github.com/ice-blockchain/go/src@v0.0.0-20240403114104-1564d284e521/crypto/internal/bigmod/nat.go (about)

     1  // Copyright 2021 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package bigmod
     6  
     7  import (
     8  	"encoding/binary"
     9  	"errors"
    10  	"math/big"
    11  	"math/bits"
    12  )
    13  
    14  const (
    15  	// _W is the size in bits of our limbs.
    16  	_W = bits.UintSize
    17  	// _S is the size in bytes of our limbs.
    18  	_S = _W / 8
    19  )
    20  
    21  // choice represents a constant-time boolean. The value of choice is always
    22  // either 1 or 0. We use an int instead of bool in order to make decisions in
    23  // constant time by turning it into a mask.
    24  type choice uint
    25  
    26  func not(c choice) choice { return 1 ^ c }
    27  
    28  const yes = choice(1)
    29  const no = choice(0)
    30  
    31  // ctMask is all 1s if on is yes, and all 0s otherwise.
    32  func ctMask(on choice) uint { return -uint(on) }
    33  
    34  // ctEq returns 1 if x == y, and 0 otherwise. The execution time of this
    35  // function does not depend on its inputs.
    36  func ctEq(x, y uint) choice {
    37  	// If x != y, then either x - y or y - x will generate a carry.
    38  	_, c1 := bits.Sub(x, y, 0)
    39  	_, c2 := bits.Sub(y, x, 0)
    40  	return not(choice(c1 | c2))
    41  }
    42  
    43  // Nat represents an arbitrary natural number
    44  //
    45  // Each Nat has an announced length, which is the number of limbs it has stored.
    46  // Operations on this number are allowed to leak this length, but will not leak
    47  // any information about the values contained in those limbs.
    48  type Nat struct {
    49  	// limbs is little-endian in base 2^W with W = bits.UintSize.
    50  	limbs []uint
    51  }
    52  
    53  // preallocTarget is the size in bits of the numbers used to implement the most
    54  // common and most performant RSA key size. It's also enough to cover some of
    55  // the operations of key sizes up to 4096.
    56  const preallocTarget = 2048
    57  const preallocLimbs = (preallocTarget + _W - 1) / _W
    58  
    59  // NewNat returns a new nat with a size of zero, just like new(Nat), but with
    60  // the preallocated capacity to hold a number of up to preallocTarget bits.
    61  // NewNat inlines, so the allocation can live on the stack.
    62  func NewNat() *Nat {
    63  	limbs := make([]uint, 0, preallocLimbs)
    64  	return &Nat{limbs}
    65  }
    66  
    67  // expand expands x to n limbs, leaving its value unchanged.
    68  func (x *Nat) expand(n int) *Nat {
    69  	if len(x.limbs) > n {
    70  		panic("bigmod: internal error: shrinking nat")
    71  	}
    72  	if cap(x.limbs) < n {
    73  		newLimbs := make([]uint, n)
    74  		copy(newLimbs, x.limbs)
    75  		x.limbs = newLimbs
    76  		return x
    77  	}
    78  	extraLimbs := x.limbs[len(x.limbs):n]
    79  	for i := range extraLimbs {
    80  		extraLimbs[i] = 0
    81  	}
    82  	x.limbs = x.limbs[:n]
    83  	return x
    84  }
    85  
    86  // reset returns a zero nat of n limbs, reusing x's storage if n <= cap(x.limbs).
    87  func (x *Nat) reset(n int) *Nat {
    88  	if cap(x.limbs) < n {
    89  		x.limbs = make([]uint, n)
    90  		return x
    91  	}
    92  	for i := range x.limbs {
    93  		x.limbs[i] = 0
    94  	}
    95  	x.limbs = x.limbs[:n]
    96  	return x
    97  }
    98  
    99  // set assigns x = y, optionally resizing x to the appropriate size.
   100  func (x *Nat) set(y *Nat) *Nat {
   101  	x.reset(len(y.limbs))
   102  	copy(x.limbs, y.limbs)
   103  	return x
   104  }
   105  
   106  // setBig assigns x = n, optionally resizing n to the appropriate size.
   107  //
   108  // The announced length of x is set based on the actual bit size of the input,
   109  // ignoring leading zeroes.
