github.com/ie310mu/ie310go/forks/golang.org/x/sys@v0.0.0-20190821095322-9a46783d4de5/unix/syscall_linux.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Linux system calls.
     6  // This file is compiled as ordinary Go code,
     7  // but it is also input to mksyscall,
     8  // which parses the //sys lines and generates system call stubs.
     9  // Note that sometimes we use a lowercase //sys name and
    10  // wrap it in our own nicer implementation.
    11  
    12  package unix
    13  
    14  import (
    15  	"encoding/binary"
    16  	"net"
    17  	"runtime"
    18  	"syscall"
    19  	"unsafe"
    20  )
    21  
    22  /*
    23   * Wrapped
    24   */
    25  
    26  func Access(path string, mode uint32) (err error) {
    27  	return Faccessat(AT_FDCWD, path, mode, 0)
    28  }
    29  
    30  func Chmod(path string, mode uint32) (err error) {
    31  	return Fchmodat(AT_FDCWD, path, mode, 0)
    32  }
    33  
    34  func Chown(path string, uid int, gid int) (err error) {
    35  	return Fchownat(AT_FDCWD, path, uid, gid, 0)
    36  }
    37  
    38  func Creat(path string, mode uint32) (fd int, err error) {
    39  	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
    40  }
    41  
    42  //sys	FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
    43  //sys	fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
    44  
    45  func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
    46  	if pathname == "" {
    47  		return fanotifyMark(fd, flags, mask, dirFd, nil)
    48  	}
    49  	p, err := BytePtrFromString(pathname)
    50  	if err != nil {
    51  		return err
    52  	}
    53  	return fanotifyMark(fd, flags, mask, dirFd, p)
    54  }
    55  
    56  //sys	fchmodat(dirfd int, path string, mode uint32) (err error)
    57  
    58  func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
    59  	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
    60  	// and check the flags. Otherwise the mode would be applied to the symlink
    61  	// destination which is not what the user expects.
    62  	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
    63  		return EINVAL
    64  	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
    65  		return EOPNOTSUPP
    66  	}
    67  	return fchmodat(dirfd, path, mode)
    68  }
    69  
    70  //sys	ioctl(fd int, req uint, arg uintptr) (err error)
    71  
    72  // ioctl itself should not be exposed directly, but additional get/set
    73  // functions for specific types are permissible.
    74  
    75  // IoctlSetPointerInt performs an ioctl operation which sets an
    76  // integer value on fd, using the specified request number. The ioctl
    77  // argument is called with a pointer to the integer value, rather than
    78  // passing the integer value directly.
    79  func IoctlSetPointerInt(fd int, req uint, value int) error {
    80  	v := int32(value)
    81  	return ioctl(fd, req, uintptr(unsafe.Pointer(&v)))
    82  }
    83  
    84  // IoctlSetInt performs an ioctl operation which sets an integer value
    85  // on fd, using the specified request number.
    86  func IoctlSetInt(fd int, req uint, value int) error {
    87  	return ioctl(fd, req, uintptr(value))
    88  }
    89  
    90  func ioctlSetWinsize(fd int, req uint, value *Winsize) error {
    91  	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
    92  }
    93  
    94  func ioctlSetTermios(fd int, req uint, value *Termios) error {
    95  	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
    96  }
    97  
    98  func IoctlSetRTCTime(fd int, value *RTCTime) error {
    99  	err := ioctl(fd, RTC_SET_TIME, uintptr(unsafe.Pointer(value)))
   100  	runtime.KeepAlive(value)
   101  	return err
   102  }
   103  
   104  // IoctlGetInt performs an ioctl operation which gets an integer value
   105  // from fd, using the specified request number.
   106  func IoctlGetInt(fd int, req uint) (int, error) {
   107  	var value int
   108  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
   109  	return value, err
   110  }
   111  
   112  func IoctlGetUint32(fd int, req uint) (uint32, error) {
   113  	var value uint32
   114  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
   115  	return value, err
   116  }
   117  
   118  func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
   119  	var value Winsize
   120  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
   121  	return &value, err
   122  }
   123  
   124  func IoctlGetTermios(fd int, req uint) (*Termios, error) {
   125  	var value Termios
   126  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
   127  	return &value, err
   128  }
   129  
   130  func IoctlGetRTCTime(fd int) (*RTCTime, error) {
   131  	var value RTCTime
   132  	err := ioctl(fd, RTC_RD_TIME, uintptr(unsafe.Pointer(&value)))
   133  	return &value, err
   134  }
   135  
   136  //sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
   137  
   138  func Link(oldpath string, newpath string) (err error) {
   139  	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
   140  }
   141  
   142  func Mkdir(path string, mode uint32) (err error) {
   143  	return Mkdirat(AT_FDCWD, path, mode)
   144  }
   145  
   146  func Mknod(path string, mode uint32, dev int) (err error) {
   147  	return Mknodat(AT_FDCWD, path, mode, dev)
   148  }
   149  
   150  func Open(path string, mode int, perm uint32) (fd int, err error) {
   151  	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
   152  }
   153  
   154  //sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
   155  
   156  func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
   157  	return openat(dirfd, path, flags|O_LARGEFILE, mode)
   158  }
   159  
   160  //sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
   161  
   162  func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
   163  	if len(fds) == 0 {
   164  		return ppoll(nil, 0, timeout, sigmask)
   165  	}
   166  	return ppoll(&fds[0], len(fds), timeout, sigmask)
   167  }
   168  
   169  //sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
   170  
   171  func Readlink(path string, buf []byte) (n int, err error) {
   172  	return Readlinkat(AT_FDCWD, path, buf)
   173  }
   174  
   175  func Rename(oldpath string, newpath string) (err error) {
   176  	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
   177  }
   178  
   179  func Rmdir(path string) error {
   180  	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
   181  }
   182  
   183  //sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
   184  
   185  func Symlink(oldpath string, newpath string) (err error) {
   186  	return Symlinkat(oldpath, AT_FDCWD, newpath)
   187  }
   188  
   189  func Unlink(path string) error {
   190  	return Unlinkat(AT_FDCWD, path, 0)
   191  }
   192  
   193  //sys	Unlinkat(dirfd int, path string, flags int) (err error)
   194  
   195  func Utimes(path string, tv []Timeval) error {
   196  	if tv == nil {
   197  		err := utimensat(AT_FDCWD, path, nil, 0)
   198  		if err != ENOSYS {
   199  			return err
   200  		}
   201  		return utimes(path, nil)
   202  	}
   203  	if len(tv) != 2 {
   204  		return EINVAL
   205  	}
   206  	var ts [2]Timespec
   207  	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
   208  	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
   209  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   210  	if err != ENOSYS {
   211  		return err
   212  	}
   213  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   214  }
   215  
   216  //sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
   217  
   218  func UtimesNano(path string, ts []Timespec) error {
   219  	if ts == nil {
   220  		err := utimensat(AT_FDCWD, path, nil, 0)
   221  		if err != ENOSYS {
   222  			return err
   223  		}
   224  		return utimes(path, nil)
   225  	}
   226  	if len(ts) != 2 {
   227  		return EINVAL
   228  	}
   229  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   230  	if err != ENOSYS {
   231  		return err
   232  	}
   233  	// If the utimensat syscall isn't available (utimensat was added to Linux
   234  	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
   235  	var tv [2]Timeval
   236  	for i := 0; i < 2; i++ {
   237  		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
   238  	}
   239  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   240  }
   241  
   242  func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
   243  	if ts == nil {
   244  		return utimensat(dirfd, path, nil, flags)
   245  	}
   246  	if len(ts) != 2 {
   247  		return EINVAL
   248  	}
   249  	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
   250  }
   251  
   252  func Futimesat(dirfd int, path string, tv []Timeval) error {
   253  	if tv == nil {
   254  		return futimesat(dirfd, path, nil)
   255  	}
   256  	if len(tv) != 2 {
   257  		return EINVAL
   258  	}
   259  	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   260  }
   261  
   262  func Futimes(fd int, tv []Timeval) (err error) {
   263  	// Believe it or not, this is the best we can do on Linux
   264  	// (and is what glibc does).
