github.com/ice-blockchain/go/src@v0.0.0-20240403114104-1564d284e521/runtime/race_amd64.s (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 //go:build race 6 7 #include "go_asm.h" 8 #include "go_tls.h" 9 #include "funcdata.h" 10 #include "textflag.h" 11 #include "cgo/abi_amd64.h" 12 13 // The following thunks allow calling the gcc-compiled race runtime directly 14 // from Go code without going all the way through cgo. 15 // First, it's much faster (up to 50% speedup for real Go programs). 16 // Second, it eliminates race-related special cases from cgocall and scheduler. 17 // Third, in long-term it will allow to remove cyclic runtime/race dependency on cmd/go. 18 19 // A brief recap of the amd64 calling convention. 20 // Arguments are passed in DI, SI, DX, CX, R8, R9, the rest is on stack. 21 // Callee-saved registers are: BX, BP, R12-R15. 22 // SP must be 16-byte aligned. 23 // On Windows: 24 // Arguments are passed in CX, DX, R8, R9, the rest is on stack. 25 // Callee-saved registers are: BX, BP, DI, SI, R12-R15. 26 // SP must be 16-byte aligned. Windows also requires "stack-backing" for the 4 register arguments: 27 // https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention 28 // We do not do this, because it seems to be intended for vararg/unprototyped functions. 29 // Gcc-compiled race runtime does not try to use that space. 30 31 #ifdef GOOS_windows 32 #define RARG0 CX 33 #define RARG1 DX 34 #define RARG2 R8 35 #define RARG3 R9 36 #else 37 #define RARG0 DI 38 #define RARG1 SI 39 #define RARG2 DX 40 #define RARG3 CX 41 #endif 42 43 // func runtime·raceread(addr uintptr) 44 // Called from instrumented code. 45 // Defined as ABIInternal so as to avoid introducing a wrapper, 46 // which would render runtime.getcallerpc ineffective. 47 TEXT runtime·raceread<ABIInternal>(SB), NOSPLIT, $0-8 48 MOVQ AX, RARG1 49 MOVQ (SP), RARG2 50 // void __tsan_read(ThreadState *thr, void *addr, void *pc); 51 MOVQ $__tsan_read(SB), AX 52 JMP racecalladdr<>(SB) 53 54 // func runtime·RaceRead(addr uintptr) 55 TEXT runtime·RaceRead(SB), NOSPLIT, $0-8 56 // This needs to be a tail call, because raceread reads caller pc. 57 JMP runtime·raceread(SB) 58 59 // void runtime·racereadpc(void *addr, void *callpc, void *pc) 60 TEXT runtime·racereadpc(SB), NOSPLIT, $0-24 61 MOVQ addr+0(FP), RARG1 62 MOVQ callpc+8(FP), RARG2 63 MOVQ pc+16(FP), RARG3 64 ADDQ $1, RARG3 // pc is function start, tsan wants return address 65 // void __tsan_read_pc(ThreadState *thr, void *addr, void *callpc, void *pc); 66 MOVQ $__tsan_read_pc(SB), AX 67 JMP racecalladdr<>(SB) 68 69 // func runtime·racewrite(addr uintptr) 70 // Called from instrumented code. 71 // Defined as ABIInternal so as to avoid introducing a wrapper, 72 // which would render runtime.getcallerpc ineffective. 