   110  func (x *Nat) setBig(n *big.Int) *Nat {
   111  	limbs := n.Bits()
   112  	x.reset(len(limbs))
   113  	for i := range limbs {
   114  		x.limbs[i] = uint(limbs[i])
   115  	}
   116  	return x
   117  }
   118  
   119  // Bytes returns x as a zero-extended big-endian byte slice. The size of the
   120  // slice will match the size of m.
   121  //
   122  // x must have the same size as m and it must be reduced modulo m.
   123  func (x *Nat) Bytes(m *Modulus) []byte {
   124  	i := m.Size()
   125  	bytes := make([]byte, i)
   126  	for _, limb := range x.limbs {
   127  		for j := 0; j < _S; j++ {
   128  			i--
   129  			if i < 0 {
   130  				if limb == 0 {
   131  					break
   132  				}
   133  				panic("bigmod: modulus is smaller than nat")
   134  			}
   135  			bytes[i] = byte(limb)
   136  			limb >>= 8
   137  		}
   138  	}
   139  	return bytes
   140  }
   141  
   142  // SetBytes assigns x = b, where b is a slice of big-endian bytes.
   143  // SetBytes returns an error if b >= m.
   144  //
   145  // The output will be resized to the size of m and overwritten.
   146  func (x *Nat) SetBytes(b []byte, m *Modulus) (*Nat, error) {
   147  	if err := x.setBytes(b, m); err != nil {
   148  		return nil, err
   149  	}
   150  	if x.cmpGeq(m.nat) == yes {
   151  		return nil, errors.New("input overflows the modulus")
   152  	}
   153  	return x, nil
   154  }
   155  
   156  // SetOverflowingBytes assigns x = b, where b is a slice of big-endian bytes.
   157  // SetOverflowingBytes returns an error if b has a longer bit length than m, but
   158  // reduces overflowing values up to 2^⌈log2(m)⌉ - 1.
   159  //
   160  // The output will be resized to the size of m and overwritten.
   161  func (x *Nat) SetOverflowingBytes(b []byte, m *Modulus) (*Nat, error) {
   162  	if err := x.setBytes(b, m); err != nil {
   163  		return nil, err
   164  	}
   165  	leading := _W - bitLen(x.limbs[len(x.limbs)-1])
   166  	if leading < m.leading {
   167  		return nil, errors.New("input overflows the modulus size")
   168  	}
   169  	x.maybeSubtractModulus(no, m)
   170  	return x, nil
   171  }
   172  
   173  // bigEndianUint returns the contents of buf interpreted as a
   174  // big-endian encoded uint value.
   175  func bigEndianUint(buf []byte) uint {
   176  	if _W == 64 {
   177  		return uint(binary.BigEndian.Uint64(buf))
   178  	}
   179  	return uint(binary.BigEndian.Uint32(buf))
   180  }
   181  
   182  func (x *Nat) setBytes(b []byte, m *Modulus) error {
   183  	x.resetFor(m)
   184  	i, k := len(b), 0
   185  	for k < len(x.limbs) && i >= _S {
   186  		x.limbs[k] = bigEndianUint(b[i-_S : i])
   187  		i -= _S
   188  		k++
   189  	}
   190  	for s := 0; s < _W && k < len(x.limbs) && i > 0; s += 8 {
   191  		x.limbs[k] |= uint(b[i-1]) << s
   192  		i--
   193  	}
   194  	if i > 0 {
   195  		return errors.New("input overflows the modulus size")
   196  	}
   197  	return nil
   198  }
   199  
   200  // Equal returns 1 if x == y, and 0 otherwise.
   201  //
   202  // Both operands must have the same announced length.
   203  func (x *Nat) Equal(y *Nat) choice {
   204  	// Eliminate bounds checks in the loop.
   205  	size := len(x.limbs)
   206  	xLimbs := x.limbs[:size]
   207  	yLimbs := y.limbs[:size]
   208  
   209  	equal := yes
   210  	for i := 0; i < size; i++ {
   211  		equal &= ctEq(xLimbs[i], yLimbs[i])
   212  	}
   213  	return equal
   214  }
   215  
   216  // IsZero returns 1 if x == 0, and 0 otherwise.
   217  func (x *Nat) IsZero() choice {
   218  	// Eliminate bounds checks in the loop.