   265  	return Utimes("/proc/self/fd/"+itoa(fd), tv)
   266  }
   267  
   268  const ImplementsGetwd = true
   269  
   270  //sys	Getcwd(buf []byte) (n int, err error)
   271  
   272  func Getwd() (wd string, err error) {
   273  	var buf [PathMax]byte
   274  	n, err := Getcwd(buf[0:])
   275  	if err != nil {
   276  		return "", err
   277  	}
   278  	// Getcwd returns the number of bytes written to buf, including the NUL.
   279  	if n < 1 || n > len(buf) || buf[n-1] != 0 {
   280  		return "", EINVAL
   281  	}
   282  	return string(buf[0 : n-1]), nil
   283  }
   284  
   285  func Getgroups() (gids []int, err error) {
   286  	n, err := getgroups(0, nil)
   287  	if err != nil {
   288  		return nil, err
   289  	}
   290  	if n == 0 {
   291  		return nil, nil
   292  	}
   293  
   294  	// Sanity check group count. Max is 1<<16 on Linux.
   295  	if n < 0 || n > 1<<20 {
   296  		return nil, EINVAL
   297  	}
   298  
   299  	a := make([]_Gid_t, n)
   300  	n, err = getgroups(n, &a[0])
   301  	if err != nil {
   302  		return nil, err
   303  	}
   304  	gids = make([]int, n)
   305  	for i, v := range a[0:n] {
   306  		gids[i] = int(v)
   307  	}
   308  	return
   309  }
   310  
   311  func Setgroups(gids []int) (err error) {
   312  	if len(gids) == 0 {
   313  		return setgroups(0, nil)
   314  	}
   315  
   316  	a := make([]_Gid_t, len(gids))
   317  	for i, v := range gids {
   318  		a[i] = _Gid_t(v)
   319  	}
   320  	return setgroups(len(a), &a[0])
   321  }
   322  
   323  type WaitStatus uint32
   324  
   325  // Wait status is 7 bits at bottom, either 0 (exited),
   326  // 0x7F (stopped), or a signal number that caused an exit.
   327  // The 0x80 bit is whether there was a core dump.
   328  // An extra number (exit code, signal causing a stop)
   329  // is in the high bits. At least that's the idea.
   330  // There are various irregularities. For example, the
   331  // "continued" status is 0xFFFF, distinguishing itself
   332  // from stopped via the core dump bit.
   333  
   334  const (
   335  	mask    = 0x7F
   336  	core    = 0x80
   337  	exited  = 0x00
   338  	stopped = 0x7F
   339  	shift   = 8
   340  )
   341  
   342  func (w WaitStatus) Exited() bool { return w&mask == exited }
   343  
   344  func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
   345  
   346  func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
   347  
   348  func (w WaitStatus) Continued() bool { return w == 0xFFFF }
   349  
   350  func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
   351  
   352  func (w WaitStatus) ExitStatus() int {
   353  	if !w.Exited() {
   354  		return -1
   355  	}
   356  	return int(w>>shift) & 0xFF
   357  }
   358  
   359  func (w WaitStatus) Signal() syscall.Signal {
   360  	if !w.Signaled() {
   361  		return -1
   362  	}
   363  	return syscall.Signal(w & mask)
   364  }
   365  
   366  func (w WaitStatus) StopSignal() syscall.Signal {
   367  	if !w.Stopped() {
   368  		return -1
   369  	}
   370  	return syscall.Signal(w>>shift) & 0xFF
   371  }
   372  
   373  func (w WaitStatus) TrapCause() int {
   374  	if w.StopSignal() != SIGTRAP {
   375  		return -1
   376  	}
   377  	return int(w>>shift) >> 8
   378  }
   379  
   380  //sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
   381  
   382  func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
   383  	var status _C_int
   384  	wpid, err = wait4(pid, &status, options, rusage)
   385  	if wstatus != nil {
   386  		*wstatus = WaitStatus(status)
   387  	}
   388  	return
   389  }
   390  
   391  func Mkfifo(path string, mode uint32) error {
   392  	return Mknod(path, mode|S_IFIFO, 0)
   393  }
   394  
   395  func Mkfifoat(dirfd int, path string, mode uint32) error {
   396  	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
   397  }
   398  
   399  func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
   400  	if sa.Port < 0 || sa.Port > 0xFFFF {
   401  		return nil, 0, EINVAL
   402  	}
   403  	sa.raw.Family = AF_INET
   404  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   405  	p[0] = byte(sa.Port >> 8)
   406  	p[1] = byte(sa.Port)
   407  	for i := 0; i < len(sa.Addr); i++ {
   408  		sa.raw.Addr[i] = sa.Addr[i]
   409  	}
   410  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
   411  }
   412  
   413  func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
   414  	if sa.Port < 0 || sa.Port > 0xFFFF {
   415  		return nil, 0, EINVAL
   416  	}
   417  	sa.raw.Family = AF_INET6
   418  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   419  	p[0] = byte(sa.Port >> 8)
   420  	p[1] = byte(sa.Port)
   421  	sa.raw.Scope_id = sa.ZoneId
   422  	for i := 0; i < len(sa.Addr); i++ {
   423  		sa.raw.Addr[i] = sa.Addr[i]
   424  	}
   425  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
   426  }
   427  
   428  func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
   429  	name := sa.Name
   430  	n := len(name)
   431  	if n >= len(sa.raw.Path) {
   432  		return nil, 0, EINVAL
   433  	}
   434  	sa.raw.Family = AF_UNIX
   435  	for i := 0; i < n; i++ {
   436  		sa.raw.Path[i] = int8(name[i])
   437  	}
   438  	// length is family (uint16), name, NUL.
   439  	sl := _Socklen(2)
   440  	if n > 0 {
   441  		sl += _Socklen(n) + 1
   442  	}
   443  	if sa.raw.Path[0] == '@' {
   444  		sa.raw.Path[0] = 0
   445  		// Don't count trailing NUL for abstract address.
   446  		sl--
   447  	}
   448  
   449  	return unsafe.Pointer(&sa.raw), sl, nil
   450  }
   451  
   452  // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
   453  type SockaddrLinklayer struct {
   454  	Protocol uint16
   455  	Ifindex  int
   456  	Hatype   uint16
   457  	Pkttype  uint8
   458  	Halen    uint8
   459  	Addr     [8]byte
   460  	raw      RawSockaddrLinklayer
   461  }
   462  
   463  func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
   464  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   465  		return nil, 0, EINVAL
   466  	}
   467  	sa.raw.Family = AF_PACKET
   468  	sa.raw.Protocol = sa.Protocol
   469  	sa.raw.Ifindex = int32(sa.Ifindex)
   470  	sa.raw.Hatype = sa.Hatype
   471  	sa.raw.Pkttype = sa.Pkttype
   472  	sa.raw.Halen = sa.Halen
   473  	for i := 0; i < len(sa.Addr); i++ {
   474  		sa.raw.Addr[i] = sa.Addr[i]
   475  	}
   476  	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
   477  }
   478  
   479  // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
   480  type SockaddrNetlink struct {
   481  	Family uint16
   482  	Pad    uint16
   483  	Pid    uint32
   484  	Groups uint32
   485  	raw    RawSockaddrNetlink
   486  }
   487  
   488  func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
   489  	sa.raw.Family = AF_NETLINK
   490  	sa.raw.Pad = sa.Pad
   491  	sa.raw.Pid = sa.Pid
   492  	sa.raw.Groups = sa.Groups
   493  	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
   494  }
   495  
   496  // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
   497  // using the HCI protocol.
