github.com/icodeface/tls@v0.0.0-20230910023335-34df9250cd12/internal/x/crypto/curve25519/curve25519.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // We have an implementation in amd64 assembly so this code is only run on 6 // non-amd64 platforms. The amd64 assembly does not support gccgo. 7 // +build !amd64 gccgo appengine 8 9 package curve25519 10 11 import ( 12 "encoding/binary" 13 ) 14 15 // This code is a port of the public domain, "ref10" implementation of 16 // curve25519 from SUPERCOP 20130419 by D. J. Bernstein. 17 18 // fieldElement represents an element of the field GF(2^255 - 19). An element 19 // t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 20 // t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on 21 // context. 22 type fieldElement [10]int32 23 24 func feZero(fe *fieldElement) { 25 for i := range fe { 26 fe[i] = 0 27 } 28 } 29 30 func feOne(fe *fieldElement) { 31 feZero(fe) 32 fe[0] = 1 33 } 34 35 func feAdd(dst, a, b *fieldElement) { 36 for i := range dst { 37 dst[i] = a[i] + b[i] 38 } 39 } 40 41 func feSub(dst, a, b *fieldElement) { 42 for i := range dst { 43 dst[i] = a[i] - b[i] 44 } 45 } 46 47 func feCopy(dst, src *fieldElement) { 48 for i := range dst { 49 dst[i] = src[i] 50 } 51 } 52 53 // feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0. 54 // 55 // Preconditions: b in {0,1}. 56 func feCSwap(f, g *fieldElement, b int32) { 57 b = -b 58 for i := range f { 59 t := b & (f[i] ^ g[i]) 60 f[i] ^= t 61 g[i] ^= t 62 } 63 } 64 65 // load3 reads a 24-bit, little-endian value from in. 66 func load3(in []byte) int64 { 67 var r int64 68 r = int64(in[0]) 69 r |= int64(in[1]) << 8 70 r |= int64(in[2]) << 16 71 return r 72 } 73 74 // load4 reads a 32-bit, little-endian value from in. 75 func load4(in []byte) int64 { 76 return int64(binary.LittleEndian.Uint32(in)) 77 } 78 79 func feFromBytes(dst *fieldElement, src *[32]byte) { 80 h0 := load4(src[:]) 81 h1 := load3(src[4:]) << 6 82 h2 := load3(src[7:]) << 5 83 h3 := load3(src[10:]) << 3 84 h4 := load3(src[13:]) << 2 85 h5 := load4(src[16:]) 86 h6 := load3(src[20:]) << 7 87 h7 := load3(src[23:]) << 5 88 h8 := load3(src[26:]) << 4 89 h9 := load3(src[29:]) << 2 90 91 var carry [10]int64 92 carry[9] = (h9 + 1<<24) >> 25 93 h0 += carry[9] * 19 94 h9 -= carry[9] << 25 95 carry[1] = (h1 + 1<<24) >> 25 96 h2 += carry[1] 97 h1 -= carry[1] << 25 98 carry[3] = (h3 + 1<<24) >> 25 99 h4 += carry[3] 100 h3 -= carry[3] << 25 101 carry[5] = (h5 + 1<<24) >> 25 102 h6 += carry[5] 103 h5 -= carry[5] << 25 104 carry[7] = (h7 + 1<<24) >> 25 105 h8 += carry[7] 106 h7 -= carry[7] << 25 107 108 carry[0] = (h0 + 1<<25) >> 26 109 h1 += carry[0] 110 h0 -= carry[0] << 26 111 carry[2] = (h2 + 1<<25) >> 26 112 h3 += carry[2] 113 h2 -= carry[2] << 26 114 carry[4] = (h4 + 1<<25) >> 26 115 h5 += carry[4] 116 h4 -= carry[4] << 26 117 carry[6] = (h6 + 1<<25) >> 26 118 h7 += carry[6] 119 h6 -= carry[6] << 26 120 carry[8] = (h8 + 1<<25) >> 26 121 h9 += carry[8] 122 h8 -= carry[8] << 26 123 124 dst[0] = int32(h0) 125 dst[1] = int32(h1) 126 dst[2] = int32(h2) 127 dst[3] = int32(h3) 128 dst[4] = int32(h4) 129 dst[5] = int32(h5) 130 dst[6] = int32(h6) 131 dst[7] = int32(h7) 132 dst[8] = int32(h8) 133 dst[9] = int32(h9) 134 } 135 136 // feToBytes marshals h to s. 137 // Preconditions: 138 // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. 