github.com/ice-blockchain/go/src@v0.0.0-20240403114104-1564d284e521/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "errors" 9 "fmt" 10 "internal/fmtsort" 11 "io" 12 "reflect" 13 "runtime" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // maxExecDepth specifies the maximum stack depth of templates within 19 // templates. This limit is only practically reached by accidentally 20 // recursive template invocations. This limit allows us to return 21 // an error instead of triggering a stack overflow. 22 var maxExecDepth = initMaxExecDepth() 23 24 func initMaxExecDepth() int { 25 if runtime.GOARCH == "wasm" { 26 return 1000 27 } 28 return 100000 29 } 30 31 // state represents the state of an execution. It's not part of the 32 // template so that multiple executions of the same template 33 // can execute in parallel. 34 type state struct { 35 tmpl *Template 36 wr io.Writer 37 node parse.Node // current node, for errors 38 vars []variable // push-down stack of variable values. 39 depth int // the height of the stack of executing templates. 40 } 41 42 // variable holds the dynamic value of a variable such as $, $x etc. 43 type variable struct { 44 name string 45 value reflect.Value 46 } 47 48 // push pushes a new variable on the stack. 49 func (s *state) push(name string, value reflect.Value) { 50 s.vars = append(s.vars, variable{name, value}) 51 } 52 53 // mark returns the length of the variable stack. 54 func (s *state) mark() int { 55 return len(s.vars) 56 } 57 58 // pop pops the variable stack up to the mark. 59 func (s *state) pop(mark int) { 60 s.vars = s.vars[0:mark] 61 } 62 63 // setVar overwrites the last declared variable with the given name. 64 // Used by variable assignments. 65 func (s *state) setVar(name string, value reflect.Value) { 66 for i := s.mark() - 1; i >= 0; i-- { 67 if s.vars[i].name == name { 68 s.vars[i].value = value 69 return 70 } 71 } 72 s.errorf("undefined variable: %s", name) 73 } 74 75 // setTopVar overwrites the top-nth variable on the stack. Used by range iterations. 76 func (s *state) setTopVar(n int, value reflect.Value) { 77 s.vars[len(s.vars)-n].value = value 78 } 79 80 // varValue returns the value of the named variable. 81 func (s *state) varValue(name string) reflect.Value { 82 for i := s.mark() - 1; i >= 0; i-- { 83 if s.vars[i].name == name { 84 return s.vars[i].value 85 } 86 } 87 s.errorf("undefined variable: %s", name) 88 return zero 89 } 90 91 var zero reflect.Value 92 93 type missingValType struct{} 94 95 var missingVal = reflect.ValueOf(missingValType{}) 96 97 var missingValReflectType = reflect.TypeFor[missingValType]() 98 99 func isMissing(v reflect.Value) bool { 100 return v.IsValid() && v.Type() == missingValReflectType 101 } 102 103 // at marks the state to be on node n, for error reporting. 104 func (s *state) at(node parse.Node) { 105 s.node = node 106 } 107 108 // doublePercent returns the string with %'s replaced by %%, if necessary, 109 // so it can be used safely inside a Printf format string. 110 func doublePercent(str string) string { 111 return strings.ReplaceAll(str, "%", "%%") 112 } 113 114 // TODO: It would be nice if ExecError was more broken down, but 115 // the way ErrorContext embeds the template name makes the 116 // processing too clumsy. 117 118 // ExecError is the custom error type returned when Execute has an 119 // error evaluating its template. (If a write error occurs, the actual 120 // error is returned; it will not be of type ExecError.) 121 type ExecError struct { 122 Name string // Name of template. 123 Err error // Pre-formatted error. 124 } 125 126 func (e ExecError) Error() string { 127 return e.Err.Error() 128 } 129 130 func (e ExecError) Unwrap() error { 131 return e.Err 132 } 133 134 // errorf records an ExecError and terminates processing. 135 func (s *state) errorf(format string, args ...any) { 136 name := doublePercent(s.tmpl.Name()) 137 if s.node == nil { 138 format = fmt.Sprintf("template: %s: %s", name, format) 139 } else { 140 location, context := s.tmpl.ErrorContext(s.node) 141 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 142 } 143 panic(ExecError{ 144 Name: s.tmpl.Name(), 145 Err: fmt.Errorf(format, args...), 146 }) 147 } 148 149 // writeError is the wrapper type used internally when Execute has an 150 // error writing to its output. We strip the wrapper in errRecover. 