github.com/ice-blockchain/go/src@v0.0.0-20240403114104-1564d284e521/runtime/os_linux.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "internal/abi" 9 "internal/goarch" 10 "internal/runtime/syscall" 11 "runtime/internal/atomic" 12 "unsafe" 13 ) 14 15 // sigPerThreadSyscall is the same signal (SIGSETXID) used by glibc for 16 // per-thread syscalls on Linux. We use it for the same purpose in non-cgo 17 // binaries. 18 const sigPerThreadSyscall = _SIGRTMIN + 1 19 20 type mOS struct { 21 // profileTimer holds the ID of the POSIX interval timer for profiling CPU 22 // usage on this thread. 23 // 24 // It is valid when the profileTimerValid field is true. A thread 25 // creates and manages its own timer, and these fields are read and written 26 // only by this thread. But because some of the reads on profileTimerValid 27 // are in signal handling code, this field should be atomic type. 28 profileTimer int32 29 profileTimerValid atomic.Bool 30 31 // needPerThreadSyscall indicates that a per-thread syscall is required 32 // for doAllThreadsSyscall. 33 needPerThreadSyscall atomic.Uint8 34 } 35 36 //go:noescape 37 func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32 38 39 // Linux futex. 40 // 41 // futexsleep(uint32 *addr, uint32 val) 42 // futexwakeup(uint32 *addr) 43 // 44 // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. 45 // Futexwakeup wakes up threads sleeping on addr. 46 // Futexsleep is allowed to wake up spuriously. 47 48 const ( 49 _FUTEX_PRIVATE_FLAG = 128 50 _FUTEX_WAIT_PRIVATE = 0 | _FUTEX_PRIVATE_FLAG 51 _FUTEX_WAKE_PRIVATE = 1 | _FUTEX_PRIVATE_FLAG 52 ) 53 54 // Atomically, 55 // 56 // if(*addr == val) sleep 57 // 58 // Might be woken up spuriously; that's allowed. 59 // Don't sleep longer than ns; ns < 0 means forever. 60 // 61 //go:nosplit 62 func futexsleep(addr *uint32, val uint32, ns int64) { 63 // Some Linux kernels have a bug where futex of 64 // FUTEX_WAIT returns an internal error code 65 // as an errno. Libpthread ignores the return value 66 // here, and so can we: as it says a few lines up, 67 // spurious wakeups are allowed. 68 if ns < 0 { 69 futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, nil, nil, 0) 70 return 71 } 72 73 var ts timespec 74 ts.setNsec(ns) 75 futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, unsafe.Pointer(&ts), nil, 0) 76 } 77 78 // If any procs are sleeping on addr, wake up at most cnt. 79 // 80 //go:nosplit 81 func futexwakeup(addr *uint32, cnt uint32) { 82 ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE_PRIVATE, cnt, nil, nil, 0) 83 if ret >= 0 { 84 return 85 } 86 87 // I don't know that futex wakeup can return 88 // EAGAIN or EINTR, but if it does, it would be 89 // safe to loop and call futex again. 90 systemstack(func() { 91 print("futexwakeup addr=", addr, " returned ", ret, "\n") 92 }) 93 94 *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006 95 } 96 97 func getproccount() int32 { 98 // This buffer is huge (8 kB) but we are on the system stack 99 // and there should be plenty of space (64 kB). 100 // Also this is a leaf, so we're not holding up the memory for long. 101 // See golang.org/issue/11823. 102 // The suggested behavior here is to keep trying with ever-larger 103 // buffers, but we don't have a dynamic memory allocator at the 104 // moment, so that's a bit tricky and seems like overkill. 105 const maxCPUs = 64 * 1024 106 var buf [maxCPUs / 8]byte 107 r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0]) 108 if r < 0 { 109 return 1 110 } 111 n := int32(0) 112 for _, v := range buf[:r] { 113 for v != 0 { 114 n += int32(v & 1) 115 v >>= 1 116 } 117 } 118 if n == 0 { 119 n = 1 120 } 121 return n 122 } 123 124 // Clone, the Linux rfork. 