139 // 140 // Write p=2^255-19; q=floor(h/p). 141 // Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))). 142 // 143 // Proof: 144 // Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4. 145 // Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4. 146 // 147 // Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9). 148 // Then 0<y<1. 149 // 150 // Write r=h-pq. 151 // Have 0<=r<=p-1=2^255-20. 152 // Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1. 153 // 154 // Write x=r+19(2^-255)r+y. 155 // Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q. 156 // 157 // Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1)) 158 // so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q. 159 func feToBytes(s *[32]byte, h *fieldElement) { 160 var carry [10]int32 161 162 q := (19*h[9] + (1 << 24)) >> 25 163 q = (h[0] + q) >> 26 164 q = (h[1] + q) >> 25 165 q = (h[2] + q) >> 26 166 q = (h[3] + q) >> 25 167 q = (h[4] + q) >> 26 168 q = (h[5] + q) >> 25 169 q = (h[6] + q) >> 26 170 q = (h[7] + q) >> 25 171 q = (h[8] + q) >> 26 172 q = (h[9] + q) >> 25 173 174 // Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. 175 h[0] += 19 * q 176 // Goal: Output h-2^255 q, which is between 0 and 2^255-20. 177 178 carry[0] = h[0] >> 26 179 h[1] += carry[0] 180 h[0] -= carry[0] << 26 181 carry[1] = h[1] >> 25 182 h[2] += carry[1] 183 h[1] -= carry[1] << 25 184 carry[2] = h[2] >> 26 185 h[3] += carry[2] 186 h[2] -= carry[2] << 26 187 carry[3] = h[3] >> 25 188 h[4] += carry[3] 189 h[3] -= carry[3] << 25 190 carry[4] = h[4] >> 26 191 h[5] += carry[4] 192 h[4] -= carry[4] << 26 193 carry[5] = h[5] >> 25 194 h[6] += carry[5] 195 h[5] -= carry[5] << 25 196 carry[6] = h[6] >> 26 197 h[7] += carry[6] 198 h[6] -= carry[6] << 26 199 carry[7] = h[7] >> 25 200 h[8] += carry[7] 201 h[7] -= carry[7] << 25 202 carry[8] = h[8] >> 26 203 h[9] += carry[8] 204 h[8] -= carry[8] << 26 205 carry[9] = h[9] >> 25 206 h[9] -= carry[9] << 25 207 // h10 = carry9 208 209 // Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20. 210 // Have h[0]+...+2^230 h[9] between 0 and 2^255-1; 211 // evidently 2^255 h10-2^255 q = 0. 212 // Goal: Output h[0]+...+2^230 h[9]. 213 214 s[0] = byte(h[0] >> 0) 215 s[1] = byte(h[0] >> 8) 216 s[2] = byte(h[0] >> 16) 217 s[3] = byte((h[0] >> 24) | (h[1] << 2)) 218 s[4] = byte(h[1] >> 6) 219 s[5] = byte(h[1] >> 14) 220 s[6] = byte((h[1] >> 22) | (h[2] << 3)) 221 s[7] = byte(h[2] >> 5) 222 s[8] = byte(h[2] >> 13) 223 s[9] = byte((h[2] >> 21) | (h[3] << 5)) 224 s[10] = byte(h[3] >> 3) 225 s[11] = byte(h[3] >> 11) 226 s[12] = byte((h[3] >> 19) | (h[4] << 6)) 227 s[13] = byte(h[4] >> 2) 228 s[14] = byte(h[4] >> 