151 // Note that this is not an implementation of error, so it cannot escape 152 // from the package as an error value. 153 type writeError struct { 154 Err error // Original error. 155 } 156 157 func (s *state) writeError(err error) { 158 panic(writeError{ 159 Err: err, 160 }) 161 } 162 163 // errRecover is the handler that turns panics into returns from the top 164 // level of Parse. 165 func errRecover(errp *error) { 166 e := recover() 167 if e != nil { 168 switch err := e.(type) { 169 case runtime.Error: 170 panic(e) 171 case writeError: 172 *errp = err.Err // Strip the wrapper. 173 case ExecError: 174 *errp = err // Keep the wrapper. 175 default: 176 panic(e) 177 } 178 } 179 } 180 181 // ExecuteTemplate applies the template associated with t that has the given name 182 // to the specified data object and writes the output to wr. 183 // If an error occurs executing the template or writing its output, 184 // execution stops, but partial results may already have been written to 185 // the output writer. 186 // A template may be executed safely in parallel, although if parallel 187 // executions share a Writer the output may be interleaved. 188 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data any) error { 189 tmpl := t.Lookup(name) 190 if tmpl == nil { 191 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 192 } 193 return tmpl.Execute(wr, data) 194 } 195 196 // Execute applies a parsed template to the specified data object, 197 // and writes the output to wr. 198 // If an error occurs executing the template or writing its output, 199 // execution stops, but partial results may already have been written to 200 // the output writer. 201 // A template may be executed safely in parallel, although if parallel 202 // executions share a Writer the output may be interleaved. 203 // 204 // If data is a [reflect.Value], the template applies to the concrete 205 // value that the reflect.Value holds, as in [fmt.Print]. 206 func (t *Template) Execute(wr io.Writer, data any) error { 207 return t.execute(wr, data) 208 } 209 210 func (t *Template) execute(wr io.Writer, data any) (err error) { 211 defer errRecover(&err) 212 value, ok := data.(reflect.Value) 213 if !ok { 214 value = reflect.ValueOf(data) 215 } 216 state := &state{ 217 tmpl: t, 218 wr: wr, 219 vars: []variable{{"$", value}}, 220 } 221 if t.Tree == nil || t.Root == nil { 222 state.errorf("%q is an incomplete or empty template", t.Name()) 223 } 224 state.walk(value, t.Root) 225 return 226 } 227 228 // DefinedTemplates returns a string listing the defined templates, 229 // prefixed by the string "; defined templates are: ". If there are none, 230 // it returns the empty string. For generating an error message here 231 // and in [html/template]. 232 func (t *Template) DefinedTemplates() string { 233 if t.common == nil { 234 return "" 235 } 236 var b strings.Builder 237 t.muTmpl.RLock() 238 defer t.muTmpl.RUnlock() 239 for name, tmpl := range t.tmpl { 240 if tmpl.Tree == nil || tmpl.Root == nil { 241 continue 242 } 243 if b.Len() == 0 { 244 b.WriteString("; defined templates are: ") 245 } else { 246 b.WriteString(", ") 247 } 248 fmt.Fprintf(&b, "%q", name) 249 } 250 return b.String() 251 } 252 253 // Sentinel errors for use with panic to signal early exits from range loops. 254 var ( 255 walkBreak = errors.New("break") 256 walkContinue = errors.New("continue") 257 ) 258 259 // Walk functions step through the major pieces of the template structure, 260 // generating output as they go. 261 func (s *state) walk(dot reflect.Value, node parse.Node) { 262 s.at(node) 263 switch node := node.(type) { 264 case *parse.ActionNode: 265 // Do not pop variables so they persist until next end. 266 // Also, if the action declares variables, don't print the result. 