125 const ( 126 _CLONE_VM = 0x100 127 _CLONE_FS = 0x200 128 _CLONE_FILES = 0x400 129 _CLONE_SIGHAND = 0x800 130 _CLONE_PTRACE = 0x2000 131 _CLONE_VFORK = 0x4000 132 _CLONE_PARENT = 0x8000 133 _CLONE_THREAD = 0x10000 134 _CLONE_NEWNS = 0x20000 135 _CLONE_SYSVSEM = 0x40000 136 _CLONE_SETTLS = 0x80000 137 _CLONE_PARENT_SETTID = 0x100000 138 _CLONE_CHILD_CLEARTID = 0x200000 139 _CLONE_UNTRACED = 0x800000 140 _CLONE_CHILD_SETTID = 0x1000000 141 _CLONE_STOPPED = 0x2000000 142 _CLONE_NEWUTS = 0x4000000 143 _CLONE_NEWIPC = 0x8000000 144 145 // As of QEMU 2.8.0 (5ea2fc84d), user emulation requires all six of these 146 // flags to be set when creating a thread; attempts to share the other 147 // five but leave SYSVSEM unshared will fail with -EINVAL. 148 // 149 // In non-QEMU environments CLONE_SYSVSEM is inconsequential as we do not 150 // use System V semaphores. 151 152 cloneFlags = _CLONE_VM | /* share memory */ 153 _CLONE_FS | /* share cwd, etc */ 154 _CLONE_FILES | /* share fd table */ 155 _CLONE_SIGHAND | /* share sig handler table */ 156 _CLONE_SYSVSEM | /* share SysV semaphore undo lists (see issue #20763) */ 157 _CLONE_THREAD /* revisit - okay for now */ 158 ) 159 160 //go:noescape 161 func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32 162 163 // May run with m.p==nil, so write barriers are not allowed. 164 // 165 //go:nowritebarrier 166 func newosproc(mp *m) { 167 stk := unsafe.Pointer(mp.g0.stack.hi) 168 /* 169 * note: strace gets confused if we use CLONE_PTRACE here. 170 */ 171 if false { 172 print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", abi.FuncPCABI0(clone), " id=", mp.id, " ostk=", &mp, "\n") 173 } 174 175 // Disable signals during clone, so that the new thread starts 176 // with signals disabled. It will enable them in minit. 177 var oset sigset 178 sigprocmask(_SIG_SETMASK, &sigset_all, &oset) 179 ret := retryOnEAGAIN(func() int32 { 180 r := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(abi.FuncPCABI0(mstart))) 181 // clone returns positive TID, negative errno. 182 // We don't care about the TID. 183 if r >= 0 { 184 return 0 185 } 186 return -r 187 }) 188 sigprocmask(_SIG_SETMASK, &oset, nil) 189 190 if ret != 0 { 191 print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", ret, ")\n") 192 if ret == _EAGAIN { 193 println("runtime: may need to increase max user processes (ulimit -u)") 194 } 195 throw("newosproc") 196 } 197 } 198 199 // Version of newosproc that doesn't require a valid G. 200 // 201 //go:nosplit 202 func newosproc0(stacksize uintptr, fn unsafe.Pointer) { 203 stack := sysAlloc(stacksize, &memstats.stacks_sys) 204 if stack == nil { 205 writeErrStr(failallocatestack) 206 exit(1) 207 } 208 ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn) 209 if ret < 0 { 210 writeErrStr(failthreadcreate) 211 exit(1) 212 } 213 } 214 215 const ( 216 _AT_NULL = 0 // End of vector 217 _AT_PAGESZ = 6 // System physical page size 218 _AT_PLATFORM = 15 // string identifying platform 219 _AT_HWCAP = 16 // hardware capability bit vector 220 _AT_SECURE = 23 // secure mode boolean 221 _AT_RANDOM = 25 // introduced in 2.6.29 222 _AT_HWCAP2 = 26 // hardware capability bit vector 2 223 ) 224 225 var procAuxv = []byte("/proc/self/auxv\x00") 226 227 var addrspace_vec [1]byte 228 229 func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32 230 231 var auxvreadbuf [128]uintptr 232 233 func sysargs(argc int32, argv **byte) { 234 n := argc + 1 235 236 // skip over argv, envp to get to auxv 237 for argv_index(argv, n) != nil { 238 n++ 239 } 240 241 // skip NULL separator 242 n++ 243 244 // now argv+n is auxv 245 auxvp := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*goarch.PtrSize)) 246 247 if pairs := sysauxv(auxvp[:]); pairs != 0 { 248 auxv = auxvp[: pairs*2 : pairs*2] 249 return 250 } 251 // In some situations we don't get a loader-provided 252 // auxv, such as when loaded as a library on Android. 