   498  type SockaddrHCI struct {
   499  	Dev     uint16
   500  	Channel uint16
   501  	raw     RawSockaddrHCI
   502  }
   503  
   504  func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
   505  	sa.raw.Family = AF_BLUETOOTH
   506  	sa.raw.Dev = sa.Dev
   507  	sa.raw.Channel = sa.Channel
   508  	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
   509  }
   510  
   511  // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
   512  // using the L2CAP protocol.
   513  type SockaddrL2 struct {
   514  	PSM      uint16
   515  	CID      uint16
   516  	Addr     [6]uint8
   517  	AddrType uint8
   518  	raw      RawSockaddrL2
   519  }
   520  
   521  func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
   522  	sa.raw.Family = AF_BLUETOOTH
   523  	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
   524  	psm[0] = byte(sa.PSM)
   525  	psm[1] = byte(sa.PSM >> 8)
   526  	for i := 0; i < len(sa.Addr); i++ {
   527  		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
   528  	}
   529  	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
   530  	cid[0] = byte(sa.CID)
   531  	cid[1] = byte(sa.CID >> 8)
   532  	sa.raw.Bdaddr_type = sa.AddrType
   533  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
   534  }
   535  
   536  // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
   537  // using the RFCOMM protocol.
   538  //
   539  // Server example:
   540  //
   541  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   542  //      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
   543  //      	Channel: 1,
   544  //      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
   545  //      })
   546  //      _ = Listen(fd, 1)
   547  //      nfd, sa, _ := Accept(fd)
   548  //      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
   549  //      Read(nfd, buf)
   550  //
   551  // Client example:
   552  //
   553  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   554  //      _ = Connect(fd, &SockaddrRFCOMM{
   555  //      	Channel: 1,
   556  //      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
   557  //      })
   558  //      Write(fd, []byte(`hello`))
   559  type SockaddrRFCOMM struct {
   560  	// Addr represents a bluetooth address, byte ordering is little-endian.
   561  	Addr [6]uint8
   562  
   563  	// Channel is a designated bluetooth channel, only 1-30 are available for use.
   564  	// Since Linux 2.6.7 and further zero value is the first available channel.
   565  	Channel uint8
   566  
   567  	raw RawSockaddrRFCOMM
   568  }
   569  
   570  func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   571  	sa.raw.Family = AF_BLUETOOTH
   572  	sa.raw.Channel = sa.Channel
   573  	sa.raw.Bdaddr = sa.Addr
   574  	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
   575  }
   576  
   577  // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
   578  // The RxID and TxID fields are used for transport protocol addressing in
   579  // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
   580  // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
   581  //
   582  // The SockaddrCAN struct must be bound to the socket file descriptor
   583  // using Bind before the CAN socket can be used.
   584  //
   585  //      // Read one raw CAN frame
   586  //      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
   587  //      addr := &SockaddrCAN{Ifindex: index}
   588  //      Bind(fd, addr)
   589  //      frame := make([]byte, 16)
   590  //      Read(fd, frame)
   591  //
   592  // The full SocketCAN documentation can be found in the linux kernel
   593  // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
   594  type SockaddrCAN struct {
   595  	Ifindex int
   596  	RxID    uint32
   597  	TxID    uint32
   598  	raw     RawSockaddrCAN
   599  }
   600  
   601  func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
   602  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   603  		return nil, 0, EINVAL
   604  	}
   605  	sa.raw.Family = AF_CAN
   606  	sa.raw.Ifindex = int32(sa.Ifindex)
   607  	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
   608  	for i := 0; i < 4; i++ {
   609  		sa.raw.Addr[i] = rx[i]
   610  	}
   611  	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
   612  	for i := 0; i < 4; i++ {
   613  		sa.raw.Addr[i+4] = tx[i]
   614  	}
   615  	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
   616  }
   617  
   618  // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
   619  // SockaddrALG enables userspace access to the Linux kernel's cryptography
   620  // subsystem. The Type and Name fields specify which type of hash or cipher
   621  // should be used with a given socket.
   622  //
   623  // To create a file descriptor that provides access to a hash or cipher, both
   624  // Bind and Accept must be used. Once the setup process is complete, input
   625  // data can be written to the socket, processed by the kernel, and then read
   626  // back as hash output or ciphertext.
   627  //
   628  // Here is an example of using an AF_ALG socket with SHA1 hashing.
   629  // The initial socket setup process is as follows:
   630  //
   631  //      // Open a socket to perform SHA1 hashing.
   632  //      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
   633  //      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
   634  //      unix.Bind(fd, addr)
   635  //      // Note: unix.Accept does not work at this time; must invoke accept()
   636  //      // manually using unix.Syscall.
   637  //      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
   638  //
   639  // Once a file descriptor has been returned from Accept, it may be used to
   640  // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
   641  // may be re-used repeatedly with subsequent Write and Read operations.
   642  //
   643  // When hashing a small byte slice or string, a single Write and Read may
   644  // be used:
   645  //
   646  //      // Assume hashfd is already configured using the setup process.
   647  //      hash := os.NewFile(hashfd, "sha1")
   648  //      // Hash an input string and read the results. Each Write discards
   649  //      // previous hash state. Read always reads the current state.
   650  //      b := make([]byte, 20)
   651  //      for i := 0; i < 2; i++ {
   652  //          io.WriteString(hash, "Hello, world.")
   653  //          hash.Read(b)
   654  //          fmt.Println(hex.EncodeToString(b))
   655  //      }
   656  //      // Output:
   657  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   658  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   659  //
   660  // For hashing larger byte slices, or byte streams such as those read from
   661  // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
   662  // the hash digest instead of creating a new one for a given chunk and finalizing it.
   663  //
   664  //      // Assume hashfd and addr are already configured using the setup process.
   665  //      hash := os.NewFile(hashfd, "sha1")
   666  //      // Hash the contents of a file.
   667  //      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
   668  //      b := make([]byte, 4096)
   669  //      for {
   670  //          n, err := f.Read(b)
   671  //          if err == io.EOF {
   672  //              break
   673  //          }
   674  //          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
   675  //      }
   676  //      hash.Read(b)
   677  //      fmt.Println(hex.EncodeToString(b))
   678  //      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
   679  //
   680  // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
   681  type SockaddrALG struct {
   682  	Type    string
   683  	Name    string
   684  	Feature uint32
   685  	Mask    uint32
   686  	raw     RawSockaddrALG
   687  }
   688  
   689  func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
   690  	// Leave room for NUL byte terminator.