267 val := s.evalPipeline(dot, node.Pipe) 268 if len(node.Pipe.Decl) == 0 { 269 s.printValue(node, val) 270 } 271 case *parse.BreakNode: 272 panic(walkBreak) 273 case *parse.CommentNode: 274 case *parse.ContinueNode: 275 panic(walkContinue) 276 case *parse.IfNode: 277 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 278 case *parse.ListNode: 279 for _, node := range node.Nodes { 280 s.walk(dot, node) 281 } 282 case *parse.RangeNode: 283 s.walkRange(dot, node) 284 case *parse.TemplateNode: 285 s.walkTemplate(dot, node) 286 case *parse.TextNode: 287 if _, err := s.wr.Write(node.Text); err != nil { 288 s.writeError(err) 289 } 290 case *parse.WithNode: 291 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 292 default: 293 s.errorf("unknown node: %s", node) 294 } 295 } 296 297 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 298 // are identical in behavior except that 'with' sets dot. 299 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 300 defer s.pop(s.mark()) 301 val := s.evalPipeline(dot, pipe) 302 truth, ok := isTrue(indirectInterface(val)) 303 if !ok { 304 s.errorf("if/with can't use %v", val) 305 } 306 if truth { 307 if typ == parse.NodeWith { 308 s.walk(val, list) 309 } else { 310 s.walk(dot, list) 311 } 312 } else if elseList != nil { 313 s.walk(dot, elseList) 314 } 315 } 316 317 // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 318 // and whether the value has a meaningful truth value. This is the definition of 319 // truth used by if and other such actions. 320 func IsTrue(val any) (truth, ok bool) { 321 return isTrue(reflect.ValueOf(val)) 322 } 323 324 func isTrue(val reflect.Value) (truth, ok bool) { 325 if !val.IsValid() { 326 // Something like var x interface{}, never set. It's a form of nil. 327 return false, true 328 } 329 switch val.Kind() { 330 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 331 truth = val.Len() > 0 332 case reflect.Bool: 333 truth = val.Bool() 334 case reflect.Complex64, reflect.Complex128: 335 truth = val.Complex() != 0 336 case reflect.Chan, reflect.Func, reflect.Pointer, reflect.Interface: 337 truth = !val.IsNil() 338 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 339 truth = val.Int() != 0 340 case reflect.Float32, reflect.Float64: 341 truth = val.Float() != 0 342 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 343 truth = val.Uint() != 0 344 case reflect.Struct: 345 truth = true // Struct values are always true. 346 default: 347 return 348 } 349 return truth, true 350 } 351 352 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 353 s.at(r) 354 defer func() { 355 if r := recover(); r != nil && r != walkBreak { 356 panic(r) 357 } 358 }() 359 defer s.pop(s.mark()) 360 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 361 // mark top of stack before any variables in the body are pushed. 362 mark := s.mark() 363 oneIteration := func(index, elem reflect.Value) { 364 if len(r.Pipe.Decl) > 0 { 365 if r.Pipe.IsAssign { 366 // With two variables, index comes first. 367 // With one, we use the element. 368 if len(r.Pipe.Decl) > 1 { 369 s.setVar(r.Pipe.Decl[0].Ident[0], index) 370 } else { 371 s.setVar(r.Pipe.Decl[0].Ident[0], elem) 372 } 373 } else { 374 // Set top var (lexically the second if there 375 // are two) to the element. 376 s.setTopVar(1, elem) 377 } 378 } 379 if len(r.Pipe.Decl) > 1 { 380 if r.Pipe.IsAssign { 381 s.setVar(r.Pipe.Decl[1].Ident[0], elem) 382 } else { 383 // Set next var (lexically the first if there 384 // are two) to the index. 385 s.setTopVar(2, index) 386 } 387 } 388 defer s.pop(mark) 389 defer func() { 390 // Consume panic(walkContinue) 391 if r := recover(); r != nil && r != walkContinue { 392 panic(r) 393 } 394 }() 395 s.walk(elem, r.List) 396 } 397 switch val.Kind() { 398 case reflect.Array, reflect.Slice: 399 if val.Len() == 0 { 400 break 401 } 402 for i := 0; i < val.Len(); i++ { 403 oneIteration(reflect.ValueOf(i), val.Index(i)) 404 } 405 return 406 case reflect.Map: 407 if val.Len() == 0 { 408 break 409 } 410 om := fmtsort.Sort(val) 411 for i, key := range om.Key { 412 oneIteration(key, om.Value[i]) 413 } 414 return 415 case reflect.Chan: 416 if val.IsNil() { 417 break 418 } 419 if val.Type().ChanDir() == reflect.SendDir { 420 s.errorf("range over send-only channel %v", val) 