73 TEXT runtime·racewrite<ABIInternal>(SB), NOSPLIT, $0-8 74 MOVQ AX, RARG1 75 MOVQ (SP), RARG2 76 // void __tsan_write(ThreadState *thr, void *addr, void *pc); 77 MOVQ $__tsan_write(SB), AX 78 JMP racecalladdr<>(SB) 79 80 // func runtime·RaceWrite(addr uintptr) 81 TEXT runtime·RaceWrite(SB), NOSPLIT, $0-8 82 // This needs to be a tail call, because racewrite reads caller pc. 83 JMP runtime·racewrite(SB) 84 85 // void runtime·racewritepc(void *addr, void *callpc, void *pc) 86 TEXT runtime·racewritepc(SB), NOSPLIT, $0-24 87 MOVQ addr+0(FP), RARG1 88 MOVQ callpc+8(FP), RARG2 89 MOVQ pc+16(FP), RARG3 90 ADDQ $1, RARG3 // pc is function start, tsan wants return address 91 // void __tsan_write_pc(ThreadState *thr, void *addr, void *callpc, void *pc); 92 MOVQ $__tsan_write_pc(SB), AX 93 JMP racecalladdr<>(SB) 94 95 // func runtime·racereadrange(addr, size uintptr) 96 // Called from instrumented code. 97 // Defined as ABIInternal so as to avoid introducing a wrapper, 98 // which would render runtime.getcallerpc ineffective. 99 TEXT runtime·racereadrange<ABIInternal>(SB), NOSPLIT, $0-16 100 MOVQ AX, RARG1 101 MOVQ BX, RARG2 102 MOVQ (SP), RARG3 103 // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); 104 MOVQ $__tsan_read_range(SB), AX 105 JMP racecalladdr<>(SB) 106 107 // func runtime·RaceReadRange(addr, size uintptr) 108 TEXT runtime·RaceReadRange(SB), NOSPLIT, $0-16 109 // This needs to be a tail call, because racereadrange reads caller pc. 110 JMP runtime·racereadrange(SB) 111 112 // void runtime·racereadrangepc1(void *addr, uintptr sz, void *pc) 113 TEXT runtime·racereadrangepc1(SB), NOSPLIT, $0-24 114 MOVQ addr+0(FP), RARG1 115 MOVQ size+8(FP), RARG2 116 MOVQ pc+16(FP), RARG3 117 ADDQ $1, RARG3 // pc is function start, tsan wants return address 118 // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); 119 MOVQ $__tsan_read_range(SB), AX 120 JMP racecalladdr<>(SB) 121 122 // func runtime·racewriterange(addr, size uintptr) 123 // Called from instrumented code. 124 // Defined as ABIInternal so as to avoid introducing a wrapper, 125 // which would render runtime.getcallerpc ineffective. 126 TEXT runtime·racewriterange<ABIInternal>(SB), NOSPLIT, $0-16 127 MOVQ AX, RARG1 128 MOVQ BX, RARG2 129 MOVQ (SP), RARG3 130 // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); 131 MOVQ $__tsan_write_range(SB), AX 132 JMP racecalladdr<>(SB) 133 134 // func runtime·RaceWriteRange(addr, size uintptr) 135 TEXT runtime·RaceWriteRange(SB), NOSPLIT, $0-16 136 // This needs to be a tail call, because racewriterange reads caller pc. 137 JMP runtime·racewriterange(SB) 138 139 // void runtime·racewriterangepc1(void *addr, uintptr sz, void *pc) 140 TEXT runtime·racewriterangepc1(SB), NOSPLIT, $0-24 141 MOVQ addr+0(FP), RARG1 142 MOVQ size+8(FP), RARG2 143 MOVQ pc+16(FP), RARG3 144 ADDQ $1, RARG3 // pc is function start, tsan wants return address 145 // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); 146 MOVQ $__tsan_write_range(SB), AX 147 JMP racecalladdr<>(SB) 148 149 // If addr (RARG1) is out of range, do nothing. 150 // Otherwise, setup goroutine context and invoke racecall. Other arguments already set. 151 TEXT racecalladdr<>(SB), NOSPLIT, $0-0 152 MOVQ g_racectx(R14), RARG0 // goroutine context 153 // Check that addr is within [arenastart, arenaend) or within [racedatastart, racedataend). 