   691  	if len(sa.Type) > 13 {
   692  		return nil, 0, EINVAL
   693  	}
   694  	if len(sa.Name) > 63 {
   695  		return nil, 0, EINVAL
   696  	}
   697  
   698  	sa.raw.Family = AF_ALG
   699  	sa.raw.Feat = sa.Feature
   700  	sa.raw.Mask = sa.Mask
   701  
   702  	typ, err := ByteSliceFromString(sa.Type)
   703  	if err != nil {
   704  		return nil, 0, err
   705  	}
   706  	name, err := ByteSliceFromString(sa.Name)
   707  	if err != nil {
   708  		return nil, 0, err
   709  	}
   710  
   711  	copy(sa.raw.Type[:], typ)
   712  	copy(sa.raw.Name[:], name)
   713  
   714  	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
   715  }
   716  
   717  // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
   718  // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
   719  // bidirectional communication between a hypervisor and its guest virtual
   720  // machines.
   721  type SockaddrVM struct {
   722  	// CID and Port specify a context ID and port address for a VM socket.
   723  	// Guests have a unique CID, and hosts may have a well-known CID of:
   724  	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
   725  	//  - VMADDR_CID_HOST: refers to other processes on the host.
   726  	CID  uint32
   727  	Port uint32
   728  	raw  RawSockaddrVM
   729  }
   730  
   731  func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   732  	sa.raw.Family = AF_VSOCK
   733  	sa.raw.Port = sa.Port
   734  	sa.raw.Cid = sa.CID
   735  
   736  	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
   737  }
   738  
   739  type SockaddrXDP struct {
   740  	Flags        uint16
   741  	Ifindex      uint32
   742  	QueueID      uint32
   743  	SharedUmemFD uint32
   744  	raw          RawSockaddrXDP
   745  }
   746  
   747  func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
   748  	sa.raw.Family = AF_XDP
   749  	sa.raw.Flags = sa.Flags
   750  	sa.raw.Ifindex = sa.Ifindex
   751  	sa.raw.Queue_id = sa.QueueID
   752  	sa.raw.Shared_umem_fd = sa.SharedUmemFD
   753  
   754  	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
   755  }
   756  
   757  // This constant mirrors the #define of PX_PROTO_OE in
   758  // linux/if_pppox.h. We're defining this by hand here instead of
   759  // autogenerating through mkerrors.sh because including
   760  // linux/if_pppox.h causes some declaration conflicts with other
   761  // includes (linux/if_pppox.h includes linux/in.h, which conflicts
   762  // with netinet/in.h). Given that we only need a single zero constant
   763  // out of that file, it's cleaner to just define it by hand here.
   764  const px_proto_oe = 0
   765  
   766  type SockaddrPPPoE struct {
   767  	SID    uint16
   768  	Remote net.HardwareAddr
   769  	Dev    string
   770  	raw    RawSockaddrPPPoX
   771  }
   772  
   773  func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
   774  	if len(sa.Remote) != 6 {
   775  		return nil, 0, EINVAL
   776  	}
   777  	if len(sa.Dev) > IFNAMSIZ-1 {
   778  		return nil, 0, EINVAL
   779  	}
   780  
   781  	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
   782  	// This next field is in host-endian byte order. We can't use the
   783  	// same unsafe pointer cast as above, because this value is not
   784  	// 32-bit aligned and some architectures don't allow unaligned
   785  	// access.
   786  	//
   787  	// However, the value of px_proto_oe is 0, so we can use
   788  	// encoding/binary helpers to write the bytes without worrying
   789  	// about the ordering.
   790  	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
   791  	// This field is deliberately big-endian, unlike the previous
   792  	// one. The kernel expects SID to be in network byte order.
   793  	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
   794  	copy(sa.raw[8:14], sa.Remote)
   795  	for i := 14; i < 14+IFNAMSIZ; i++ {
   796  		sa.raw[i] = 0
   797  	}
   798  	copy(sa.raw[14:], sa.Dev)
   799  	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
   800  }
   801  
   802  func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
   803  	switch rsa.Addr.Family {
   804  	case AF_NETLINK:
   805  		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
   806  		sa := new(SockaddrNetlink)
   807  		sa.Family = pp.Family
   808  		sa.Pad = pp.Pad
   809  		sa.Pid = pp.Pid
   810  		sa.Groups = pp.Groups
   811  		return sa, nil
   812  
   813  	case AF_PACKET:
   814  		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
   815  		sa := new(SockaddrLinklayer)
   816  		sa.Protocol = pp.Protocol
   817  		sa.Ifindex = int(pp.Ifindex)
   818  		sa.Hatype = pp.Hatype
   819  		sa.Pkttype = pp.Pkttype
   820  		sa.Halen = pp.Halen
   821  		for i := 0; i < len(sa.Addr); i++ {
   822  			sa.Addr[i] = pp.Addr[i]
   823  		}
   824  		return sa, nil
   825  
   826  	case AF_UNIX:
   827  		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
   828  		sa := new(SockaddrUnix)
   829  		if pp.Path[0] == 0 {
   830  			// "Abstract" Unix domain socket.
   831  			// Rewrite leading NUL as @ for textual display.
   832  			// (This is the standard convention.)
   833  			// Not friendly to overwrite in place,
   834  			// but the callers below don't care.
   835  			pp.Path[0] = '@'
   836  		}
   837  
   838  		// Assume path ends at NUL.
   839  		// This is not technically the Linux semantics for
   840  		// abstract Unix domain sockets--they are supposed
   841  		// to be uninterpreted fixed-size binary blobs--but
   842  		// everyone uses this convention.
   843  		n := 0
   844  		for n < len(pp.Path) && pp.Path[n] != 0 {
   845  			n++
   846  		}
   847  		bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
   848  		sa.Name = string(bytes)
   849  		return sa, nil
   850  
   851  	case AF_INET:
   852  		pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
   853  		sa := new(SockaddrInet4)
   854  		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   855  		sa.Port = int(p[0])<<8 + int(p[1])
   856  		for i := 0; i < len(sa.Addr); i++ {
   857  			sa.Addr[i] = pp.Addr[i]
   858  		}
   859  		return sa, nil
   860  
   861  	case AF_INET6:
   862  		pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
   863  		sa := new(SockaddrInet6)
   864  		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   865  		sa.Port = int(p[0])<<8 + int(p[1])
   866  		sa.ZoneId = pp.Scope_id
   867  		for i := 0; i < len(sa.Addr); i++ {
   868  			sa.Addr[i] = pp.Addr[i]
   869  		}
   870  		return sa, nil
   871  
   872  	case AF_VSOCK:
   873  		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
   874  		sa := &SockaddrVM{
   875  			CID:  pp.Cid,
   876  			Port: pp.Port,
   877  		}
   878  		return sa, nil
   879  	case AF_BLUETOOTH:
   880  		proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
   881  		if err != nil {
   882  			return nil, err
   883  		}
   884  		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
   885  		switch proto {
   886  		case BTPROTO_L2CAP:
   887  			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
   888  			sa := &SockaddrL2{
   889  				PSM:      pp.Psm,
   890  				CID:      pp.Cid,
   891  				Addr:     pp.Bdaddr,
   892  				AddrType: pp.Bdaddr_type,
   893  			}
   894  			return sa, nil
   895  		case BTPROTO_RFCOMM:
   896  			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
   897  			sa := &SockaddrRFCOMM{
   898  				Channel: pp.Channel,
   899  				Addr:    pp.Bdaddr,
   900  			}
   901  			return sa, nil
   902  		}
   903  	case AF_XDP:
   904  		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
   905  		sa := &SockaddrXDP{
   906  			Flags:        pp.Flags,
   907  			Ifindex:      pp.Ifindex,
   908  			QueueID:      pp.Queue_id,
   909  			SharedUmemFD: pp.Shared_umem_fd,
   910  		}
   911  		return sa, nil
   912  	case AF_PPPOX:
   913  		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
   914  		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
   915  			return nil, EINVAL
   916  		}
   917  		sa := &SockaddrPPPoE{
   918  			SID:    binary.BigEndian.Uint16(pp[6:8]),
   919  			Remote: net.HardwareAddr(pp[8:14]),
   920  		}
   921  		for i := 14; i < 14+IFNAMSIZ; i++ {
   922  			if pp[i] == 0 {
   923  				sa.Dev = string(pp[14:i])
   924  				break
   925  			}
   926  		}
   927  		return sa, nil
   928  	}
   929  	return nil, EAFNOSUPPORT
   930  }
   931  
   932  func Accept(fd int) (nfd int, sa Sockaddr, err error) {
   933  	var rsa RawSockaddrAny
   934  	var len _Socklen = SizeofSockaddrAny
   935  	nfd, err = accept(fd, &rsa, &len)
   936  	if err != nil {
   937  		return