421 break 422 } 423 i := 0 424 for ; ; i++ { 425 elem, ok := val.Recv() 426 if !ok { 427 break 428 } 429 oneIteration(reflect.ValueOf(i), elem) 430 } 431 if i == 0 { 432 break 433 } 434 return 435 case reflect.Invalid: 436 break // An invalid value is likely a nil map, etc. and acts like an empty map. 437 default: 438 s.errorf("range can't iterate over %v", val) 439 } 440 if r.ElseList != nil { 441 s.walk(dot, r.ElseList) 442 } 443 } 444 445 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 446 s.at(t) 447 tmpl := s.tmpl.Lookup(t.Name) 448 if tmpl == nil { 449 s.errorf("template %q not defined", t.Name) 450 } 451 if s.depth == maxExecDepth { 452 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 453 } 454 // Variables declared by the pipeline persist. 455 dot = s.evalPipeline(dot, t.Pipe) 456 newState := *s 457 newState.depth++ 458 newState.tmpl = tmpl 459 // No dynamic scoping: template invocations inherit no variables. 460 newState.vars = []variable{{"$", dot}} 461 newState.walk(dot, tmpl.Root) 462 } 463 464 // Eval functions evaluate pipelines, commands, and their elements and extract 465 // values from the data structure by examining fields, calling methods, and so on. 466 // The printing of those values happens only through walk functions. 467 468 // evalPipeline returns the value acquired by evaluating a pipeline. If the 469 // pipeline has a variable declaration, the variable will be pushed on the 470 // stack. Callers should therefore pop the stack after they are finished 471 // executing commands depending on the pipeline value. 472 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 473 if pipe == nil { 474 return 475 } 476 s.at(pipe) 477 value = missingVal 478 for _, cmd := range pipe.Cmds { 479 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 480 // If the object has type interface{}, dig down one level to the thing inside. 481 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 482 value = value.Elem() 483 } 484 } 485 for _, variable := range pipe.Decl { 486 if pipe.IsAssign { 487 s.setVar(variable.Ident[0], value) 488 } else { 489 s.push(variable.Ident[0], value) 490 } 491 } 492 return value 493 } 494 495 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 496 if len(args) > 1 || !isMissing(final) { 497 s.errorf("can't give argument to non-function %s", args[0]) 498 } 499 } 500 501 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 502 firstWord := cmd.Args[0] 503 switch n := firstWord.(type) { 504 case *parse.FieldNode: 505 return s.evalFieldNode(dot, n, cmd.Args, final) 506 case *parse.ChainNode: 507 return s.evalChainNode(dot, n, cmd.Args, final) 508 case *parse.IdentifierNode: 509 // Must be a function. 510 return s.evalFunction(dot, n, cmd, cmd.Args, final) 511 case *parse.PipeNode: 512 // Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent. 513 s.notAFunction(cmd.Args, final) 514 return s.evalPipeline(dot, n) 515 case *parse.VariableNode: 516 return s.evalVariableNode(dot, n, cmd.Args, final) 517 } 518 s.at(firstWord) 519 s.notAFunction(cmd.Args, final) 520 switch word := firstWord.(type) { 521 case *parse.BoolNode: 522 return reflect.ValueOf(word.True) 523 case *parse.DotNode: 524 return dot 525 case *parse.NilNode: 526 s.errorf("nil is not a command") 527 case *parse.NumberNode: 528 return s.idealConstant(word) 529 case *parse.StringNode: 530 return reflect.ValueOf(word.Text) 531 } 532 s.errorf("can't evaluate command %q", firstWord) 533 panic("not reached") 534 } 535 536 // idealConstant is called to return the value of a number in a context where 537 // we don't know the type. In that case, the syntax of the number tells us 538 // its type, and we use Go rules to resolve. Note there is no such thing as 539 // a uint ideal constant in this situation - the value must be of int type. 540 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 541 // These are ideal constants but we don't know the type 542 // and we have no context. (If it was a method argument, 543 // we'd know what we need.) The syntax guides us to some extent. 544 s.at(constant) 545 switch { 546 case constant.IsComplex: 547 return reflect.ValueOf(constant.Complex128) // incontrovertible. 