253 // Fall back to /proc/self/auxv. 254 fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0) 255 if fd < 0 { 256 // On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to 257 // try using mincore to detect the physical page size. 258 // mincore should return EINVAL when address is not a multiple of system page size. 259 const size = 256 << 10 // size of memory region to allocate 260 p, err := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0) 261 if err != 0 { 262 return 263 } 264 var n uintptr 265 for n = 4 << 10; n < size; n <<= 1 { 266 err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0]) 267 if err == 0 { 268 physPageSize = n 269 break 270 } 271 } 272 if physPageSize == 0 { 273 physPageSize = size 274 } 275 munmap(p, size) 276 return 277 } 278 279 n = read(fd, noescape(unsafe.Pointer(&auxvreadbuf[0])), int32(unsafe.Sizeof(auxvreadbuf))) 280 closefd(fd) 281 if n < 0 { 282 return 283 } 284 // Make sure buf is terminated, even if we didn't read 285 // the whole file. 286 auxvreadbuf[len(auxvreadbuf)-2] = _AT_NULL 287 pairs := sysauxv(auxvreadbuf[:]) 288 auxv = auxvreadbuf[: pairs*2 : pairs*2] 289 } 290 291 // secureMode holds the value of AT_SECURE passed in the auxiliary vector. 292 var secureMode bool 293 294 func sysauxv(auxv []uintptr) (pairs int) { 295 var i int 296 for ; auxv[i] != _AT_NULL; i += 2 { 297 tag, val := auxv[i], auxv[i+1] 298 switch tag { 299 case _AT_RANDOM: 300 // The kernel provides a pointer to 16-bytes 301 // worth of random data. 302 startupRand = (*[16]byte)(unsafe.Pointer(val))[:] 303 304 case _AT_PAGESZ: 305 physPageSize = val 306 307 case _AT_SECURE: 308 secureMode = val == 1 309 } 310 311 archauxv(tag, val) 312 vdsoauxv(tag, val) 313 } 314 return i / 2 315 } 316 317 var sysTHPSizePath = []byte("/sys/kernel/mm/transparent_hugepage/hpage_pmd_size\x00") 318 319 func getHugePageSize() uintptr { 320 var numbuf [20]byte 321 fd := open(&sysTHPSizePath[0], 0 /* O_RDONLY */, 0) 322 if fd < 0 { 323 return 0 324 } 325 ptr := noescape(unsafe.Pointer(&numbuf[0])) 326 n := read(fd, ptr, int32(len(numbuf))) 327 closefd(fd) 328 if n <= 0 { 329 return 0 330 } 331 n-- // remove trailing newline 332 v, ok := atoi(slicebytetostringtmp((*byte)(ptr), int(n))) 333 if !ok || v < 0 { 334 v = 0 335 } 336 if v&(v-1) != 0 { 337 // v is not a power of 2 338 return 0 339 } 340 return uintptr(v) 341 } 342 343 func osinit() { 344 ncpu = getproccount() 345 physHugePageSize = getHugePageSize() 346 osArchInit() 347 } 348 349 var urandom_dev = []byte("/dev/urandom\x00") 350 351 func readRandom(r []byte) int { 352 fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) 353 n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) 354 closefd(fd) 355 return int(n) 356 } 357 358 func goenvs() { 359 goenvs_unix() 360 } 361 362 // Called to do synchronous initialization of Go code built with 363 // -buildmode=c-archive or -buildmode=c-shared. 364 // None of the Go runtime is initialized. 