] } 342 343 func reverseBits(number uint16, bitLength byte) uint16 { 344 return bits.Reverse16(number << (16 - bitLength)) 345 }