548 549 case constant.IsFloat && 550 !isHexInt(constant.Text) && !isRuneInt(constant.Text) && 551 strings.ContainsAny(constant.Text, ".eEpP"): 552 return reflect.ValueOf(constant.Float64) 553 554 case constant.IsInt: 555 n := int(constant.Int64) 556 if int64(n) != constant.Int64 { 557 s.errorf("%s overflows int", constant.Text) 558 } 559 return reflect.ValueOf(n) 560 561 case constant.IsUint: 562 s.errorf("%s overflows int", constant.Text) 563 } 564 return zero 565 } 566 567 func isRuneInt(s string) bool { 568 return len(s) > 0 && s[0] == '\'' 569 } 570 571 func isHexInt(s string) bool { 572 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP") 573 } 574 575 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 576 s.at(field) 577 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 578 } 579 580 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 581 s.at(chain) 582 if len(chain.Field) == 0 { 583 s.errorf("internal error: no fields in evalChainNode") 584 } 585 if chain.Node.Type() == parse.NodeNil { 586 s.errorf("indirection through explicit nil in %s", chain) 587 } 588 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 589 pipe := s.evalArg(dot, nil, chain.Node) 590 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 591 } 592 593 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 594 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 595 s.at(variable) 596 value := s.varValue(variable.Ident[0]) 597 if len(variable.Ident) == 1 { 598 s.notAFunction(args, final) 599 return value 600 } 601 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 602 } 603 604 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 605 // dot is the environment in which to evaluate arguments, while 606 // receiver is the value being walked along the chain. 607 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 608 n := len(ident) 609 for i := 0; i < n-1; i++ { 610 receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver) 611 } 612 // Now if it's a method, it gets the arguments. 613 return s.evalField(dot, ident[n-1], node, args, final, receiver) 614 } 615 616 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 617 s.at(node) 618 name := node.Ident 619 function, isBuiltin, ok := findFunction(name, s.tmpl) 620 if !ok { 621 s.errorf("%q is not a defined function", name) 622 } 623 return s.evalCall(dot, function, isBuiltin, cmd, name, args, final) 624 } 625 626 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 627 // The 'final' argument represents the return value from the preceding 628 // value of the pipeline, if any. 629 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 630 if !receiver.IsValid() { 631 if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. 632 s.errorf("nil data; no entry for key %q", fieldName) 633 } 634 return zero 635 } 636 typ := receiver.Type() 637 receiver, isNil := indirect(receiver) 638 if receiver.Kind() == reflect.Interface && isNil { 639 // Calling a method on a nil interface can't work. The 640 // MethodByName method call below would panic. 641 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 642 return zero 643 } 644 645 // Unless it's an interface, need to get to a value of type *T to guarantee 646 // we see all methods of T and *T. 647 ptr := receiver 648 if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Pointer && ptr.CanAddr() { 649 ptr = ptr.Addr() 650 } 651 if method := ptr.MethodByName(fieldName); method.IsValid() { 652 return s.evalCall(dot, method, false, node, fieldName, args, final) 653 } 654 hasArgs := len(args) > 1 || !isMissing(final) 655 // It's not a method; must be a field of a struct or an element of a map. 656 switch receiver.Kind() { 657 case reflect.Struct: 658 tField, ok := receiver.Type().FieldByName(fieldName) 659 if ok { 660 field, err := receiver.FieldByIndexErr(tField.Index) 661 if !tField.IsExported() { 662 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 663 } 664 if err != nil { 665 s.errorf("%v", err) 666 } 667 // If it's a function, we must call it. 668 if hasArgs { 669 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 670 } 671 return field 672 } 673 case reflect.Map: 674 // If it's a map, attempt to use the field name as a key. 675 nameVal := reflect.ValueOf(fieldName) 676 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 677 if hasArgs { 678 s.errorf("%s is not a method but has arguments", fieldName) 679 } 680 result := receiver.MapIndex(nameVal) 681 if !result.IsValid() { 682 switch s.tmpl.option.missingKey { 683 case mapInvalid: 684 // Just use the invalid value. 