   219  	size := len(x.limbs)
   220  	xLimbs := x.limbs[:size]
   221  
   222  	zero := yes
   223  	for i := 0; i < size; i++ {
   224  		zero &= ctEq(xLimbs[i], 0)
   225  	}
   226  	return zero
   227  }
   228  
   229  // cmpGeq returns 1 if x >= y, and 0 otherwise.
   230  //
   231  // Both operands must have the same announced length.
   232  func (x *Nat) cmpGeq(y *Nat) choice {
   233  	// Eliminate bounds checks in the loop.
   234  	size := len(x.limbs)
   235  	xLimbs := x.limbs[:size]
   236  	yLimbs := y.limbs[:size]
   237  
   238  	var c uint
   239  	for i := 0; i < size; i++ {
   240  		_, c = bits.Sub(xLimbs[i], yLimbs[i], c)
   241  	}
   242  	// If there was a carry, then subtracting y underflowed, so
   243  	// x is not greater than or equal to y.
   244  	return not(choice(c))
   245  }
   246  
   247  // assign sets x <- y if on == 1, and does nothing otherwise.
   248  //
   249  // Both operands must have the same announced length.
   250  func (x *Nat) assign(on choice, y *Nat) *Nat {
   251  	// Eliminate bounds checks in the loop.
   252  	size := len(x.limbs)
   253  	xLimbs := x.limbs[:size]
   254  	yLimbs := y.limbs[:size]
   255  
   256  	mask := ctMask(on)
   257  	for i := 0; i < size; i++ {
   258  		xLimbs[i] ^= mask & (xLimbs[i] ^ yLimbs[i])
   259  	}
   260  	return x
   261  }
   262  
   263  // add computes x += y and returns the carry.
   264  //
   265  // Both operands must have the same announced length.
   266  func (x *Nat) add(y *Nat) (c uint) {
   267  	// Eliminate bounds checks in the loop.
   268  	size := len(x.limbs)
   269  	xLimbs := x.limbs[:size]
   270  	yLimbs := y.limbs[:size]
   271  
   272  	for i := 0; i < size; i++ {
   273  		xLimbs[i], c = bits.Add(xLimbs[i], yLimbs[i], c)
   274  	}
   275  	return
   276  }
   277  
   278  // sub computes x -= y. It returns the borrow of the subtraction.
   279  //
   280  // Both operands must have the same announced length.
   281  func (x *Nat) sub(y *Nat) (c uint) {
   282  	// Eliminate bounds checks in the loop.
   283  	size := len(x.limbs)
   284  	xLimbs := x.limbs[:size]
   285  	yLimbs := y.limbs[:size]
   286  
   287  	for i := 0; i < size; i++ {
   288  		xLimbs[i], c = bits.Sub(xLimbs[i], yLimbs[i], c)
   289  	}
   290  	return
   291  }
   292  
   293  // Modulus is used for modular arithmetic, precomputing relevant constants.
   294  //
   295  // Moduli are assumed to be odd numbers. Moduli can also leak the exact
   296  // number of bits needed to store their value, and are stored without padding.
   297  //
   298  // Their actual value is still kept secret.
   299  type Modulus struct {
   300  	// The underlying natural number for this modulus.
   301  	//
   302  	// This will be stored without any padding, and shouldn't alias with any
   303  	// other natural number being used.
   304  	nat     *Nat
   305  	leading int  // number of leading zeros in the modulus
   306  	m0inv   uint // -nat.limbs[0]⁻¹ mod _W
   307  	rr      *Nat // R*R for montgomeryRepresentation
   308  }
   309  
   310  // rr returns R*R with R = 2^(_W * n) and n = len(m.nat.limbs).
   311  func rr(m *Modulus) *Nat {
   312  	rr := NewNat().ExpandFor(m)
   313  	n := uint(len(rr.limbs))
   314  	mLen := uint(m.BitLen())
   315  	logR := _W * n
   316  
   317  	// We start by computing R = 2^(_W * n) mod m. We can get pretty close, to
   318  	// 2^⌊log₂m⌋, by setting the highest bit we can without having to reduce.
   319  	rr.limbs[n-1] = 1 << ((mLen - 1) % _W)
   320  	// Then we double until we reach 2^(_W * n).
   321  	for i := mLen - 1; i < logR; i++ {
   322  		rr.Add(rr, m)
   323  	}
   324  
   325  	// Next we need to get from R to 2^(_W * n) R mod m (aka from one to R in
   326  	// the Montgomery domain, meaning we can use Montgomery multiplication now).