154 CMPQ RARG1, runtime·racearenastart(SB) 155 JB data 156 CMPQ RARG1, runtime·racearenaend(SB) 157 JB call 158 data: 159 CMPQ RARG1, runtime·racedatastart(SB) 160 JB ret 161 CMPQ RARG1, runtime·racedataend(SB) 162 JAE ret 163 call: 164 MOVQ AX, AX // w/o this 6a miscompiles this function 165 JMP racecall<>(SB) 166 ret: 167 RET 168 169 // func runtime·racefuncenter(pc uintptr) 170 // Called from instrumented code. 171 TEXT runtime·racefuncenter(SB), NOSPLIT, $0-8 172 MOVQ callpc+0(FP), R11 173 JMP racefuncenter<>(SB) 174 175 // Common code for racefuncenter 176 // R11 = caller's return address 177 TEXT racefuncenter<>(SB), NOSPLIT|NOFRAME, $0-0 178 MOVQ DX, BX // save function entry context (for closures) 179 MOVQ g_racectx(R14), RARG0 // goroutine context 180 MOVQ R11, RARG1 181 // void __tsan_func_enter(ThreadState *thr, void *pc); 182 MOVQ $__tsan_func_enter(SB), AX 183 // racecall<> preserves BX 184 CALL racecall<>(SB) 185 MOVQ BX, DX // restore function entry context 186 RET 187 188 // func runtime·racefuncexit() 189 // Called from instrumented code. 190 TEXT runtime·racefuncexit(SB), NOSPLIT, $0-0 191 MOVQ g_racectx(R14), RARG0 // goroutine context 192 // void __tsan_func_exit(ThreadState *thr); 193 MOVQ $__tsan_func_exit(SB), AX 194 JMP racecall<>(SB) 195 196 // Atomic operations for sync/atomic package. 197 198 // Load 199 TEXT sync∕atomic·LoadInt32(SB), NOSPLIT|NOFRAME, $0-12 200 GO_ARGS 201 MOVQ $__tsan_go_atomic32_load(SB), AX 202 CALL racecallatomic<>(SB) 203 RET 204 205 TEXT sync∕atomic·LoadInt64(SB), NOSPLIT|NOFRAME, $0-16 206 GO_ARGS 207 MOVQ $__tsan_go_atomic64_load(SB), AX 208 CALL racecallatomic<>(SB) 209 RET 210 211 TEXT sync∕atomic·LoadUint32(SB), NOSPLIT, $0-12 212 GO_ARGS 213 JMP sync∕atomic·LoadInt32(SB) 214 215 TEXT sync∕atomic·LoadUint64(SB), NOSPLIT, $0-16 216 GO_ARGS 217 JMP sync∕atomic·LoadInt64(SB) 218 219 TEXT sync∕atomic·LoadUintptr(SB), NOSPLIT, $0-16 220 GO_ARGS 221 JMP sync∕atomic·LoadInt64(SB) 222 223 TEXT sync∕atomic·LoadPointer(SB), NOSPLIT, $0-16 224 GO_ARGS 225 JMP sync∕atomic·LoadInt64(SB) 226 227 // Store 228 TEXT sync∕atomic·StoreInt32(SB), NOSPLIT|NOFRAME, $0-12 229 GO_ARGS 230 MOVQ $__tsan_go_atomic32_store(SB), AX 231 CALL racecallatomic<>(SB) 232 RET 233 234 TEXT sync∕atomic·StoreInt64(SB), NOSPLIT|NOFRAME, $0-16 235 GO_ARGS 236 MOVQ $__tsan_go_atomic64_store(SB), AX 237 CALL racecallatomic<>(SB) 238 RET 239 240 TEXT sync∕atomic·StoreUint32(SB), NOSPLIT, $0-12 241 GO_ARGS 242 JMP sync∕atomic·StoreInt32(SB) 243 244 TEXT sync∕atomic·StoreUint64(SB), NOSPLIT, $0-16 245 GO_ARGS 246 JMP sync∕atomic·StoreInt64(SB) 247 248 TEXT sync∕atomic·StoreUintptr(SB), NOSPLIT, $0-16 249 GO_ARGS 250 JMP sync∕atomic·StoreInt64(SB) 251 252 // Swap 253 TEXT sync∕atomic·SwapInt32(SB), NOSPLIT|NOFRAME, $0-20 254 GO_ARGS 255 MOVQ $__tsan_go_atomic32_exchange(SB), AX 256 CALL racecallatomic<>(SB) 257 RET 258 259 TEXT sync∕atomic·SwapInt64(SB), NOSPLIT|NOFRAME, $0-24 260 GO_ARGS 261 MOVQ $__tsan_go_atomic64_exchange(SB), AX 262 CALL racecallatomic<>(SB) 263 RET 264 265 TEXT sync∕atomic·SwapUint32(SB), NOSPLIT, $0-20 266 