685 case mapZeroValue: 686 result = reflect.Zero(receiver.Type().Elem()) 687 case mapError: 688 s.errorf("map has no entry for key %q", fieldName) 689 } 690 } 691 return result 692 } 693 case reflect.Pointer: 694 etyp := receiver.Type().Elem() 695 if etyp.Kind() == reflect.Struct { 696 if _, ok := etyp.FieldByName(fieldName); !ok { 697 // If there's no such field, say "can't evaluate" 698 // instead of "nil pointer evaluating". 699 break 700 } 701 } 702 if isNil { 703 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 704 } 705 } 706 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 707 panic("not reached") 708 } 709 710 var ( 711 errorType = reflect.TypeFor[error]() 712 fmtStringerType = reflect.TypeFor[fmt.Stringer]() 713 reflectValueType = reflect.TypeFor[reflect.Value]() 714 ) 715 716 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 717 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 718 // as the function itself. 719 func (s *state) evalCall(dot, fun reflect.Value, isBuiltin bool, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 720 if args != nil { 721 args = args[1:] // Zeroth arg is function name/node; not passed to function. 722 } 723 typ := fun.Type() 724 numIn := len(args) 725 if !isMissing(final) { 726 numIn++ 727 } 728 numFixed := len(args) 729 if typ.IsVariadic() { 730 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 731 if numIn < numFixed { 732 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 733 } 734 } else if numIn != typ.NumIn() { 735 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) 736 } 737 if !goodFunc(typ) { 738 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 739 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 740 } 741 742 unwrap := func(v reflect.Value) reflect.Value { 743 if v.Type() == reflectValueType { 744 v = v.Interface().(reflect.Value) 745 } 746 return v 747 } 748 749 // Special case for builtin and/or, which short-circuit. 750 if isBuiltin && (name == "and" || name == "or") { 751 argType := typ.In(0) 752 var v reflect.Value 753 for _, arg := range args { 754 v = s.evalArg(dot, argType, arg).Interface().(reflect.Value) 755 if truth(v) == (name == "or") { 756 // This value was already unwrapped 757 // by the .Interface().(reflect.Value). 758 return v 759 } 760 } 761 if final != missingVal { 762 // The last argument to and/or is coming from 763 // the pipeline. We didn't short circuit on an earlier 764 // argument, so we are going to return this one. 765 // We don't have to evaluate final, but we do 766 // have to check its type. Then, since we are 767 // going to return it, we have to unwrap it. 768 v = unwrap(s.validateType(final, argType)) 769 } 770 return v 771 } 772 773 // Build the arg list. 774 argv := make([]reflect.Value, numIn) 775 // Args must be evaluated. Fixed args first. 776 i := 0 777 for ; i < numFixed && i < len(args); i++ { 778 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 779 } 780 // Now the ... args. 781 if typ.IsVariadic() { 782 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 783 for ; i < len(args); i++ { 784 argv[i] = s.evalArg(dot, argType, args[i]) 785 } 786 } 787 // Add final value if necessary. 788 if !isMissing(final) { 789 t := typ.In(typ.NumIn() - 1) 790 if typ.IsVariadic() { 791 if numIn-1 < numFixed { 792 // The added final argument corresponds to a fixed parameter of the function. 793 // Validate against the type of the actual parameter. 794 t = typ.In(numIn - 1) 795 } else { 796 // The added final argument corresponds to the variadic part. 797 // Validate against the type of the elements of the variadic slice. 