   327  	// We could do that by doubling _W * n times, or with a square-and-double
   328  	// chain log2(_W * n) long. Turns out the fastest thing is to start out with
   329  	// doublings, and switch to square-and-double once the exponent is large
   330  	// enough to justify the cost of the multiplications.
   331  
   332  	// The threshold is selected experimentally as a linear function of n.
   333  	threshold := n / 4
   334  
   335  	// We calculate how many of the most-significant bits of the exponent we can
   336  	// compute before crossing the threshold, and we do it with doublings.
   337  	i := bits.UintSize
   338  	for logR>>i <= threshold {
   339  		i--
   340  	}
   341  	for k := uint(0); k < logR>>i; k++ {
   342  		rr.Add(rr, m)
   343  	}
   344  
   345  	// Then we process the remaining bits of the exponent with a
   346  	// square-and-double chain.
   347  	for i > 0 {
   348  		rr.montgomeryMul(rr, rr, m)
   349  		i--
   350  		if logR>>i&1 != 0 {
   351  			rr.Add(rr, m)
   352  		}
   353  	}
   354  
   355  	return rr
   356  }
   357  
   358  // minusInverseModW computes -x⁻¹ mod _W with x odd.
   359  //
   360  // This operation is used to precompute a constant involved in Montgomery
   361  // multiplication.
   362  func minusInverseModW(x uint) uint {
   363  	// Every iteration of this loop doubles the least-significant bits of
   364  	// correct inverse in y. The first three bits are already correct (1⁻¹ = 1,
   365  	// 3⁻¹ = 3, 5⁻¹ = 5, and 7⁻¹ = 7 mod 8), so doubling five times is enough
   366  	// for 64 bits (and wastes only one iteration for 32 bits).
   367  	//
   368  	// See https://crypto.stackexchange.com/a/47496.
   369  	y := x
   370  	for i := 0; i < 5; i++ {
   371  		y = y * (2 - x*y)
   372  	}
   373  	return -y
   374  }
   375  
   376  // NewModulusFromBig creates a new Modulus from a [big.Int].
   377  //
   378  // The Int must be odd. The number of significant bits (and nothing else) is
   379  // leaked through timing side-channels.
   380  func NewModulusFromBig(n *big.Int) (*Modulus, error) {
   381  	if b := n.Bits(); len(b) == 0 {
   382  		return nil, errors.New("modulus must be >= 0")
   383  	} else if b[0]&1 != 1 {
   384  		return nil, errors.New("modulus must be odd")
   385  	}
   386  	m := &Modulus{}
   387  	m.nat = NewNat().setBig(n)
   388  	m.leading = _W - bitLen(m.nat.limbs[len(m.nat.limbs)-1])
   389  	m.m0inv = minusInverseModW(m.nat.limbs[0])
   390  	m.rr = rr(m)
   391  	return m, nil
   392  }
   393  
   394  // bitLen is a version of bits.Len that only leaks the bit length of n, but not
   395  // its value. bits.Len and bits.LeadingZeros use a lookup table for the
   396  // low-order bits on some architectures.
   397  func bitLen(n uint) int {
   398  	var len int
   399  	// We assume, here and elsewhere, that comparison to zero is constant time
   400  	// with respect to different non-zero values.
   401  	for n != 0 {
   402  		len++
   403  		n >>= 1
   404  	}
   405  	return len
   406  }
   407  
   408  // Size returns the size of m in bytes.
   409  func (m *Modulus) Size() int {
   410  	return (m.BitLen() + 7) / 8
   411  }
   412  
   413  // BitLen returns the size of m in bits.
   414  func (m *Modulus) BitLen() int {
   415  	return len(m.nat.limbs)*_W - int(m.leading)
   416  }
   417  
   418  // Nat returns m as a Nat. The return value must not be written to.
   419  func (m *Modulus) Nat() *Nat {
   420  	return m.nat
   421  }
   422  
   423  // shiftIn calculates x = x << _W + y mod m.
   424  //
   425  // This assumes that x is already reduced mod m.
   426  func (x *Nat) shiftIn(y uint, m *Modulus) *Nat {
   427  	d := NewNat().resetFor(m)
   428  
   429  	// Eliminate bounds checks in the loop.