365 // 366 //go:nosplit 367 //go:nowritebarrierrec 368 func libpreinit() { 369 initsig(true) 370 } 371 372 // Called to initialize a new m (including the bootstrap m). 373 // Called on the parent thread (main thread in case of bootstrap), can allocate memory. 374 func mpreinit(mp *m) { 375 mp.gsignal = malg(32 * 1024) // Linux wants >= 2K 376 mp.gsignal.m = mp 377 } 378 379 func gettid() uint32 380 381 // Called to initialize a new m (including the bootstrap m). 382 // Called on the new thread, cannot allocate memory. 383 func minit() { 384 minitSignals() 385 386 // Cgo-created threads and the bootstrap m are missing a 387 // procid. We need this for asynchronous preemption and it's 388 // useful in debuggers. 389 getg().m.procid = uint64(gettid()) 390 } 391 392 // Called from dropm to undo the effect of an minit. 393 // 394 //go:nosplit 395 func unminit() { 396 unminitSignals() 397 getg().m.procid = 0 398 } 399 400 // Called from exitm, but not from drop, to undo the effect of thread-owned 401 // resources in minit, semacreate, or elsewhere. Do not take locks after calling this. 402 func mdestroy(mp *m) { 403 } 404 405 //#ifdef GOARCH_386 406 //#define sa_handler k_sa_handler 407 //#endif 408 409 func sigreturn__sigaction() 410 func sigtramp() // Called via C ABI 411 func cgoSigtramp() 412 413 //go:noescape 414 func sigaltstack(new, old *stackt) 415 416 //go:noescape 417 func setitimer(mode int32, new, old *itimerval) 418 419 //go:noescape 420 func timer_create(clockid int32, sevp *sigevent, timerid *int32) int32 421 422 //go:noescape 423 func timer_settime(timerid int32, flags int32, new, old *itimerspec) int32 424 425 //go:noescape 426 func timer_delete(timerid int32) int32 427 428 //go:noescape 429 func rtsigprocmask(how int32, new, old *sigset, size int32) 430 431 //go:nosplit 432 //go:nowritebarrierrec 433 func sigprocmask(how int32, new, old *sigset) { 434 rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new))) 435 } 436 437 func raise(sig uint32) 438 func raiseproc(sig uint32) 439 440 //go:noescape 441 func sched_getaffinity(pid, len uintptr, buf *byte) int32 442 func osyield() 443 444 //go:nosplit 445 func osyield_no_g() { 446 osyield() 447 } 448 449 func pipe2(flags int32) (r, w int32, errno int32) 450 451 //go:nosplit 452 func fcntl(fd, cmd, arg int32) (ret int32, errno int32) { 453 r, _, err := syscall.Syscall6(syscall.SYS_FCNTL, uintptr(fd), uintptr(cmd), uintptr(arg), 0, 0, 0) 454 return int32(r), int32(err) 455 } 456 457 const ( 458 _si_max_size = 128 459 _sigev_max_size = 64 460 ) 461 462 //go:nosplit 463 //go:nowritebarrierrec 464 func setsig(i uint32, fn uintptr) { 465 var sa sigactiont 466 sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART 467 sigfillset(&sa.sa_mask) 468 // Although Linux manpage says "sa_restorer element is obsolete and 469 // should not be used". x86_64 kernel requires it. Only use it on 470 // x86. 471 if GOARCH == "386" || GOARCH == "amd64" { 472 sa.sa_restorer = abi.FuncPCABI0(sigreturn__sigaction) 473 } 474 if fn == abi.FuncPCABIInternal(sighandler) { // abi.FuncPCABIInternal(sighandler) matches the callers in signal_unix.go 475 if iscgo { 476 fn = abi.FuncPCABI0(cgoSigtramp) 477 } else { 478 fn = abi.FuncPCABI0(sigtramp) 479 } 480 } 481 sa.sa_handler = fn 482 sigaction(i, &sa, nil) 483 } 484 485 //go:nosplit 486 //go:nowritebarrierrec 487 func setsigstack(i uint32) { 488 var sa sigactiont 489 sigaction(i, nil, &sa) 490 if sa.sa_flags&_SA_ONSTACK != 0 { 491 return 492 } 493 sa.sa_flags |= _SA_ONSTACK 494 sigaction(i, &sa, nil) 495 } 496 497 //go:nosplit 498 //go:nowritebarrierrec 499 func getsig(i uint32) uintptr { 500 var sa sigactiont 501 sigaction(i, nil, &sa) 502 return sa.sa_handler 503 } 504 505 // setSignalstackSP sets the ss_sp field of a stackt. 