798 t = t.Elem() 799 } 800 } 801 argv[i] = s.validateType(final, t) 802 } 803 v, err := safeCall(fun, argv) 804 // If we have an error that is not nil, stop execution and return that 805 // error to the caller. 806 if err != nil { 807 s.at(node) 808 s.errorf("error calling %s: %w", name, err) 809 } 810 return unwrap(v) 811 } 812 813 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 814 func canBeNil(typ reflect.Type) bool { 815 switch typ.Kind() { 816 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice: 817 return true 818 case reflect.Struct: 819 return typ == reflectValueType 820 } 821 return false 822 } 823 824 // validateType guarantees that the value is valid and assignable to the type. 825 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 826 if !value.IsValid() { 827 if typ == nil { 828 // An untyped nil interface{}. Accept as a proper nil value. 829 return reflect.ValueOf(nil) 830 } 831 if canBeNil(typ) { 832 // Like above, but use the zero value of the non-nil type. 833 return reflect.Zero(typ) 834 } 835 s.errorf("invalid value; expected %s", typ) 836 } 837 if typ == reflectValueType && value.Type() != typ { 838 return reflect.ValueOf(value) 839 } 840 if typ != nil && !value.Type().AssignableTo(typ) { 841 if value.Kind() == reflect.Interface && !value.IsNil() { 842 value = value.Elem() 843 if value.Type().AssignableTo(typ) { 844 return value 845 } 846 // fallthrough 847 } 848 // Does one dereference or indirection work? We could do more, as we 849 // do with method receivers, but that gets messy and method receivers 850 // are much more constrained, so it makes more sense there than here. 851 // Besides, one is almost always all you need. 852 switch { 853 case value.Kind() == reflect.Pointer && value.Type().Elem().AssignableTo(typ): 854 value = value.Elem() 855 if !value.IsValid() { 856 s.errorf("dereference of nil pointer of type %s", typ) 857 } 858 case reflect.PointerTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 859 value = value.Addr() 860 default: 861 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 862 } 863 } 864 return value 865 } 866 867 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 868 s.at(n) 869 switch arg := n.(type) { 870 case *parse.DotNode: 871 return s.validateType(dot, typ) 872 case *parse.NilNode: 873 if canBeNil(typ) { 874 return reflect.Zero(typ) 875 } 876 s.errorf("cannot assign nil to %s", typ) 877 case *parse.FieldNode: 878 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ) 879 case *parse.VariableNode: 880 return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ) 881 case *parse.PipeNode: 882 return s.validateType(s.evalPipeline(dot, arg), typ) 883 case *parse.IdentifierNode: 884 return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ) 885 case *parse.ChainNode: 886 return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ) 887 } 888 switch typ.Kind() { 889 case reflect.Bool: 890 return s.evalBool(typ, n) 891 case reflect.Complex64, reflect.Complex128: 892 return s.evalComplex(typ, n) 893 case reflect.Float32, reflect.Float64: 894 return s.evalFloat(typ, n) 895 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 896 return s.evalInteger(typ, n) 897 case reflect.Interface: 898 if typ.NumMethod() == 0 { 899 return s.evalEmptyInterface(dot, n) 900 } 901 case reflect.Struct: 902 if typ == reflectValueType { 903 return reflect.ValueOf(s.evalEmptyInterface(dot, n)) 904 } 905 case reflect.String: 906 return s.evalString(typ, n) 907 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 908 return s.evalUnsignedInteger(typ, n) 909 } 910 s.errorf("can't handle %s for arg of type %s", n, typ) 911 panic("not reached") 912 } 913 914 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 915 s.at(n) 916 if n, ok := n.(*parse.BoolNode); ok { 917 value := reflect.New(typ).Elem() 918 value.SetBool(n.True) 919 return value 920 } 921 s.errorf("expected bool; found %s", n) 922 panic("not reached") 923 } 924 925 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 926 s.at(n) 927 if n, ok := n.