GO_ARGS 267 JMP sync∕atomic·SwapInt32(SB) 268 269 TEXT sync∕atomic·SwapUint64(SB), NOSPLIT, $0-24 270 GO_ARGS 271 JMP sync∕atomic·SwapInt64(SB) 272 273 TEXT sync∕atomic·SwapUintptr(SB), NOSPLIT, $0-24 274 GO_ARGS 275 JMP sync∕atomic·SwapInt64(SB) 276 277 // Add 278 TEXT sync∕atomic·AddInt32(SB), NOSPLIT|NOFRAME, $0-20 279 GO_ARGS 280 MOVQ $__tsan_go_atomic32_fetch_add(SB), AX 281 CALL racecallatomic<>(SB) 282 MOVL add+8(FP), AX // convert fetch_add to add_fetch 283 ADDL AX, ret+16(FP) 284 RET 285 286 TEXT sync∕atomic·AddInt64(SB), NOSPLIT|NOFRAME, $0-24 287 GO_ARGS 288 MOVQ $__tsan_go_atomic64_fetch_add(SB), AX 289 CALL racecallatomic<>(SB) 290 MOVQ add+8(FP), AX // convert fetch_add to add_fetch 291 ADDQ AX, ret+16(FP) 292 RET 293 294 TEXT sync∕atomic·AddUint32(SB), NOSPLIT, $0-20 295 GO_ARGS 296 JMP sync∕atomic·AddInt32(SB) 297 298 TEXT sync∕atomic·AddUint64(SB), NOSPLIT, $0-24 299 GO_ARGS 300 JMP sync∕atomic·AddInt64(SB) 301 302 TEXT sync∕atomic·AddUintptr(SB), NOSPLIT, $0-24 303 GO_ARGS 304 JMP sync∕atomic·AddInt64(SB) 305 306 // CompareAndSwap 307 TEXT sync∕atomic·CompareAndSwapInt32(SB), NOSPLIT|NOFRAME, $0-17 308 GO_ARGS 309 MOVQ $__tsan_go_atomic32_compare_exchange(SB), AX 310 CALL racecallatomic<>(SB) 311 RET 312 313 TEXT sync∕atomic·CompareAndSwapInt64(SB), NOSPLIT|NOFRAME, $0-25 314 GO_ARGS 315 MOVQ $__tsan_go_atomic64_compare_exchange(SB), AX 316 CALL racecallatomic<>(SB) 317 RET 318 319 TEXT sync∕atomic·CompareAndSwapUint32(SB), NOSPLIT, $0-17 320 GO_ARGS 321 JMP sync∕atomic·CompareAndSwapInt32(SB) 322 323 TEXT sync∕atomic·CompareAndSwapUint64(SB), NOSPLIT, $0-25 324 GO_ARGS 325 JMP sync∕atomic·CompareAndSwapInt64(SB) 326 327 TEXT sync∕atomic·CompareAndSwapUintptr(SB), NOSPLIT, $0-25 328 GO_ARGS 329 JMP sync∕atomic·CompareAndSwapInt64(SB) 330 331 // Generic atomic operation implementation. 332 // AX already contains target function. 333 TEXT racecallatomic<>(SB), NOSPLIT|NOFRAME, $0-0 334 // Trigger SIGSEGV early. 335 MOVQ 16(SP), R12 336 MOVBLZX (R12), R13 337 // Check that addr is within [arenastart, arenaend) or within [racedatastart, racedataend). 338 CMPQ R12, runtime·racearenastart(SB) 339 JB racecallatomic_data 340 CMPQ R12, runtime·racearenaend(SB) 341 JB racecallatomic_ok 342 racecallatomic_data: 343 CMPQ R12, runtime·racedatastart(SB) 344 JB racecallatomic_ignore 345 CMPQ R12, runtime·racedataend(SB) 346 JAE racecallatomic_ignore 347 racecallatomic_ok: 348 // Addr is within the good range, call the atomic function. 349 MOVQ g_racectx(R14), RARG0 // goroutine context 350 MOVQ 8(SP), RARG1 // caller pc 351 MOVQ (SP), RARG2 // pc 352 LEAQ 16(SP), RARG3 // arguments 353 JMP racecall<>(SB) // does not return 354 racecallatomic_ignore: 355 // Addr is outside the good range. 356 // Call __tsan_go_ignore_sync_begin to ignore synchronization during the atomic op. 357 // An attempt to synchronize on the address would cause crash. 358 MOVQ AX, BX // remember the original function 359 MOVQ $__tsan_go_ignore_sync_begin(SB), AX 360 MOVQ g_racectx(R14), RARG0 // goroutine context 361 CALL racecall<>(SB) 362 MOVQ BX, AX // restore the original function 363 // Call the atomic function. 