10) 229 s[15] = byte(h[4] >> 18) 230 s[16] = byte(h[5] >> 0) 231 s[17] = byte(h[5] >> 8) 232 s[18] = byte(h[5] >> 16) 233 s[19] = byte((h[5] >> 24) | (h[6] << 1)) 234 s[20] = byte(h[6] >> 7) 235 s[21] = byte(h[6] >> 15) 236 s[22] = byte((h[6] >> 23) | (h[7] << 3)) 237 s[23] = byte(h[7] >> 5) 238 s[24] = byte(h[7] >> 13) 239 s[25] = byte((h[7] >> 21) | (h[8] << 4)) 240 s[26] = byte(h[8] >> 4) 241 s[27] = byte(h[8] >> 12) 242 s[28] = byte((h[8] >> 20) | (h[9] << 6)) 243 s[29] = byte(h[9] >> 2) 244 s[30] = byte(h[9] >> 10) 245 s[31] = byte(h[9] >> 18) 246 } 247 248 // feMul calculates h = f * g 249 // Can overlap h with f or g. 250 // 251 // Preconditions: 252 // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. 253 // |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. 254 // 255 // Postconditions: 256 // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. 257 // 258 // Notes on implementation strategy: 259 // 260 // Using schoolbook multiplication. 261 // Karatsuba would save a little in some cost models. 262 // 263 // Most multiplications by 2 and 19 are 32-bit precomputations; 264 // cheaper than 64-bit postcomputations. 265 // 266 // There is one remaining multiplication by 19 in the carry chain; 267 // one *19 precomputation can be merged into this, 268 // but the resulting data flow is considerably less clean. 269 // 270 // There are 12 carries below. 271 // 10 of them are 2-way parallelizable and vectorizable. 272 // Can get away with 11 carries, but then data flow is much deeper. 273 // 274 // With tighter constraints on inputs can squeeze carries into int32. 275 func feMul(h, f, g *fieldElement) { 276 f0 := f[0] 277 f1 := f[1] 278 f2 := f[2] 279 f3 := f[3] 280 f4 := f[4] 281 f5 := f[5] 282 f6 := f[6] 283 f7 := f[7] 284 f8 := f[8] 285 f9 := f[9] 286 g0 := g[0] 287 g1 := g[1] 288 g2 := g[2] 289 g3 := g[3] 290 g4 := g[4] 291 g5 := g[5] 292 g6 := g[6] 293 g7 := g[7] 294 g8 := g[8] 295 g9 := g[9] 296 g1_19 := 19 * g1 // 1.4*2^29 297 g2_19 := 19 * g2 // 1.4*2^30; still ok 298 g3_19 := 19 * g3 299 g4_19 := 19 * g4 300 g5_19 := 19 * g5 301 g6_19 := 19 * g6 302 g7_19 := 19 * g7 303 g8_19 := 19 * g8 304 g9_19 := 19 * g9 305 f1_2 := 2 * f1 306 f3_2 := 2 * f3 307 f5_2 := 2 * f5 308 f7_2 := 2 * f7 309 f9_2 := 2 * f9 310 f0g0 := int64(f0) * int64(g0) 311 f0g1 := int64(f0) * int64(g1) 312 f0g2 := int64(f0) * int64(g2) 313 f0g3 := int64(f0) * int64(g3) 314 f0g4 := int64(f0) * int64(g4) 315 f0g5 := int64(f0) * int64(g5) 316 f0g6 := int64(f0) * int64(g6) 317 f0g7 := int64(f0) * int64(g7) 318 f0g8 := int64(f0) * int64(g8) 319 f0g9 := int64(f0) * int64(g9) 320 f1g0 := int64(f1) * int64(g0) 321 f1g1_2 := int64(f1_2) * int64(g1) 322 f1g2 := int64(f1) * int64(g2) 323 f1g3_2 := int64(f1_2) * int64(g3) 324 f1g4 := int64(f1) * int64(g4) 325 f1g5_2 := int64(f1_2) * int64(g5) 326 f1g6 := int64(f1) * int64(g6) 327 f1g7_2 := int64(f1_2) * int64(g7) 328 f1g8 := int64(f1) * int64(g8) 329 f1g9_38 := int64(f1_2) * int64(g9_19) 330 f2g0 := int64(f2) * int64(g0) 331 f2g1 := int64(f2) * int64(g1) 332 f2g2 := int64(f2) * int64(g2) 333 f2g3 := int64(f2) * int64(g3) 334 f2g4 := int64(f2) * int64(g4) 335 f2g5 := int64(f2) * int64(g5) 336 f2g6 := int64(f2) * int64(g6) 337 f2g7 := int64(f2) * int64(g7) 338 f2g8_19 := int64(f2) * int64(g8_19) 339 f2g9_19 := int64(f2) * int64(g9_19) 340 f3g0 := int64(f3) * int64(g0) 341 f3g1_2 := int64(f3_2) * int64(g1) 342 f3g2 := int64(f3) * int64(g2) 343 f3g3_2 := int64(f3_2) * int64(g3) 344 f3g4 := int64(f3) * int64(g4) 345 f3g5_2 := int64(f3_2) * int64(g5) 346 f3g6 := int64(f3) * int64(g6) 347 f3g7_38 := int64(f3_2) * int64(g7_19) 348 f3g8_19 := int64(f3) * int64(g8_19) 349 f3g9_38 := int64(f3_2) * int64(g9_19) 350 f4g0 := int64(f4) * int64(g0) 351 f4g1 := int64(f4) * int64(g1) 352 f4g2 := int64(f4) * int64(g2) 353 f4g3 := int64(f4) * int64(g3) 354 f4g4 := int64(f4) * int64(g4) 355 f4g5 := int64(f4) * int64(g5) 356 f4g6_19 := int64(f4) * int64(g6_19) 357 f4g7_19 := int64(f4) * int64(g7_19) 358 f4g8_19 := int64(f4) * int64(g8_19) 359 f4g9_19 := int64(f4) * int64(g9_19) 360 f5g0 := int64(f5) * int64(g0) 361 f5g1_2 := int64(f5_2) * int64(g1) 362 f5g2 := int64(f5) * int64(g2) 363 f5g3_2 := int64(f5_2) * int64(g3) 364 f5g4 := int64(f5) * int64(g4) 365 f5g5_38 := int64(f5_2) * int64(g5_19) 366 f5g6_19 := int64(f5) * int64(g6_19) 367 f5g7_38 := int64(f5_2) * int64(g7_19) 368 f5g8_19 := int64(f5) * int64(g8_19) 369 f5g9_38 := int64(f5_2) * int64(g9_19) 370 f6g0 := int64(f6) * int64(g0) 371 f6g1 := int64(f6) * int64(g1) 372 f6g2 := int64(f6) * int64(g2) 373 f6g3 := int64(f6) * int64(g3) 374 f6g4_19 := int64(f6) * int64(g4_19) 375 f6g5_19 := int64(f6) * int64(g5_19) 376 f6g6_19 := int64(f6) * int64(g6_19) 377 f6g7_19 := int64(f6) * int64(g7_19) 378 f6g8_19 := int64(f6) * int64(g8_19) 379 f6g9_19 := int64(f6) * int64(g9_19) 380 f7g0 := int64(f7) * int64(g0) 381 f7g1_2 := int64(f7_2) * int64(g1) 382 f7g2 := int64(f7) * int64(g2) 383 f7g3_38 := int64(f7_2) * int64(g3_19) 384 f7g4_19 := int64(f7) * int64(g4_19) 385 f7g5_38 := int64(f7_2) * int64(g5_19) 386 f7g6_19 := int64(f7) * int64(g6_19) 387 f7g7_38 := int64(f7_2) * int64(g7_19) 388 f7g8_19 := int64(f7) * int64(g8_19) 389 f7g9_38 := int64(f7_2) * int64(g9_19) 390 f8g0 := int64(f8) * int64(g0) 391 f8g1 := int64(f8) * int64(g1) 392 f8g2_19 := int64(f8) * int64(g2_19) 393 f8g3_19 := int64(f8) * int64(g3_19) 394 f8g4_19 := int64(f8) * int64(g4_19) 395 f8g5_19 := int64(f8) * int64(g5_19) 396 f8g6_19 := int64(f8) * int64(g6_19) 397 f8g7_19 := int64(f8) * int64(g7_19) 398 f8g8_19 := int64(f8) * int64(g8_19) 399 f8g9_19 := int64(f8) * int64(g9_19) 400 f9g0 := int64(f9) * int64(g0) 401 f9g1_38 := int64(f9_2) * int64(g1_19) 402 f9g2_19 := int64(f9) * int64(g2_19) 403 f9g3_38 := int64(f9_2) * int64(g3_19) 404 f9g4_19 := int64(f9) * int64(g4_19) 405 f9g5_38 := int64(f9_2) * int64(g5_19) 406 f9g6_19 := int64(f9) * int64(g6_19) 407 f9g7_38 := int64(f9_2) * int64(g7_19) 408 f9g8_19 := int64(f9) * int64(g8_19) 409 f9g9_38 := int64(f9_2) * int64(g9_19) 410 h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38 411 h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19 412 h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38 413 h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19 414 h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38 415 h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19 416 h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38 417 h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19 418 h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38 419 h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0 420 var carry [10]int64 421 422 // |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38)) 423 // i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8 424 // |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19)) 425 // i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9 426 427 carry[0] = (h0 + (1 << 25)) >> 26 428 h1 += carry[0] 429 h0 -= carry[0] << 26 430 carry[4] = (h4 + (1 << 25)) >> 26 431 h5 += carry[4] 432 h4 -= carry[4] << 26 433 // |h0| <= 2^25 434 // |h4| <= 2^25 435 // |h1| <= 1.51*2^58 436 // |h5| <= 1.51*2^58 437 438 carry[1] = (h1 + (1 << 24)) >> 25 439 h2 += carry[1] 440 h1 -= carry[1] << 25 441 carry[5] = (h5 + (1 << 24)) >> 25 442 h6 += carry[5] 443 h5 -= carry[5] << 25 444 // |h1| <= 2^24; from now on fits into int32 445 // |h5| <= 2^24; from now on fits into int32 446 // |h2| <= 1.21*2^59 447 // |h6| <= 1.21*2^59 448 449 carry[2] = (h2 + (1 << 25)) >> 26 450 h3 += carry[2] 451 h2 -= carry[2] << 26 452 carry[6] = (h6 + (1 << 25)) >> 26 453 h7 += carry[6] 454 h6 -= carry[6] << 26 455 // |h2| <= 2^25; from now on fits into int32 unchanged 456 // |h6| <= 2^25; from now on fits into int32 unchanged 457 // |h3| <= 1.51*2^58 458 // |h7| <= 1.51*2^58 459 460 carry[3] = (h3 + (1 << 24)) >> 25 461 h4 += carry[3] 462 h3 -= carry[3] << 25 463 carry[7] = (h7 + (1 << 24)) >> 25 464 h8 += carry[7] 465 h7 -= carry[7] << 25 466 // |h3| <= 2^24; from now on fits into int32 unchanged 467 // |h7| <= 2^24; from now on fits into int32 unchanged 468 // |h4| <= 1.52*2^33 469 // |h8| <= 1.52*2^33 470 471 carry[4] = (h4 + (1 << 25)) >> 26 472 h5 += carry[4] 473 h4 -= carry[4] << 26 474 carry[8] = (h8 + (1 << 25)) >> 26 475 h9 += carry[8] 476 h8 -= carry[8] << 26 477 // |h4| <= 2^25; from now on fits into int32 unchanged 478 // |h8| <= 2^25; from now on fits into int32 unchanged 479 // |h5| <= 1.01*2^24 480 // |h9| <= 1.51*2^58 481 482 carry[9] = (h9 + (1 << 24)) >> 25 483 h0 += carry[9] * 19 484 h9 -= carry[9] << 25 485 // |h9| <= 2^24; from now on fits into int32 unchanged 486 // |h0| <= 1.8*2^37 487 488 carry[0] = (h0 + (1 << 25)) >> 26 489 h1 += carry[0] 490 h0 -= carry[0] << 26 491 // |h0| <= 2^25; from now on fits into int32 unchanged 492 // |h1| <= 1.01*2^24 493 494 h[0] = int32(h0) 495 h[1] = int32(h1) 496 h[2] = int32(h2) 497 h[3] = int32(h3) 498 h[4] = int32(h4) 499 h[5] = int32(h5) 500 h[6] = int32(h6) 501 h[7] = int32(h7) 502 h[8] = int32(h8) 503 h[9] = int32(h9) 504 } 505 506 // feSquare calculates h = f*f. Can overlap h with f. 507 // 508 // Preconditions: 509 // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. 