(*parse.StringNode); ok { 928 value := reflect.New(typ).Elem() 929 value.SetString(n.Text) 930 return value 931 } 932 s.errorf("expected string; found %s", n) 933 panic("not reached") 934 } 935 936 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 937 s.at(n) 938 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 939 value := reflect.New(typ).Elem() 940 value.SetInt(n.Int64) 941 return value 942 } 943 s.errorf("expected integer; found %s", n) 944 panic("not reached") 945 } 946 947 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 948 s.at(n) 949 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 950 value := reflect.New(typ).Elem() 951 value.SetUint(n.Uint64) 952 return value 953 } 954 s.errorf("expected unsigned integer; found %s", n) 955 panic("not reached") 956 } 957 958 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 959 s.at(n) 960 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 961 value := reflect.New(typ).Elem() 962 value.SetFloat(n.Float64) 963 return value 964 } 965 s.errorf("expected float; found %s", n) 966 panic("not reached") 967 } 968 969 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 970 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 971 value := reflect.New(typ).Elem() 972 value.SetComplex(n.Complex128) 973 return value 974 } 975 s.errorf("expected complex; found %s", n) 976 panic("not reached") 977 } 978 979 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 980 s.at(n) 981 switch n := n.(type) { 982 case *parse.BoolNode: 983 return reflect.ValueOf(n.True) 984 case *parse.DotNode: 985 return dot 986 case *parse.FieldNode: 987 return s.evalFieldNode(dot, n, nil, missingVal) 988 case *parse.IdentifierNode: 989 return s.evalFunction(dot, n, n, nil, missingVal) 990 case *parse.NilNode: 991 // NilNode is handled in evalArg, the only place that calls here. 992 s.errorf("evalEmptyInterface: nil (can't happen)") 993 case *parse.NumberNode: 994 return s.idealConstant(n) 995 case *parse.StringNode: 996 return reflect.ValueOf(n.Text) 997 case *parse.VariableNode: 998 return s.evalVariableNode(dot, n, nil, missingVal) 999 case *parse.PipeNode: 1000 return s.evalPipeline(dot, n) 1001 } 1002 s.errorf("can't handle assignment of %s to empty interface argument", n) 1003 panic("not reached") 1004 } 1005 1006 // indirect returns the item at the end of indirection, and a bool to indicate 1007 // if it's nil. If the returned bool is true, the returned value's kind will be 1008 // either a pointer or interface. 1009 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 1010 for ; v.Kind() == reflect.Pointer || v.Kind() == reflect.Interface; v = v.Elem() { 1011 if v.IsNil() { 1012 return v, true 1013 } 1014 } 1015 return v, false 1016 } 1017 1018 // indirectInterface returns the concrete value in an interface value, 1019 // or else the zero reflect.Value. 1020 // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): 1021 // the fact that x was an interface value is forgotten. 1022 func indirectInterface(v reflect.Value) reflect.Value { 1023 if v.Kind() != reflect.Interface { 1024 return v 1025 } 1026 if v.IsNil() { 1027 return reflect.Value{} 1028 } 1029 return v.Elem() 1030 } 1031 1032 // printValue writes the textual representation of the value to the output of 1033 // the template. 1034 func (s *state) printValue(n parse.Node, v reflect.Value) { 1035 s.at(n) 1036 iface, ok := printableValue(v) 1037 if !ok { 1038 s.errorf("can't print %s of type %s", n, v.Type()) 1039 } 1040 _, err := fmt.Fprint(s.wr, iface) 1041 if err != nil { 1042 s.writeError(err) 1043 } 1044 } 1045 1046 // printableValue returns the, possibly indirected, interface value inside v that 1047 // is best for a call to formatted printer. 1048 func printableValue(v reflect.Value) (any, bool) { 1049 if v.Kind() == reflect.Pointer { 1050 v, _ = indirect(v) // fmt.Fprint handles nil. 1051 } 1052 if !v.IsValid() { 1053 return "<no value>", true 1054 } 1055 1056 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 1057 if v.CanAddr() && (reflect.PointerTo(v.Type()).Implements(errorType) || reflect.PointerTo(v.Type()).Implements(fmtStringerType)) { 1058 v = v.Addr() 1059 } else { 1060 switch v.Kind() { 1061 case reflect.Chan, reflect.Func: 1062 return nil, false 1063 } 1064 } 1065 } 1066 return v.Interface(), true 1067 }