   430  	size := len(m.nat.limbs)
   431  	xLimbs := x.limbs[:size]
   432  	dLimbs := d.limbs[:size]
   433  	mLimbs := m.nat.limbs[:size]
   434  
   435  	// Each iteration of this loop computes x = 2x + b mod m, where b is a bit
   436  	// from y. Effectively, it left-shifts x and adds y one bit at a time,
   437  	// reducing it every time.
   438  	//
   439  	// To do the reduction, each iteration computes both 2x + b and 2x + b - m.
   440  	// The next iteration (and finally the return line) will use either result
   441  	// based on whether 2x + b overflows m.
   442  	needSubtraction := no
   443  	for i := _W - 1; i >= 0; i-- {
   444  		carry := (y >> i) & 1
   445  		var borrow uint
   446  		mask := ctMask(needSubtraction)
   447  		for i := 0; i < size; i++ {
   448  			l := xLimbs[i] ^ (mask & (xLimbs[i] ^ dLimbs[i]))
   449  			xLimbs[i], carry = bits.Add(l, l, carry)
   450  			dLimbs[i], borrow = bits.Sub(xLimbs[i], mLimbs[i], borrow)
   451  		}
   452  		// Like in maybeSubtractModulus, we need the subtraction if either it
   453  		// didn't underflow (meaning 2x + b > m) or if computing 2x + b
   454  		// overflowed (meaning 2x + b > 2^_W*n > m).
   455  		needSubtraction = not(choice(borrow)) | choice(carry)
   456  	}
   457  	return x.assign(needSubtraction, d)
   458  }
   459  
   460  // Mod calculates out = x mod m.
   461  //
   462  // This works regardless how large the value of x is.
   463  //
   464  // The output will be resized to the size of m and overwritten.
   465  func (out *Nat) Mod(x *Nat, m *Modulus) *Nat {
   466  	out.resetFor(m)
   467  	// Working our way from the most significant to the least significant limb,
   468  	// we can insert each limb at the least significant position, shifting all
   469  	// previous limbs left by _W. This way each limb will get shifted by the
   470  	// correct number of bits. We can insert at least N - 1 limbs without
   471  	// overflowing m. After that, we need to reduce every time we shift.
   472  	i := len(x.limbs) - 1
   473  	// For the first N - 1 limbs we can skip the actual shifting and position
   474  	// them at the shifted position, which starts at min(N - 2, i).
   475  	start := len(m.nat.limbs) - 2
   476  	if i < start {
   477  		start = i
   478  	}
   479  	for j := start; j >= 0; j-- {
   480  		out.limbs[j] = x.limbs[i]
   481  		i--
   482  	}
   483  	// We shift in the remaining limbs, reducing modulo m each time.
   484  	for i >= 0 {
   485  		out.shiftIn(x.limbs[i], m)
   486  		i--
   487  	}
   488  	return out
   489  }
   490  
   491  // ExpandFor ensures x has the right size to work with operations modulo m.
   492  //
   493  // The announced size of x must be smaller than or equal to that of m.
   494  func (x *Nat) ExpandFor(m *Modulus) *Nat {
   495  	return x.expand(len(m.nat.limbs))
   496  }
   497  
   498  // resetFor ensures out has the right size to work with operations modulo m.
   499  //
   500  // out is zeroed and may start at any size.
   501  func (out *Nat) resetFor(m *Modulus) *Nat {
   502  	return out.reset(len(m.nat.limbs))
   503  }
   504  
   505  // maybeSubtractModulus computes x -= m if and only if x >= m or if "always" is yes.
   506  //
   507  // It can be used to reduce modulo m a value up to 2m - 1, which is a common
   508  // range for results computed by higher level operations.
   509  //
   510  // always is usually a carry that indicates that the operation that produced x
   511  // overflowed its size, meaning abstractly x > 2^_W*n > m even if x < m.
   512  //
   513  // x and m operands must have the same announced length.
   514  func (x *Nat) maybeSubtractModulus(always choice, m *Modulus) {
   515  	t := NewNat().set(x)
   516  	underflow := t.sub(m.nat)
   517  	// We keep the result if x - m didn't underflow (meaning x >= m)
   518  	// or if always was set.
   519  	keep := not(choice(underflow)) | choice(always)
   520  	x.assign(keep, t)
   521  }
   522  
   523  // Sub computes x = x - y mod m.
   524  //
   525  // The length of both operands must be the same as the modulus. Both operands
   526  // must already be reduced modulo m.