510 // 511 // Postconditions: 512 // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. 513 func feSquare(h, f *fieldElement) { 514 f0 := f[0] 515 f1 := f[1] 516 f2 := f[2] 517 f3 := f[3] 518 f4 := f[4] 519 f5 := f[5] 520 f6 := f[6] 521 f7 := f[7] 522 f8 := f[8] 523 f9 := f[9] 524 f0_2 := 2 * f0 525 f1_2 := 2 * f1 526 f2_2 := 2 * f2 527 f3_2 := 2 * f3 528 f4_2 := 2 * f4 529 f5_2 := 2 * f5 530 f6_2 := 2 * f6 531 f7_2 := 2 * f7 532 f5_38 := 38 * f5 // 1.31*2^30 533 f6_19 := 19 * f6 // 1.31*2^30 534 f7_38 := 38 * f7 // 1.31*2^30 535 f8_19 := 19 * f8 // 1.31*2^30 536 f9_38 := 38 * f9 // 1.31*2^30 537 f0f0 := int64(f0) * int64(f0) 538 f0f1_2 := int64(f0_2) * int64(f1) 539 f0f2_2 := int64(f0_2) * int64(f2) 540 f0f3_2 := int64(f0_2) * int64(f3) 541 f0f4_2 := int64(f0_2) * int64(f4) 542 f0f5_2 := int64(f0_2) * int64(f5) 543 f0f6_2 := int64(f0_2) * int64(f6) 544 f0f7_2 := int64(f0_2) * int64(f7) 545 f0f8_2 := int64(f0_2) * int64(f8) 546 f0f9_2 := int64(f0_2) * int64(f9) 547 f1f1_2 := int64(f1_2) * int64(f1) 548 f1f2_2 := int64(f1_2) * int64(f2) 549 f1f3_4 := int64(f1_2) * int64(f3_2) 550 f1f4_2 := int64(f1_2) * int64(f4) 551 f1f5_4 := int64(f1_2) * int64(f5_2) 552 f1f6_2 := int64(f1_2) * int64(f6) 553 f1f7_4 := int64(f1_2) * int64(f7_2) 554 f1f8_2 := int64(f1_2) * int64(f8) 555 f1f9_76 := int64(f1_2) * int64(f9_38) 556 f2f2 := int64(f2) * int64(f2) 557 f2f3_2 := int64(f2_2) * int64(f3) 558 f2f4_2 := int64(f2_2) * int64(f4) 559 f2f5_2 := int64(f2_2) * int64(f5) 560 f2f6_2 := int64(f2_2) * int64(f6) 561 f2f7_2 := int64(f2_2) * int64(f7) 562 f2f8_38 := int64(f2_2) * int64(f8_19) 563 f2f9_38 := int64(f2) * int64(f9_38) 564 f3f3_2 := int64(f3_2) * int64(f3) 565 f3f4_2 := int64(f3_2) * int64(f4) 566 f3f5_4 := int64(f3_2) * int64(f5_2) 567 f3f6_2 := int64(f3_2) * int64(f6) 568 f3f7_76 := int64(f3_2) * int64(f7_38) 569 f3f8_38 := int64(f3_2) * int64(f8_19) 570 f3f9_76 := int64(f3_2) * int64(f9_38) 571 f4f4 := int64(f4) * int64(f4) 572 f4f5_2 := int64(f4_2) * int64(f5) 573 f4f6_38 := int64(f4_2) * int64(f6_19) 574 f4f7_38 := int64(f4) * int64(f7_38) 575 f4f8_38 := int64(f4_2) * int64(f8_19) 576 f4f9_38 := int64(f4) * int64(f9_38) 577 f5f5_38 := int64(f5) * int64(f5_38) 578 f5f6_38 := int64(f5_2) * int64(f6_19) 579 f5f7_76 := int64(f5_2) * int64(f7_38) 580 f5f8_38 := int64(f5_2) * int64(f8_19) 581 f5f9_76 := int64(f5_2) * int64(f9_38) 582 f6f6_19 := int64(f6) * int64(f6_19) 583 f6f7_38 := int64(f6) * int64(f7_38) 584 f6f8_38 := int64(f6_2) * int64(f8_19) 585 f6f9_38 := int64(f6) * int64(f9_38) 586 f7f7_38 := int64(f7) * int64(f7_38) 587 f7f8_38 := int64(f7_2) * int64(f8_19) 588 f7f9_76 := int64(f7_2) * int64(f9_38) 589 f8f8_19 := int64(f8) * int64(f8_19) 590 f8f9_38 := int64(f8) * int64(f9_38) 591 f9f9_38 := int64(f9) * int64(f9_38) 