   938  	}
   939  	sa, err = anyToSockaddr(fd, &rsa)
   940  	if err != nil {
   941  		Close(nfd)
   942  		nfd = 0
   943  	}
   944  	return
   945  }
   946  
   947  func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
   948  	var rsa RawSockaddrAny
   949  	var len _Socklen = SizeofSockaddrAny
   950  	nfd, err = accept4(fd, &rsa, &len, flags)
   951  	if err != nil {
   952  		return
   953  	}
   954  	if len > SizeofSockaddrAny {
   955  		panic("RawSockaddrAny too small")
   956  	}
   957  	sa, err = anyToSockaddr(fd, &rsa)
   958  	if err != nil {
   959  		Close(nfd)
   960  		nfd = 0
   961  	}
   962  	return
   963  }
   964  
   965  func Getsockname(fd int) (sa Sockaddr, err error) {
   966  	var rsa RawSockaddrAny
   967  	var len _Socklen = SizeofSockaddrAny
   968  	if err = getsockname(fd, &rsa, &len); err != nil {
   969  		return
   970  	}
   971  	return anyToSockaddr(fd, &rsa)
   972  }
   973  
   974  func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
   975  	var value IPMreqn
   976  	vallen := _Socklen(SizeofIPMreqn)
   977  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   978  	return &value, err
   979  }
   980  
   981  func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
   982  	var value Ucred
   983  	vallen := _Socklen(SizeofUcred)
   984  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   985  	return &value, err
   986  }
   987  
   988  func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
   989  	var value TCPInfo
   990  	vallen := _Socklen(SizeofTCPInfo)
   991  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   992  	return &value, err
   993  }
   994  
   995  // GetsockoptString returns the string value of the socket option opt for the
   996  // socket associated with fd at the given socket level.
   997  func GetsockoptString(fd, level, opt int) (string, error) {
   998  	buf := make([]byte, 256)
   999  	vallen := _Socklen(len(buf))
  1000  	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1001  	if err != nil {
  1002  		if err == ERANGE {
  1003  			buf = make([]byte, vallen)
  1004  			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1005  		}
  1006  		if err != nil {
  1007  			return "", err
  1008  		}
  1009  	}
  1010  	return string(buf[:vallen-1]), nil
  1011  }
  1012  
  1013  func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
  1014  	var value TpacketStats
  1015  	vallen := _Socklen(SizeofTpacketStats)
  1016  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1017  	return &value, err
  1018  }
  1019  
  1020  func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
  1021  	var value TpacketStatsV3
  1022  	vallen := _Socklen(SizeofTpacketStatsV3)
  1023  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1024  	return &value, err
  1025  }
  1026  
  1027  func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
  1028  	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1029  }
  1030  
  1031  func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
  1032  	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1033  }
  1034  
  1035  // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
  1036  // socket to filter incoming packets.  See 'man 7 socket' for usage information.
  1037  func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
  1038  	return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
  1039  }
  1040  
  1041  func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
  1042  	var p unsafe.Pointer
  1043  	if len(filter) > 0 {
  1044  		p = unsafe.Pointer(&filter[0])
  1045  	}
  1046  	return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
  1047  }
  1048  
  1049  func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
  1050  	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1051  }
  1052  
  1053  func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
  1054  	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1055  }
  1056  
  1057  // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
  1058  
  1059  // KeyctlInt calls keyctl commands in which each argument is an int.
  1060  // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
  1061  // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
  1062  // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
  1063  // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
  1064  //sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
  1065  
  1066  // KeyctlBuffer calls keyctl commands in which the third and fourth
  1067  // arguments are a buffer and its length, respectively.
  1068  // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
  1069  //sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
  1070  
  1071  // KeyctlString calls keyctl commands which return a string.
  1072  // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
  1073  func KeyctlString(cmd int, id int) (string, error) {
  1074  	// We must loop as the string data may change in between the syscalls.
  1075  	// We could allocate a large buffer here to reduce the chance that the
  1076  	// syscall needs to be called twice; however, this is unnecessary as
  1077  	// the performance loss is negligible.
  1078  	var buffer []byte
  1079  	for {
  1080  		// Try to fill the buffer with data
  1081  		length, err := KeyctlBuffer(cmd, id, buffer, 0)
  1082  		if err != nil {
  1083  			return "", err
  1084  		}
  1085  
  1086  		// Check if the data was written
  1087  		if length <= len(buffer) {
  1088  			// Exclude the null terminator
  1089  			return string(buffer[:length-1]), nil
  1090  		}
  1091  
  1092  		// Make a bigger buffer if needed
  1093  		buffer = make([]byte, length)
  1094  	}
  1095  }
  1096  
  1097  // Keyctl commands with special signatures.
  1098  
  1099  // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
  1100  // See the full documentation at:
  1101  // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
  1102  func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
  1103  	createInt := 0
  1104  	if create {
  1105  		createInt = 1
  1106  	}
  1107  	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
  1108  }
  1109  
  1110  // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
  1111  // key handle permission mask as described in the "keyctl setperm" section of
  1112  // http://man7.org/linux/man-pages/man1/keyctl.1.html.
  1113  // See the full documentation at:
  1114  // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
  1115  func KeyctlSetperm(id int, perm uint32) error {
  1116  	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
  1117  	return err
  1118  }
  1119  
  1120  //sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
  1121  
  1122  // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
  1123  // See the full documentation at:
  1124  // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
  1125  func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
  1126  	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
  1127  }
  1128  
  1129  //sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
  1130  
  1131  // KeyctlSearch implements the KEYCTL_SEARCH command.
  1132  // See the full documentation at:
  1133  // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
  1134  func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
  1135  	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
  1136  }
  1137  
  1138  //sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
  1139  
  1140  // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
  1141  // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
  1142  // of Iovec (each of which represents a buffer) instead of a single buffer.
  1143  // See the full documentation at:
  1144  // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
  1145  func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
  1146  	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
  1147  }
  1148  
  1149  //sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
  1150  
  1151  // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
  1152  // computes a Diffie-Hellman shared secret based on the provide params. The
  1153  // secret is written to the provided buffer and the returned size is the number
  1154  // of bytes written (returning an error if there is insufficient space in the
  1155  // buffer). If a nil buffer is passed in, this function returns the minimum
  1156  // buffer length needed to store the appropriate data. Note that this differs
  1157  // from KEYCTL_READ's behavior which always returns the requested payload size.