364 MOVQ g_racectx(R14), RARG0 // goroutine context 365 MOVQ 8(SP), RARG1 // caller pc 366 MOVQ (SP), RARG2 // pc 367 LEAQ 16(SP), RARG3 // arguments 368 CALL racecall<>(SB) 369 // Call __tsan_go_ignore_sync_end. 370 MOVQ $__tsan_go_ignore_sync_end(SB), AX 371 MOVQ g_racectx(R14), RARG0 // goroutine context 372 JMP racecall<>(SB) 373 374 // void runtime·racecall(void(*f)(...), ...) 375 // Calls C function f from race runtime and passes up to 4 arguments to it. 376 // The arguments are never heap-object-preserving pointers, so we pretend there are no arguments. 377 TEXT runtime·racecall(SB), NOSPLIT, $0-0 378 MOVQ fn+0(FP), AX 379 MOVQ arg0+8(FP), RARG0 380 MOVQ arg1+16(FP), RARG1 381 MOVQ arg2+24(FP), RARG2 382 MOVQ arg3+32(FP), RARG3 383 JMP racecall<>(SB) 384 385 // Switches SP to g0 stack and calls (AX). Arguments already set. 386 TEXT racecall<>(SB), NOSPLIT|NOFRAME, $0-0 387 MOVQ g_m(R14), R13 388 // Switch to g0 stack. 389 MOVQ SP, R12 // callee-saved, preserved across the CALL 390 MOVQ m_g0(R13), R10 391 CMPQ R10, R14 392 JE call // already on g0 393 MOVQ (g_sched+gobuf_sp)(R10), SP 394 call: 395 ANDQ $~15, SP // alignment for gcc ABI 396 CALL AX 397 MOVQ R12, SP 398 // Back to Go world, set special registers. 399 // The g register (R14) is preserved in C. 400 XORPS X15, X15 401 RET 402 403 // C->Go callback thunk that allows to call runtime·racesymbolize from C code. 404 // Direct Go->C race call has only switched SP, finish g->g0 switch by setting correct g. 405 // The overall effect of Go->C->Go call chain is similar to that of mcall. 406 // RARG0 contains command code. RARG1 contains command-specific context. 407 // See racecallback for command codes. 408 TEXT runtime·racecallbackthunk(SB), NOSPLIT|NOFRAME, $0-0 409 // Handle command raceGetProcCmd (0) here. 410 // First, code below assumes that we are on curg, while raceGetProcCmd 411 // can be executed on g0. Second, it is called frequently, so will 412 // benefit from this fast path. 413 CMPQ RARG0, $0 414 JNE rest 415 get_tls(RARG0) 416 MOVQ g(RARG0), RARG0 417 MOVQ g_m(RARG0), RARG0 418 MOVQ m_p(RARG0), RARG0 419 MOVQ p_raceprocctx(RARG0), RARG0 420 MOVQ RARG0, (RARG1) 421 RET 422 423 rest: 424 // Transition from C ABI to Go ABI. 425 PUSH_REGS_HOST_TO_ABI0() 426 // Set g = g0. 427 get_tls(R12) 428 MOVQ g(R12), R14 429 MOVQ g_m(R14), R13 430 MOVQ m_g0(R13), R15 431 CMPQ R13, R15 432 JEQ noswitch // branch if already on g0 433 MOVQ R15, g(R12) // g = m->g0 434 MOVQ R15, R14 // set g register 435 PUSHQ RARG1 // func arg 436 PUSHQ RARG0 // func arg 437 CALL runtime·racecallback(SB) 438 POPQ R12 439 POPQ R12 440 // All registers are smashed after Go code, reload. 441 get_tls(R12) 442 MOVQ g(R12), R13 443 MOVQ g_m(R13), R13 444 MOVQ m_curg(R13), R14 445 MOVQ R14, g(R12) // g = m->curg 446 ret: 447 POP_REGS_HOST_TO_ABI0() 448 RET 449 450 noswitch: 451 // already on g0 452 PUSHQ RARG1 // func arg 453 PUSHQ RARG0 // func arg 454 CALL runtime·racecallback(SB) 455 POPQ R12 456 POPQ R12 457 JMP ret