   527  func (x *Nat) Sub(y *Nat, m *Modulus) *Nat {
   528  	underflow := x.sub(y)
   529  	// If the subtraction underflowed, add m.
   530  	t := NewNat().set(x)
   531  	t.add(m.nat)
   532  	x.assign(choice(underflow), t)
   533  	return x
   534  }
   535  
   536  // Add computes x = x + y mod m.
   537  //
   538  // The length of both operands must be the same as the modulus. Both operands
   539  // must already be reduced modulo m.
   540  func (x *Nat) Add(y *Nat, m *Modulus) *Nat {
   541  	overflow := x.add(y)
   542  	x.maybeSubtractModulus(choice(overflow), m)
   543  	return x
   544  }
   545  
   546  // montgomeryRepresentation calculates x = x * R mod m, with R = 2^(_W * n) and
   547  // n = len(m.nat.limbs).
   548  //
   549  // Faster Montgomery multiplication replaces standard modular multiplication for
   550  // numbers in this representation.
   551  //
   552  // This assumes that x is already reduced mod m.
   553  func (x *Nat) montgomeryRepresentation(m *Modulus) *Nat {
   554  	// A Montgomery multiplication (which computes a * b / R) by R * R works out
   555  	// to a multiplication by R, which takes the value out of the Montgomery domain.
   556  	return x.montgomeryMul(x, m.rr, m)
   557  }
   558  
   559  // montgomeryReduction calculates x = x / R mod m, with R = 2^(_W * n) and
   560  // n = len(m.nat.limbs).
   561  //
   562  // This assumes that x is already reduced mod m.
   563  func (x *Nat) montgomeryReduction(m *Modulus) *Nat {
   564  	// By Montgomery multiplying with 1 not in Montgomery representation, we
   565  	// convert out back from Montgomery representation, because it works out to
   566  	// dividing by R.
   567  	one := NewNat().ExpandFor(m)
   568  	one.limbs[0] = 1
   569  	return x.montgomeryMul(x, one, m)
   570  }
   571  
   572  // montgomeryMul calculates x = a * b / R mod m, with R = 2^(_W * n) and
   573  // n = len(m.nat.limbs), also known as a Montgomery multiplication.
   574  //
   575  // All inputs should be the same length and already reduced modulo m.
   576  // x will be resized to the size of m and overwritten.
   577  func (x *Nat) montgomeryMul(a *Nat, b *Nat, m *Modulus) *Nat {
   578  	n := len(m.nat.limbs)
   579  	mLimbs := m.nat.limbs[:n]
   580  	aLimbs := a.limbs[:n]
   581  	bLimbs := b.limbs[:n]
   582  
   583  	switch n {
   584  	default:
   585  		// Attempt to use a stack-allocated backing array.
   586  		T := make([]uint, 0, preallocLimbs*2)
   587  		if cap(T) < n*2 {
   588  			T = make([]uint, 0, n*2)
   589  		}
   590  		T = T[:n*2]
   591  
   592  		// This loop implements Word-by-Word Montgomery Multiplication, as
   593  		// described in Algorithm 4 (Fig. 3) of "Efficient Software
   594  		// Implementations of Modular Exponentiation" by Shay Gueron
   595  		// [https://eprint.iacr.org/2011/239.pdf].
   596  		var c uint
   597  		for i := 0; i < n; i++ {
   598  			_ = T[n+i] // bounds check elimination hint
   599  
   600  			// Step 1 (T = a × b) is computed as a large pen-and-paper column
   601  			// multiplication of two numbers with n base-2^_W digits. If we just
   602  			// wanted to produce 2n-wide T, we would do
   603  			//
   604  			//   for i := 0; i < n; i++ {
   605  			//       d := bLimbs[i]
   606  			//       T[n+i] = addMulVVW(T[i:n+i], aLimbs, d)
   607  			//   }
   608  			//
   609  			// where d is a digit of the multiplier, T[i:n+i] is the shifted
   610  			// position of the product of that digit, and T[n+i] is the final carry.
   611  			// Note that T[i] isn't modified after processing the i-th digit.
   612  			//
   613  			// Instead of running two loops, one for Step 1 and one for Steps 2–6,
   614  			// the result of Step 1 is computed during the next loop. This is
   615  			// possible because each iteration only uses T[i] in Step 2 and then
   616  			// discards it in Step 6.