592 h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38 593 h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38 594 h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19 595 h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38 596 h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38 597 h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38 598 h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19 599 h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38 600 h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38 601 h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2 602 var carry [10]int64 603 604 carry[0] = (h0 + (1 << 25)) >> 26 605 h1 += carry[0] 606 h0 -= carry[0] << 26 607 carry[4] = (h4 + (1 << 25)) >> 26 608 h5 += carry[4] 609 h4 -= carry[4] << 26 610 611 carry[1] = (h1 + (1 << 24)) >> 25 612 h2 += carry[1] 613 h1 -= carry[1] << 25 614 carry[5] = (h5 + (1 << 24)) >> 25 615 h6 += carry[5] 616 h5 -= carry[5] << 25 617 618 carry[2] = (h2 + (1 << 25)) >> 26 619 h3 += carry[2] 620 h2 -= carry[2] << 26 621 carry[6] = (h6 + (1 << 25)) >> 26 622 h7 += carry[6] 623 h6 -= carry[6] << 26 624 625 carry[3] = (h3 + (1 << 24)) >> 25 626 h4 += carry[3] 627 h3 -= carry[3] << 25 628 carry[7] = (h7 + (1 << 24)) >> 25 629 h8 += carry[7] 630 h7 -= carry[7] << 25 631 632 carry[4] = (h4 + (1 << 25)) >> 26 633 h5 += carry[4] 634 h4 -= carry[4] << 26 635 carry[8] = (h8 + (1 << 25)) >> 26 636 h9 += carry[8] 637 h8 -= carry[8] << 26 638 639 carry[9] = (h9 + (1 << 24)) >> 25 640 h0 += carry[9] * 19 641 h9 -= carry[9] << 25 642 643 carry[0] = (h0 + (1 << 25)) >> 26 644 h1 += carry[0] 645 h0 -= carry[0] << 26 646 647 h[0] = int32(h0) 648 h[1] = int32(h1) 649 h[2] = int32(h2) 650 h[3] = int32(h3) 651 h[4] = int32(h4) 652 h[5] = int32(h5) 653 h[6] = int32(h6) 654 h[7] = int32(h7) 655 h[8] = int32(h8) 656 h[9] = int32(h9) 657 } 658 659 // feMul121666 calculates h = f * 121666. Can overlap h with f. 660 // 661 // Preconditions: 662 // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. 663 // 664 // Postconditions: 665 // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. 666 func feMul121666(h, f *fieldElement) { 667 h0 := int64(f[0]) * 121666 668 h1 := int64(f[1]) * 121666 669 h2 := int64(f[2]) * 121666 670 h3 := int64(f[3]) * 121666 671 h4 := int64(f[4]) * 121666 672 h5 := int64(f[5]) * 121666 673 h6 := int64(f[6]) * 121666 674 h7 := int64(f[7]) * 121666 675 h8 := int64(f[8]) * 121666 676 h9 := int64(f[9]) * 121666 677 var carry [10]int64 678 679 carry[9] = (h9 + (1 << 24)) >> 25 680 h0 += carry[9] * 19 681 h9 -= carry[9] << 25 682 carry[1] = (h1 + (1 << 24)) >> 25 683 h2 += carry[1] 684 h1 -= carry[1] << 25 685 carry[3] = (h3 + (1 << 24)) >> 25 686 h4 += carry[3] 687 h3 -= carry[3] << 25 688 carry[5] = (h5 + (1 << 24)) >> 25 689 h6 += carry[5] 690 h5 -= carry[5] << 25 691 carry[7] = (h7 + (1 << 24)) >> 25 692 h8 += carry[7] 693 h7 -= carry[7] << 25 694 695 carry[0] = (h0 + (1 << 25)) >> 26 696 h1 += carry[0] 697 