  1158  // See the full documentation at:
  1159  // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
  1160  func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
  1161  	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
  1162  }
  1163  
  1164  func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
  1165  	var msg Msghdr
  1166  	var rsa RawSockaddrAny
  1167  	msg.Name = (*byte)(unsafe.Pointer(&rsa))
  1168  	msg.Namelen = uint32(SizeofSockaddrAny)
  1169  	var iov Iovec
  1170  	if len(p) > 0 {
  1171  		iov.Base = &p[0]
  1172  		iov.SetLen(len(p))
  1173  	}
  1174  	var dummy byte
  1175  	if len(oob) > 0 {
  1176  		if len(p) == 0 {
  1177  			var sockType int
  1178  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1179  			if err != nil {
  1180  				return
  1181  			}
  1182  			// receive at least one normal byte
  1183  			if sockType != SOCK_DGRAM {
  1184  				iov.Base = &dummy
  1185  				iov.SetLen(1)
  1186  			}
  1187  		}
  1188  		msg.Control = &oob[0]
  1189  		msg.SetControllen(len(oob))
  1190  	}
  1191  	msg.Iov = &iov
  1192  	msg.Iovlen = 1
  1193  	if n, err = recvmsg(fd, &msg, flags); err != nil {
  1194  		return
  1195  	}
  1196  	oobn = int(msg.Controllen)
  1197  	recvflags = int(msg.Flags)
  1198  	// source address is only specified if the socket is unconnected
  1199  	if rsa.Addr.Family != AF_UNSPEC {
  1200  		from, err = anyToSockaddr(fd, &rsa)
  1201  	}
  1202  	return
  1203  }
  1204  
  1205  func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
  1206  	_, err = SendmsgN(fd, p, oob, to, flags)
  1207  	return
  1208  }
  1209  
  1210  func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
  1211  	var ptr unsafe.Pointer
  1212  	var salen _Socklen
  1213  	if to != nil {
  1214  		var err error
  1215  		ptr, salen, err = to.sockaddr()
  1216  		if err != nil {
  1217  			return 0, err
  1218  		}
  1219  	}
  1220  	var msg Msghdr
  1221  	msg.Name = (*byte)(ptr)
  1222  	msg.Namelen = uint32(salen)
  1223  	var iov Iovec
  1224  	if len(p) > 0 {
  1225  		iov.Base = &p[0]
  1226  		iov.SetLen(len(p))
  1227  	}
  1228  	var dummy byte
  1229  	if len(oob) > 0 {
  1230  		if len(p) == 0 {
  1231  			var sockType int
  1232  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1233  			if err != nil {
  1234  				return 0, err
  1235  			}
  1236  			// send at least one normal byte
  1237  			if sockType != SOCK_DGRAM {
  1238  				iov.Base = &dummy
  1239  				iov.SetLen(1)
  1240  			}
  1241  		}
  1242  		msg.Control = &oob[0]
  1243  		msg.SetControllen(len(oob))
  1244  	}
  1245  	msg.Iov = &iov
  1246  	msg.Iovlen = 1
  1247  	if n, err = sendmsg(fd, &msg, flags); err != nil {
  1248  		return 0, err
  1249  	}
  1250  	if len(oob) > 0 && len(p) == 0 {
  1251  		n = 0
  1252  	}
  1253  	return n, nil
  1254  }
  1255  
  1256  // BindToDevice binds the socket associated with fd to device.
  1257  func BindToDevice(fd int, device string) (err error) {
  1258  	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  1259  }
  1260  
  1261  //sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  1262  
  1263  func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  1264  	// The peek requests are machine-size oriented, so we wrap it
  1265  	// to retrieve arbitrary-length data.
  1266  
  1267  	// The ptrace syscall differs from glibc's ptrace.
  1268  	// Peeks returns the word in *data, not as the return value.
  1269  
  1270  	var buf [SizeofPtr]byte
  1271  
  1272  	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  1273  	// access (PEEKUSER warns that it might), but if we don't
  1274  	// align our reads, we might straddle an unmapped page
  1275  	// boundary and not get the bytes leading up to the page
  1276  	// boundary.
  1277  	n := 0
  1278  	if addr%SizeofPtr != 0 {
  1279  		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1280  		if err != nil {
  1281  			return 0, err
  1282  		}
  1283  		n += copy(out, buf[addr%SizeofPtr:])
  1284  		out = out[n:]
  1285  	}
  1286  
  1287  	// Remainder.
  1288  	for len(out) > 0 {
  1289  		// We use an internal buffer to guarantee alignment.
  1290  		// It's not documented if this is necessary, but we're paranoid.
  1291  		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1292  		if err != nil {
  1293  			return n, err
  1294  		}
  1295  		copied := copy(out, buf[0:])
  1296  		n += copied
  1297  		out = out[copied:]
  1298  	}
  1299  
  1300  	return n, nil
  1301  }
  1302  
  1303  func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  1304  	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  1305  }
  1306  
  1307  func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  1308  	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1309  }
  1310  
  1311  func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1312  	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1313  }
  1314  
  1315  func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1316  	// As for ptracePeek, we need to align our accesses to deal
  1317  	// with the possibility of straddling an invalid page.
  1318  
  1319  	// Leading edge.
  1320  	n := 0
  1321  	if addr%SizeofPtr != 0 {
  1322  		var buf [SizeofPtr]byte
  1323  		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1324  		if err != nil {
  1325  			return 0, err
  1326  		}
  1327  		n += copy(buf[addr%SizeofPtr:], data)
  1328  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1329  		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
  1330  		if err != nil {
  1331  			return 0, err
  1332  		}
  1333  		data = data[n:]
  1334  	}
  1335  
  1336  	// Interior.
  1337  	for len(data) > SizeofPtr {
  1338  		word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1339  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1340  		if err != nil {
  1341  			return n, err
  1342  		}
  1343  		n += SizeofPtr
  1344  		data = data[SizeofPtr:]
  1345  	}
  1346  
  1347  	// Trailing edge.
  1348  	if len(data) > 0 {
  1349  		var buf [SizeofPtr]byte
  1350  		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1351  		if err != nil {
  1352  			return n, err
  1353  		}
  1354  		copy(buf[0:], data)
  1355  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1356  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1357  		if err != nil {
  1358  			return n, err
  1359  		}
  1360  		n += len(data)
  1361  	}
  1362  
  1363  	return n, nil
  1364  }
  1365  
  1366  func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1367  	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1368  }
  1369  
  1370  func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1371  	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1372  }
  1373  
  1374  func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1375  	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1376  }
  1377  
  1378  func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1379  	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1380  }
  1381  
  1382  func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1383  	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1384  }
  1385  
  1386  func PtraceSetOptions(pid int, options int) (err error) {
  1387  	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1388  }
  1389  
  1390  func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1391  	var data _C_long
  1392  	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1393  	msg = uint(data)
  1394  	return
  1395  }
  1396  
  1397  func PtraceCont(pid int, signal int) (err error) {
  1398  	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1399  }
  1400  
  1401  func PtraceSyscall(pid int, signal int) (err error) {
  1402  	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1403  }
  1404  
  1405  func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1406  
  1407  func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1408  
  1409  func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1410  
  1411  //sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1412  
  1413  func Reboot(cmd int) (err error) {
  1414  	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1415  }
  1416  
  1417  func ReadDirent(fd int, buf []byte) (n int, err error) {
  1418  	return Getdents(fd, buf)
  1419  }
  1420  
  1421  //sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1422  
  1423  func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1424  	// Certain file systems get rather angry and EINVAL if you give
  1425  	// them an empty string of data, rather than NULL.