   617  			d := bLimbs[i]
   618  			c1 := addMulVVW(T[i:n+i], aLimbs, d)
   619  
   620  			// Step 6 is replaced by shifting the virtual window we operate
   621  			// over: T of the algorithm is T[i:] for us. That means that T1 in
   622  			// Step 2 (T mod 2^_W) is simply T[i]. k0 in Step 3 is our m0inv.
   623  			Y := T[i] * m.m0inv
   624  
   625  			// Step 4 and 5 add Y × m to T, which as mentioned above is stored
   626  			// at T[i:]. The two carries (from a × d and Y × m) are added up in
   627  			// the next word T[n+i], and the carry bit from that addition is
   628  			// brought forward to the next iteration.
   629  			c2 := addMulVVW(T[i:n+i], mLimbs, Y)
   630  			T[n+i], c = bits.Add(c1, c2, c)
   631  		}
   632  
   633  		// Finally for Step 7 we copy the final T window into x, and subtract m
   634  		// if necessary (which as explained in maybeSubtractModulus can be the
   635  		// case both if x >= m, or if x overflowed).
   636  		//
   637  		// The paper suggests in Section 4 that we can do an "Almost Montgomery
   638  		// Multiplication" by subtracting only in the overflow case, but the
   639  		// cost is very similar since the constant time subtraction tells us if
   640  		// x >= m as a side effect, and taking care of the broken invariant is
   641  		// highly undesirable (see https://go.dev/issue/13907).
   642  		copy(x.reset(n).limbs, T[n:])
   643  		x.maybeSubtractModulus(choice(c), m)
   644  
   645  	// The following specialized cases follow the exact same algorithm, but
   646  	// optimized for the sizes most used in RSA. addMulVVW is implemented in
   647  	// assembly with loop unrolling depending on the architecture and bounds
   648  	// checks are removed by the compiler thanks to the constant size.
   649  	case 1024 / _W:
   650  		const n = 1024 / _W // compiler hint
   651  		T := make([]uint, n*2)
   652  		var c uint
   653  		for i := 0; i < n; i++ {
   654  			d := bLimbs[i]
   655  			c1 := addMulVVW1024(&T[i], &aLimbs[0], d)
   656  			Y := T[i] * m.m0inv
   657  			c2 := addMulVVW1024(&T[i], &mLimbs[0], Y)
   658  			T[n+i], c = bits.Add(c1, c2, c)
   659  		}
   660  		copy(x.reset(n).limbs, T[n:])
   661  		x.maybeSubtractModulus(choice(c), m)
   662  
   663  	case 1536 / _W:
   664  		const n = 1536 / _W // compiler hint
   665  		T := make([]uint, n*2)
   666  		var c uint
   667  		for i := 0; i < n; i++ {
   668  			d := bLimbs[i]
   669  			c1 := addMulVVW1536(&T[i], &aLimbs[0], d)
   670  			Y := T[i] * m.m0inv
   671  			c2 := addMulVVW1536(&T[i], &mLimbs[0], Y)
   672  			T[n+i], c = bits.Add(c1, c2, c)
   673  		}
   674  		copy(x.reset(n).limbs, T[n:])
   675  		x.maybeSubtractModulus(choice(c), m)
   676  
   677  	case 2048 / _W:
   678  		const n = 2048 / _W // compiler hint
   679  		T := make([]uint, n*2)
   680  		var c uint
   681  		for i := 0; i < n; i++ {
   682  			d := bLimbs[i]
   683  			c1 := addMulVVW2048(&T[i], &aLimbs[0], d)
   684  			Y := T[i] * m.m0inv
   685  			c2 := addMulVVW2048(&T[i], &mLimbs[0], Y)
   686  			T[n+i], c = bits.Add(c1, c2, c)
   687  		}
   688  		copy(x.reset(n).limbs, T[n:])
   689  		x.maybeSubtractModulus(choice(c), m)
   690  	}
   691  
   692  	return x
   693  }
   694  
   695  // addMulVVW multiplies the multi-word value x by the single-word value y,
   696  // adding the result to the multi-word value z and returning the final carry.
   697  // It can be thought of as one row of a pen-and-paper column multiplication.