506 // 507 //go:nosplit 508 func setSignalstackSP(s *stackt, sp uintptr) { 509 *(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp 510 } 511 512 //go:nosplit 513 func (c *sigctxt) fixsigcode(sig uint32) { 514 } 515 516 // sysSigaction calls the rt_sigaction system call. 517 // 518 //go:nosplit 519 func sysSigaction(sig uint32, new, old *sigactiont) { 520 if rt_sigaction(uintptr(sig), new, old, unsafe.Sizeof(sigactiont{}.sa_mask)) != 0 { 521 // Workaround for bugs in QEMU user mode emulation. 522 // 523 // QEMU turns calls to the sigaction system call into 524 // calls to the C library sigaction call; the C 525 // library call rejects attempts to call sigaction for 526 // SIGCANCEL (32) or SIGSETXID (33). 527 // 528 // QEMU rejects calling sigaction on SIGRTMAX (64). 529 // 530 // Just ignore the error in these case. There isn't 531 // anything we can do about it anyhow. 532 if sig != 32 && sig != 33 && sig != 64 { 533 // Use system stack to avoid split stack overflow on ppc64/ppc64le. 534 systemstack(func() { 535 throw("sigaction failed") 536 }) 537 } 538 } 539 } 540 541 // rt_sigaction is implemented in assembly. 542 // 543 //go:noescape 544 func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32 545 546 func getpid() int 547 func tgkill(tgid, tid, sig int) 548 549 // signalM sends a signal to mp. 550 func signalM(mp *m, sig int) { 551 tgkill(getpid(), int(mp.procid), sig) 552 } 553 554 // validSIGPROF compares this signal delivery's code against the signal sources 555 // that the profiler uses, returning whether the delivery should be processed. 556 // To be processed, a signal delivery from a known profiling mechanism should 557 // correspond to the best profiling mechanism available to this thread. Signals 558 // from other sources are always considered valid. 559 // 560 //go:nosplit 561 func validSIGPROF(mp *m, c *sigctxt) bool { 562 code := int32(c.sigcode()) 563 setitimer := code == _SI_KERNEL 564 timer_create := code == _SI_TIMER 565 566 if !(setitimer || timer_create) { 567 // The signal doesn't correspond to a profiling mechanism that the 568 // runtime enables itself. There's no reason to process it, but there's 569 // no reason to ignore it either. 570 return true 571 } 572 573 if mp == nil { 574 // Since we don't have an M, we can't check if there's an active 575 // per-thread timer for this thread. We don't know how long this thread 576 // has been around, and if it happened to interact with the Go scheduler 577 // at a time when profiling was active (causing it to have a per-thread 578 // timer). But it may have never interacted with the Go scheduler, or 579 // never while profiling was active. To avoid double-counting, process 580 // only signals from setitimer. 581 // 582 // When a custom cgo traceback function has been registered (on 583 // platforms that support runtime.SetCgoTraceback), SIGPROF signals 584 // delivered to a thread that cannot find a matching M do this check in 585 // the assembly implementations of runtime.cgoSigtramp. 586 return setitimer 587 } 588 589 // Having an M means the thread interacts with the Go scheduler, and we can 590 // check whether there's an active per-thread timer for this thread. 