h0 -= carry[0] << 26 698 carry[2] = (h2 + (1 << 25)) >> 26 699 h3 += carry[2] 700 h2 -= carry[2] << 26 701 carry[4] = (h4 + (1 << 25)) >> 26 702 h5 += carry[4] 703 h4 -= carry[4] << 26 704 carry[6] = (h6 + (1 << 25)) >> 26 705 h7 += carry[6] 706 h6 -= carry[6] << 26 707 carry[8] = (h8 + (1 << 25)) >> 26 708 h9 += carry[8] 709 h8 -= carry[8] << 26 710 711 h[0] = int32(h0) 712 h[1] = int32(h1) 713 h[2] = int32(h2) 714 h[3] = int32(h3) 715 h[4] = int32(h4) 716 h[5] = int32(h5) 717 h[6] = int32(h6) 718 h[7] = int32(h7) 719 h[8] = int32(h8) 720 h[9] = int32(h9) 721 } 722 723 // feInvert sets out = z^-1. 724 func feInvert(out, z *fieldElement) { 725 var t0, t1, t2, t3 fieldElement 726 var i int 727 728 feSquare(&t0, z) 729 for i = 1; i < 1; i++ { 730 feSquare(&t0, &t0) 731 } 732 feSquare(&t1, &t0) 733 for i = 1; i < 2; i++ { 734 feSquare(&t1, &t1) 735 } 736 feMul(&t1, z, &t1) 737 feMul(&t0, &t0, &t1) 738 feSquare(&t2, &t0) 739 for i = 1; i < 1; i++ { 740 feSquare(&t2, &t2) 741 } 742 feMul(&t1, &t1, &t2) 743 feSquare(&t2, &t1) 744 for i = 1; i < 5; i++ { 745 feSquare(&t2, &t2) 746 } 747 feMul(&t1, &t2, &t1) 748 feSquare(&t2, &t1) 749 for i = 1; i < 10; i++ { 750 feSquare(&t2, &t2) 751 } 752 feMul(&t2, &t2, &t1) 753 feSquare(&t3, &t2) 754 for i = 1; i < 20; i++ { 755 feSquare(&t3, &t3) 756 } 757 feMul(&t2, &t3, &t2) 758 feSquare(&t2, &t2) 759 for i = 1; i < 10; i++ { 760 feSquare(&t2, &t2) 761 } 762 feMul(&t1, &t2, &t1) 763 feSquare(&t2, &t1) 764 for i = 1; i < 50; i++ { 765 feSquare(&t2, &t2) 766 } 767 feMul(&t2, &t2, &t1) 768 feSquare(&t3, &t2) 769 for i = 1; i < 100; i++ { 770 feSquare(&t3, &t3) 771 } 772 feMul(&t2, &t3, &t2) 773 feSquare(&t2, &t2) 774 for i = 1; i < 50; i++ { 775 feSquare(&t2, &t2) 776 } 777 feMul(&t1, &t2, &t1) 778 feSquare(&t1, &t1) 779 for i = 1; i < 5; i++ { 780 feSquare(&t1, &t1) 781 } 782 feMul(out, &t1, &t0) 783 } 784 785 func scalarMult(out, in, base *[32]byte) { 786 var e [32]byte 787 788 copy(e[:], in[:]) 789 e[0] &= 248 790 e[31] &= 127 791 e[31] |= 64 792 793 var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement 794 feFromBytes(&x1, base) 795 feOne(&x2) 796 feCopy(&x3, &x1) 797 feOne(&z3) 798 799 swap := int32(0) 800 for pos := 254; pos >= 0; pos-- { 801 b := e[pos/8] >> uint(pos&7) 802 b &= 1 803 swap ^= int32(b) 804 feCSwap(&x2, &x3, swap) 805 feCSwap(&z2, &z3, swap) 806 swap = int32(b) 807 808 feSub(&tmp0, &x3, &z3) 809 feSub(&tmp1, &x2, &z2) 810 feAdd(&x2, &x2, &z2) 811 feAdd(&z2, &x3, &z3) 812 feMul(&z3, &tmp0, &x2) 813 feMul(&z2, &z2, &tmp1) 814 feSquare(&tmp0, &tmp1) 815 feSquare(&tmp1, &x2) 816 feAdd(&x3, &z3, &z2) 817 feSub(&z2, &z3, &z2) 818 feMul(&x2, &tmp1, &tmp0) 819 feSub(&tmp1, &tmp1, &tmp0) 820 feSquare(&z2, &z2) 821 feMul121666(&z3, &tmp1) 822 feSquare(&x3, &x3) 823 feAdd(&tmp0, &tmp0, &z3) 824 feMul(&z3, &x1, &z2) 825 feMul(&z2, &tmp1, &tmp0) 826 } 827 828 feCSwap(&x2, &x3, swap) 829 feCSwap(&z2, &z3, swap) 830 831 feInvert(&z2, &z2) 832 feMul(&x2, &x2, &z2) 833 feToBytes(out, &x2) 834 }