   698  func addMulVVW(z, x []uint, y uint) (carry uint) {
   699  	_ = x[len(z)-1] // bounds check elimination hint
   700  	for i := range z {
   701  		hi, lo := bits.Mul(x[i], y)
   702  		lo, c := bits.Add(lo, z[i], 0)
   703  		// We use bits.Add with zero to get an add-with-carry instruction that
   704  		// absorbs the carry from the previous bits.Add.
   705  		hi, _ = bits.Add(hi, 0, c)
   706  		lo, c = bits.Add(lo, carry, 0)
   707  		hi, _ = bits.Add(hi, 0, c)
   708  		carry = hi
   709  		z[i] = lo
   710  	}
   711  	return carry
   712  }
   713  
   714  // Mul calculates x = x * y mod m.
   715  //
   716  // The length of both operands must be the same as the modulus. Both operands
   717  // must already be reduced modulo m.
   718  func (x *Nat) Mul(y *Nat, m *Modulus) *Nat {
   719  	// A Montgomery multiplication by a value out of the Montgomery domain
   720  	// takes the result out of Montgomery representation.
   721  	xR := NewNat().set(x).montgomeryRepresentation(m) // xR = x * R mod m
   722  	return x.montgomeryMul(xR, y, m)                  // x = xR * y / R mod m
   723  }
   724  
   725  // Exp calculates out = x^e mod m.
   726  //
   727  // The exponent e is represented in big-endian order. The output will be resized
   728  // to the size of m and overwritten. x must already be reduced modulo m.
   729  func (out *Nat) Exp(x *Nat, e []byte, m *Modulus) *Nat {
   730  	// We use a 4 bit window. For our RSA workload, 4 bit windows are faster
   731  	// than 2 bit windows, but use an extra 12 nats worth of scratch space.
   732  	// Using bit sizes that don't divide 8 are more complex to implement, but
   733  	// are likely to be more efficient if necessary.
   734  
   735  	table := [(1 << 4) - 1]*Nat{ // table[i] = x ^ (i+1)
   736  		// newNat calls are unrolled so they are allocated on the stack.
   737  		NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
   738  		NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
   739  		NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
   740  	}
   741  	table[0].set(x).montgomeryRepresentation(m)
   742  	for i := 1; i < len(table); i++ {
   743  		table[i].montgomeryMul(table[i-1], table[0], m)
   744  	}
   745  
   746  	out.resetFor(m)
   747  	out.limbs[0] = 1
   748  	out.montgomeryRepresentation(m)
   749  	tmp := NewNat().ExpandFor(m)
   750  	for _, b := range e {
   751  		for _, j := range []int{4, 0} {
   752  			// Square four times. Optimization note: this can be implemented
   753  			// more efficiently than with generic Montgomery multiplication.
   754  			out.montgomeryMul(out, out, m)
   755  			out.montgomeryMul(out, out, m)
   756  			out.montgomeryMul(out, out, m)
   757  			out.montgomeryMul(out, out, m)
   758  
   759  			// Select x^k in constant time from the table.
   760  			k := uint((b >> j) & 0b1111)
   761  			for i := range table {
   762  				tmp.assign(ctEq(k, uint(i+1)), table[i])
   763  			}
   764  
   765  			// Multiply by x^k, discarding the result if k = 0.
   766  			tmp.montgomeryMul(out, tmp, m)
   767  			out.assign(not(ctEq(k, 0)), tmp)
   768  		}
   769  	}
   770  
   771  	return out.montgomeryReduction(m)
   772  }
   773  
   774  // ExpShortVarTime calculates out = x^e mod m.
   775  //
   776  // The output will be resized to the size of m and overwritten. x must already
   777  // be reduced modulo m. This leaks the exponent through timing side-channels.
   778  func (out *Nat) ExpShortVarTime(x *Nat, e uint, m *Modulus) *Nat {
   779  	// For short exponents, precomputing a table and using a window like in Exp
   780  	// doesn't pay off. Instead, we do a simple conditional square-and-multiply
   781  	// chain, skipping the initial run of zeroes.
   782  	xR := NewNat().set(x).montgomeryRepresentation(m)
   783  	out.set(xR)
   784  	for i := bits.UintSize - bitLen(e) + 1; i < bits.UintSize; i++ {
   785  		out.montgomeryMul(out, out, m)
   786  		if k := (e >> (bits.UintSize - i - 1)) & 1; k != 0 {
   787  			out.montgomeryMul(out, xR, m)
   788  		}
   789  	}
   790  	return out.montgomeryReduction(m)
   791  }