591 if mp.profileTimerValid.Load() { 592 // If this M has its own per-thread CPU profiling interval timer, we 593 // should track the SIGPROF signals that come from that timer (for 594 // accurate reporting of its CPU usage; see issue 35057) and ignore any 595 // that it gets from the process-wide setitimer (to not over-count its 596 // CPU consumption). 597 return timer_create 598 } 599 600 // No active per-thread timer means the only valid profiler is setitimer. 601 return setitimer 602 } 603 604 func setProcessCPUProfiler(hz int32) { 605 setProcessCPUProfilerTimer(hz) 606 } 607 608 func setThreadCPUProfiler(hz int32) { 609 mp := getg().m 610 mp.profilehz = hz 611 612 // destroy any active timer 613 if mp.profileTimerValid.Load() { 614 timerid := mp.profileTimer 615 mp.profileTimerValid.Store(false) 616 mp.profileTimer = 0 617 618 ret := timer_delete(timerid) 619 if ret != 0 { 620 print("runtime: failed to disable profiling timer; timer_delete(", timerid, ") errno=", -ret, "\n") 621 throw("timer_delete") 622 } 623 } 624 625 if hz == 0 { 626 // If the goal was to disable profiling for this thread, then the job's done. 627 return 628 } 629 630 // The period of the timer should be 1/Hz. For every "1/Hz" of additional 631 // work, the user should expect one additional sample in the profile. 632 // 633 // But to scale down to very small amounts of application work, to observe 634 // even CPU usage of "one tenth" of the requested period, set the initial 635 // timing delay in a different way: So that "one tenth" of a period of CPU 636 // spend shows up as a 10% chance of one sample (for an expected value of 637 // 0.1 samples), and so that "two and six tenths" periods of CPU spend show 638 // up as a 60% chance of 3 samples and a 40% chance of 2 samples (for an 639 // expected value of 2.6). Set the initial delay to a value in the unifom 640 // random distribution between 0 and the desired period. And because "0" 641 // means "disable timer", add 1 so the half-open interval [0,period) turns 642 // into (0,period]. 643 // 644 // Otherwise, this would show up as a bias away from short-lived threads and 645 // from threads that are only occasionally active: for example, when the 646 // garbage collector runs on a mostly-idle system, the additional threads it 647 // activates may do a couple milliseconds of GC-related work and nothing 648 // else in the few seconds that the profiler observes. 649 spec := new(itimerspec) 650 spec.it_value.setNsec(1 + int64(cheaprandn(uint32(1e9/hz)))) 651 spec.it_interval.setNsec(1e9 / int64(hz)) 652 653 var timerid int32 654 var sevp sigevent 655 sevp.notify = _SIGEV_THREAD_ID 656 sevp.signo = _SIGPROF 657 sevp.sigev_notify_thread_id = int32(mp.procid) 658 ret := timer_create(_CLOCK_THREAD_CPUTIME_ID, &sevp, &timerid) 659 if ret != 0 { 660 // If we cannot create a timer for this M, leave profileTimerValid false 661 // to fall back to the process-wide setitimer profiler. 662 return 663 } 664 665 ret = timer_settime(timerid, 0, spec, nil) 666 if ret != 0 { 667 print("runtime: failed to configure profiling timer; timer_settime(", timerid, 668 ", 0, {interval: {", 669 spec.it_interval.tv_sec, "s + ", spec.it_interval.tv_nsec, "ns} value: {", 670 spec.it_value.tv_sec, "s + ", spec.it_value.tv_nsec, "ns}}, nil) errno=", -ret, "\n") 671 throw("timer_settime") 672 } 673 674 mp.profileTimer = timerid 675 mp.profileTimerValid.Store(true) 676 } 677 678 // perThreadSyscallArgs contains the system call number, arguments, and 679 // expected return values for a system call to be executed on all threads. 