  1426  	if data == "" {
  1427  		return mount(source, target, fstype, flags, nil)
  1428  	}
  1429  	datap, err := BytePtrFromString(data)
  1430  	if err != nil {
  1431  		return err
  1432  	}
  1433  	return mount(source, target, fstype, flags, datap)
  1434  }
  1435  
  1436  func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
  1437  	if raceenabled {
  1438  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  1439  	}
  1440  	return sendfile(outfd, infd, offset, count)
  1441  }
  1442  
  1443  // Sendto
  1444  // Recvfrom
  1445  // Socketpair
  1446  
  1447  /*
  1448   * Direct access
  1449   */
  1450  //sys	Acct(path string) (err error)
  1451  //sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1452  //sys	Adjtimex(buf *Timex) (state int, err error)
  1453  //sys	Chdir(path string) (err error)
  1454  //sys	Chroot(path string) (err error)
  1455  //sys	ClockGetres(clockid int32, res *Timespec) (err error)
  1456  //sys	ClockGettime(clockid int32, time *Timespec) (err error)
  1457  //sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
  1458  //sys	Close(fd int) (err error)
  1459  //sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1460  //sys	DeleteModule(name string, flags int) (err error)
  1461  //sys	Dup(oldfd int) (fd int, err error)
  1462  //sys	Dup3(oldfd int, newfd int, flags int) (err error)
  1463  //sysnb	EpollCreate1(flag int) (fd int, err error)
  1464  //sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1465  //sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1466  //sys	Exit(code int) = SYS_EXIT_GROUP
  1467  //sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1468  //sys	Fchdir(fd int) (err error)
  1469  //sys	Fchmod(fd int, mode uint32) (err error)
  1470  //sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1471  //sys	fcntl(fd int, cmd int, arg int) (val int, err error)
  1472  //sys	Fdatasync(fd int) (err error)
  1473  //sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
  1474  //sys	FinitModule(fd int, params string, flags int) (err error)
  1475  //sys	Flistxattr(fd int, dest []byte) (sz int, err error)
  1476  //sys	Flock(fd int, how int) (err error)
  1477  //sys	Fremovexattr(fd int, attr string) (err error)
  1478  //sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
  1479  //sys	Fsync(fd int) (err error)
  1480  //sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1481  //sysnb	Getpgid(pid int) (pgid int, err error)
  1482  
  1483  func Getpgrp() (pid int) {
  1484  	pid, _ = Getpgid(0)
  1485  	return
  1486  }
  1487  
  1488  //sysnb	Getpid() (pid int)
  1489  //sysnb	Getppid() (ppid int)
  1490  //sys	Getpriority(which int, who int) (prio int, err error)
  1491  //sys	Getrandom(buf []byte, flags int) (n int, err error)
  1492  //sysnb	Getrusage(who int, rusage *Rusage) (err error)
  1493  //sysnb	Getsid(pid int) (sid int, err error)
  1494  //sysnb	Gettid() (tid int)
  1495  //sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1496  //sys	InitModule(moduleImage []byte, params string) (err error)
  1497  //sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1498  //sysnb	InotifyInit1(flags int) (fd int, err error)
  1499  //sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1500  //sysnb	Kill(pid int, sig syscall.Signal) (err error)
  1501  //sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1502  //sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1503  //sys	Listxattr(path string, dest []byte) (sz int, err error)
  1504  //sys	Llistxattr(path string, dest []byte) (sz int, err error)
  1505  //sys	Lremovexattr(path string, attr string) (err error)
  1506  //sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1507  //sys	MemfdCreate(name string, flags int) (fd int, err error)
  1508  //sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
  1509  //sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1510  //sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1511  //sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
  1512  //sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1513  //sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1514  //sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1515  //sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1516  //sys	read(fd int, p []byte) (n int, err error)
  1517  //sys	Removexattr(path string, attr string) (err error)
  1518  //sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
  1519  //sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1520  //sys	Setdomainname(p []byte) (err error)
  1521  //sys	Sethostname(p []byte) (err error)
  1522  //sysnb	Setpgid(pid int, pgid int) (err error)
  1523  //sysnb	Setsid() (pid int, err error)
  1524  //sysnb	Settimeofday(tv *Timeval) (err error)
  1525  //sys	Setns(fd int, nstype int) (err error)
  1526  
  1527  // issue 1435.
  1528  // On linux Setuid and Setgid only affects the current thread, not the process.
  1529  // This does not match what most callers expect so we must return an error
  1530  // here rather than letting the caller think that the call succeeded.
  1531  
  1532  func Setuid(uid int) (err error) {
  1533  	return EOPNOTSUPP
  1534  }
  1535  
  1536  func Setgid(uid int) (err error) {
  1537  	return EOPNOTSUPP
  1538  }
  1539  
  1540  func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
  1541  	return signalfd(fd, sigmask, _C__NSIG/8, flags)
  1542  }
  1543  
  1544  //sys	Setpriority(which int, who int, prio int) (err error)
  1545  //sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
  1546  //sys	signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
  1547  //sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1548  //sys	Sync()
  1549  //sys	Syncfs(fd int) (err error)
  1550  //sysnb	Sysinfo(info *Sysinfo_t) (err error)
  1551  //sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1552  //sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1553  //sysnb	Times(tms *Tms) (ticks uintptr, err error)
  1554  //sysnb	Umask(mask int) (oldmask int)
  1555  //sysnb	Uname(buf *Utsname) (err error)
  1556  //sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1557  //sys	Unshare(flags int) (err error)
  1558  //sys	write(fd int, p []byte) (n int, err error)
  1559  //sys	exitThread(code int) (err error) = SYS_EXIT
  1560  //sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1561  //sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1562  
  1563  // mmap varies by architecture; see syscall_linux_*.go.
  1564  //sys	munmap(addr uintptr, length uintptr) (err error)
  1565  
  1566  var mapper = &mmapper{
  1567  	active: make(map[*byte][]byte),
  1568  	mmap:   mmap,
  1569  	munmap: munmap,
  1570  }
  1571  
  1572  func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  1573  	return mapper.Mmap(fd, offset, length, prot, flags)
  1574  }
  1575  
  1576  func Munmap(b []byte) (err error) {
  1577  	return mapper.Munmap(b)
  1578  }
  1579  
  1580  //sys	Madvise(b []byte, advice int) (err error)
  1581  //sys	Mprotect(b []byte, prot int) (err error)
  1582  //sys	Mlock(b []byte) (err error)
  1583  //sys	Mlockall(flags int) (err error)
  1584  //sys	Msync(b []byte, flags int) (err error)
  1585  //sys	Munlock(b []byte) (err error)
  1586  //sys	Munlockall() (err error)
  1587  
  1588  // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  1589  // using the specified flags.
  1590  func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  1591  	var p unsafe.Pointer
  1592  	if len(iovs) > 0 {
  1593  		p = unsafe.Pointer(&iovs[0])
  1594  	}
  1595  
  1596  	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
  1597  	if errno != 0 {
  1598  		return 0, syscall.Errno(errno)
  1599  	}
  1600  
  1601  	return int(n), nil
  1602  }
  1603  
  1604  //sys	faccessat(dirfd int, path string, mode uint32) (err error)
  1605  
  1606  func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
  1607  	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  1608  		return EINVAL
  1609  	}
  1610  
  1611  	// The Linux kernel faccessat system call does not take any flags.
  1612  	// The glibc faccessat implements the flags itself; see
  1613  	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
  1614  	// Because people naturally expect syscall.Faccessat to act
  1615  	// like C faccessat, we do the same.