680 type perThreadSyscallArgs struct { 681 trap uintptr 682 a1 uintptr 683 a2 uintptr 684 a3 uintptr 685 a4 uintptr 686 a5 uintptr 687 a6 uintptr 688 r1 uintptr 689 r2 uintptr 690 } 691 692 // perThreadSyscall is the system call to execute for the ongoing 693 // doAllThreadsSyscall. 694 // 695 // perThreadSyscall may only be written while mp.needPerThreadSyscall == 0 on 696 // all Ms. 697 var perThreadSyscall perThreadSyscallArgs 698 699 // syscall_runtime_doAllThreadsSyscall and executes a specified system call on 700 // all Ms. 701 // 702 // The system call is expected to succeed and return the same value on every 703 // thread. If any threads do not match, the runtime throws. 704 // 705 //go:linkname syscall_runtime_doAllThreadsSyscall syscall.runtime_doAllThreadsSyscall 706 //go:uintptrescapes 707 func syscall_runtime_doAllThreadsSyscall(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr) { 708 if iscgo { 709 // In cgo, we are not aware of threads created in C, so this approach will not work. 710 panic("doAllThreadsSyscall not supported with cgo enabled") 711 } 712 713 // STW to guarantee that user goroutines see an atomic change to thread 714 // state. Without STW, goroutines could migrate Ms while change is in 715 // progress and e.g., see state old -> new -> old -> new. 716 // 717 // N.B. Internally, this function does not depend on STW to 718 // successfully change every thread. It is only needed for user 719 // expectations, per above. 720 stw := stopTheWorld(stwAllThreadsSyscall) 721 722 // This function depends on several properties: 723 // 724 // 1. All OS threads that already exist are associated with an M in 725 // allm. i.e., we won't miss any pre-existing threads. 726 // 2. All Ms listed in allm will eventually have an OS thread exist. 727 // i.e., they will set procid and be able to receive signals. 728 // 3. OS threads created after we read allm will clone from a thread 729 // that has executed the system call. i.e., they inherit the 730 // modified state. 731 // 732 // We achieve these through different mechanisms: 733 // 734 // 1. Addition of new Ms to allm in allocm happens before clone of its 735 // OS thread later in newm. 736 // 2. newm does acquirem to avoid being preempted, ensuring that new Ms 737 // created in allocm will eventually reach OS thread clone later in 738 // newm. 739 // 3. We take allocmLock for write here to prevent allocation of new Ms 740 // while this function runs. Per (1), this prevents clone of OS 741 // threads that are not yet in allm. 742 allocmLock.lock() 743 744 // Disable preemption, preventing us from changing Ms, as we handle 745 // this M specially. 746 // 747 // N.B. STW and lock() above do this as well, this is added for extra 748 // clarity. 749 acquirem() 750 751 // N.B. allocmLock also prevents concurrent execution of this function, 752 // serializing use of perThreadSyscall, mp.needPerThreadSyscall, and 753 // ensuring all threads execute system calls from multiple calls in the 754 // same order. 755 756 r1, r2, errno := syscall.Syscall6(trap, a1, a2, a3, a4, a5, a6) 757 if GOARCH == "ppc64" || GOARCH == "ppc64le" { 758 // TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2. 759 r2 = 0 760 } 761 if errno != 0 { 762 releasem(getg().m) 763 allocmLock.unlock() 764 startTheWorld(stw) 765 return r1, r2, errno 766 } 767 768 perThreadSyscall = perThreadSyscallArgs{ 769 trap: trap, 770 a1: a1, 771 a2: a2, 772 a3: a3, 773 a4: a4, 774 a5: a5, 775 a6: a6, 776 r1: r1, 777 r2: r2, 778 } 779 780 // Wait for all threads to start. 781 // 782 // As described above, some Ms have been added to allm prior to 783 // allocmLock, but not yet completed OS clone and set procid. 784 // 785 // At minimum we must wait for a thread to set procid before we can 786 // send it a signal. 787 // 788 // We take this one step further and wait for all threads to start 789 // before sending any signals. This prevents system calls from getting 790 // applied twice: once in the parent and once in the child, like so: 791 // 792 // A B C 793 // add C to allm 794 // doAllThreadsSyscall 795 // allocmLock.lock() 796 // signal B 797 // <receive signal> 798 // execute syscall 799 // <signal return> 800 // clone C 801 // <thread start> 802 // set procid 803 // signal C 804 // <receive signal> 805 // execute syscall 806 // <signal return> 807 // 808 // In this case, thread C inherited the syscall-modified state from 809 // thread B and did not need to execute the syscall, but did anyway 810 // because doAllThreadsSyscall could not be sure whether it was 811 // required. 812 // 813 // Some system calls may not be idempotent, so we ensure each thread 814 // executes the system call exactly once. 815 for mp := allm; mp != nil; mp = mp.alllink { 816 for atomic.Load64(&mp.procid) == 0 { 817 // Thread is starting. 818 osyield() 819 } 820 } 821 822 // Signal every other thread, where they will execute perThreadSyscall 823 // from the signal handler. 824 gp := getg() 825 tid := gp.m.procid 826 for mp := allm; mp != nil; mp = mp.alllink { 827 if atomic.Load64(&mp.procid) == tid { 828 // Our thread already performed the syscall. 829 continue 830 } 831 mp.needPerThreadSyscall.Store(1) 832 signalM(mp, sigPerThreadSyscall) 833 } 834 835 // Wait for all threads to complete. 836 for mp := allm; mp != nil; mp = mp.alllink { 837 if mp.procid == tid { 838 continue 839 } 840 for mp.needPerThreadSyscall.Load() != 0 { 841 osyield() 842 } 843 } 844 845 perThreadSyscall = perThreadSyscallArgs{} 846 847 releasem(getg().m) 848 allocmLock.unlock() 849 startTheWorld(stw) 850 851 return r1, r2, errno 852 } 853 854 // runPerThreadSyscall runs perThreadSyscall for this M if required. 855 // 856 // This function throws if the system call returns with anything other than the 857 // expected values. 858 // 859 //go:nosplit 860 func runPerThreadSyscall() { 861 gp := getg() 862 if gp.m.needPerThreadSyscall.Load() == 0 { 863 return 864 } 865 866 args := perThreadSyscall 867 r1, r2, errno := syscall.Syscall6(args.trap, args.a1, args.a2, args.a3, args.a4, args.a5, args.a6) 868 if GOARCH == "ppc64" || GOARCH == "ppc64le" { 869 // TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2. 870 r2 = 0 871 } 872 if errno != 0 || r1 != args.r1 || r2 != args.r2 { 873 print("trap:", args.trap, ", a123456=[", args.a1, ",", args.a2, ",", args.a3, ",", args.a4, ",", args.a5, ",", args.a6, "]\n") 874 print("results: got {r1=", r1, ",r2=", r2, ",errno=", errno, "}, want {r1=", args.r1, ",r2=", args.r2, ",errno=0}\n") 875 fatal("AllThreadsSyscall6 results differ between threads; runtime corrupted") 876 } 877 878 gp.m.needPerThreadSyscall.Store(0) 879 } 880 881 const ( 882 _SI_USER = 0 883 _SI_TKILL = -6 884 ) 885 886 // sigFromUser reports whether the signal was sent because of a call 887 // to kill or tgkill. 888 // 889 //go:nosplit 890 func (c *sigctxt) sigFromUser() bool { 891 code := int32(c.sigcode()) 892 return code == _SI_USER || code == _SI_TKILL 893 } 894 895 //go:nosplit 896 func mprotect(addr unsafe.Pointer, n uintptr, prot int32) (ret int32, errno int32) { 897 r, _, err := syscall.Syscall6(syscall.SYS_MPROTECT, uintptr(addr), n, uintptr(prot), 0, 0, 0) 898 return int32(r), int32(err) 899 }