  1616  
  1617  	if flags == 0 {
  1618  		return faccessat(dirfd, path, mode)
  1619  	}
  1620  
  1621  	var st Stat_t
  1622  	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
  1623  		return err
  1624  	}
  1625  
  1626  	mode &= 7
  1627  	if mode == 0 {
  1628  		return nil
  1629  	}
  1630  
  1631  	var uid int
  1632  	if flags&AT_EACCESS != 0 {
  1633  		uid = Geteuid()
  1634  	} else {
  1635  		uid = Getuid()
  1636  	}
  1637  
  1638  	if uid == 0 {
  1639  		if mode&1 == 0 {
  1640  			// Root can read and write any file.
  1641  			return nil
  1642  		}
  1643  		if st.Mode&0111 != 0 {
  1644  			// Root can execute any file that anybody can execute.
  1645  			return nil
  1646  		}
  1647  		return EACCES
  1648  	}
  1649  
  1650  	var fmode uint32
  1651  	if uint32(uid) == st.Uid {
  1652  		fmode = (st.Mode >> 6) & 7
  1653  	} else {
  1654  		var gid int
  1655  		if flags&AT_EACCESS != 0 {
  1656  			gid = Getegid()
  1657  		} else {
  1658  			gid = Getgid()
  1659  		}
  1660  
  1661  		if uint32(gid) == st.Gid {
  1662  			fmode = (st.Mode >> 3) & 7
  1663  		} else {
  1664  			fmode = st.Mode & 7
  1665  		}
  1666  	}
  1667  
  1668  	if fmode&mode == mode {
  1669  		return nil
  1670  	}
  1671  
  1672  	return EACCES
  1673  }
  1674  
  1675  //sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
  1676  //sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
  1677  
  1678  // fileHandle is the argument to nameToHandleAt and openByHandleAt. We
  1679  // originally tried to generate it via unix/linux/types.go with "type
  1680  // fileHandle C.struct_file_handle" but that generated empty structs
  1681  // for mips64 and mips64le. Instead, hard code it for now (it's the
  1682  // same everywhere else) until the mips64 generator issue is fixed.
  1683  type fileHandle struct {
  1684  	Bytes uint32
  1685  	Type  int32
  1686  }
  1687  
  1688  // FileHandle represents the C struct file_handle used by
  1689  // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
  1690  // OpenByHandleAt).
  1691  type FileHandle struct {
  1692  	*fileHandle
  1693  }
  1694  
  1695  // NewFileHandle constructs a FileHandle.
  1696  func NewFileHandle(handleType int32, handle []byte) FileHandle {
  1697  	const hdrSize = unsafe.Sizeof(fileHandle{})
  1698  	buf := make([]byte, hdrSize+uintptr(len(handle)))
  1699  	copy(buf[hdrSize:], handle)
  1700  	fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  1701  	fh.Type = handleType
  1702  	fh.Bytes = uint32(len(handle))
  1703  	return FileHandle{fh}
  1704  }
  1705  
  1706  func (fh *FileHandle) Size() int   { return int(fh.fileHandle.Bytes) }
  1707  func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
  1708  func (fh *FileHandle) Bytes() []byte {
  1709  	n := fh.Size()
  1710  	if n == 0 {
  1711  		return nil
  1712  	}
  1713  	return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
  1714  }
  1715  
  1716  // NameToHandleAt wraps the name_to_handle_at system call; it obtains
  1717  // a handle for a path name.
  1718  func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
  1719  	var mid _C_int
  1720  	// Try first with a small buffer, assuming the handle will
  1721  	// only be 32 bytes.
  1722  	size := uint32(32 + unsafe.Sizeof(fileHandle{}))
  1723  	didResize := false
  1724  	for {
  1725  		buf := make([]byte, size)
  1726  		fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  1727  		fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
  1728  		err = nameToHandleAt(dirfd, path, fh, &mid, flags)
  1729  		if err == EOVERFLOW {
  1730  			if didResize {
  1731  				// We shouldn't need to resize more than once
  1732  				return
  1733  			}
  1734  			didResize = true
  1735  			size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
  1736  			continue
  1737  		}
  1738  		if err != nil {
  1739  			return
  1740  		}
  1741  		return FileHandle{fh}, int(mid), nil
  1742  	}
  1743  }
  1744  
  1745  // OpenByHandleAt wraps the open_by_handle_at system call; it opens a
  1746  // file via a handle as previously returned by NameToHandleAt.
  1747  func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
  1748  	return openByHandleAt(mountFD, handle.fileHandle, flags)
  1749  }
  1750  
  1751  /*
  1752   * Unimplemented
  1753   */
  1754  // AfsSyscall
  1755  // Alarm
  1756  // ArchPrctl
  1757  // Brk
  1758  // Capget
  1759  // Capset
  1760  // ClockNanosleep
  1761  // ClockSettime
  1762  // Clone
  1763  // EpollCtlOld
  1764  // EpollPwait
  1765  // EpollWaitOld
  1766  // Execve
  1767  // Fork
  1768  // Futex
  1769  // GetKernelSyms
  1770  // GetMempolicy
  1771  // GetRobustList
  1772  // GetThreadArea
  1773  // Getitimer
  1774  // Getpmsg
  1775  // IoCancel
  1776  // IoDestroy
  1777  // IoGetevents
  1778  // IoSetup
  1779  // IoSubmit
  1780  // IoprioGet
  1781  // IoprioSet
  1782  // KexecLoad
  1783  // LookupDcookie
  1784  // Mbind
  1785  // MigratePages
  1786  // Mincore
  1787  // ModifyLdt
  1788  // Mount
  1789  // MovePages
  1790  // MqGetsetattr
  1791  // MqNotify
  1792  // MqOpen
  1793  // MqTimedreceive
  1794  // MqTimedsend
  1795  // MqUnlink
  1796  // Mremap
  1797  // Msgctl
  1798  // Msgget
  1799  // Msgrcv
  1800  // Msgsnd
  1801  // Nfsservctl
  1802  // Personality
  1803  // Pselect6
  1804  // Ptrace
  1805  // Putpmsg
  1806  // Quotactl
  1807  // Readahead
  1808  // Readv
  1809  // RemapFilePages
  1810  // RestartSyscall
  1811  // RtSigaction
  1812  // RtSigpending
  1813  // RtSigprocmask
  1814  // RtSigqueueinfo
  1815  // RtSigreturn
  1816  // RtSigsuspend
  1817  // RtSigtimedwait
  1818  // SchedGetPriorityMax
  1819  // SchedGetPriorityMin
  1820  // SchedGetparam
  1821  // SchedGetscheduler
  1822  // SchedRrGetInterval
  1823  // SchedSetparam
  1824  // SchedYield
  1825  // Security
  1826  // Semctl
  1827  // Semget
  1828  // Semop
  1829  // Semtimedop
  1830  // SetMempolicy
  1831  // SetRobustList
  1832  // SetThreadArea
  1833  // SetTidAddress
  1834  // Shmat
  1835  // Shmctl
  1836  // Shmdt
  1837  // Shmget
  1838  // Sigaltstack
  1839  // Swapoff
  1840  // Swapon
  1841  // Sysfs
  1842  // TimerCreate
  1843  // TimerDelete
  1844  // TimerGetoverrun
  1845  // TimerGettime
  1846  // TimerSettime
  1847  // Timerfd
  1848  // Tkill (obsolete)
  1849  // Tuxcall
  1850  // Umount2
  1851  // Uselib
  1852  // Utimensat
  1853  // Vfork
  1854  // Vhangup
  1855  // Vserver
  1856  // Waitid
  1857  // _Sysctl