github.com/immesys/bw2bc@v1.1.0/crypto/ecies/ecies.go (about)

     1  // Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
     2  // Copyright (c) 2012 The Go Authors. All rights reserved.
     3  //
     4  // Redistribution and use in source and binary forms, with or without
     5  // modification, are permitted provided that the following conditions are
     6  // met:
     7  //
     8  //    * Redistributions of source code must retain the above copyright
     9  // notice, this list of conditions and the following disclaimer.
    10  //    * Redistributions in binary form must reproduce the above
    11  // copyright notice, this list of conditions and the following disclaimer
    12  // in the documentation and/or other materials provided with the
    13  // distribution.
    14  //    * Neither the name of Google Inc. nor the names of its
    15  // contributors may be used to endorse or promote products derived from
    16  // this software without specific prior written permission.
    17  //
    18  // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    19  // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    20  // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    21  // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    22  // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    23  // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    24  // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    25  // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    26  // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    27  // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    28  // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    29  
    30  package ecies
    31  
    32  import (
    33  	"crypto/cipher"
    34  	"crypto/ecdsa"
    35  	"crypto/elliptic"
    36  	"crypto/hmac"
    37  	"crypto/subtle"
    38  	"fmt"
    39  	"hash"
    40  	"io"
    41  	"math/big"
    42  )
    43  
    44  var (
    45  	ErrImport                     = fmt.Errorf("ecies: failed to import key")
    46  	ErrInvalidCurve               = fmt.Errorf("ecies: invalid elliptic curve")
    47  	ErrInvalidParams              = fmt.Errorf("ecies: invalid ECIES parameters")
    48  	ErrInvalidPublicKey           = fmt.Errorf("ecies: invalid public key")
    49  	ErrSharedKeyIsPointAtInfinity = fmt.Errorf("ecies: shared key is point at infinity")
    50  	ErrSharedKeyTooBig            = fmt.Errorf("ecies: shared key params are too big")
    51  )
    52  
    53  // PublicKey is a representation of an elliptic curve public key.
    54  type PublicKey struct {
    55  	X *big.Int
    56  	Y *big.Int
    57  	elliptic.Curve
    58  	Params *ECIESParams
    59  }
    60  
    61  // Export an ECIES public key as an ECDSA public key.
    62  func (pub *PublicKey) ExportECDSA() *ecdsa.PublicKey {
    63  	return &ecdsa.PublicKey{pub.Curve, pub.X, pub.Y}
    64  }
    65  
    66  // Import an ECDSA public key as an ECIES public key.
    67  func ImportECDSAPublic(pub *ecdsa.PublicKey) *PublicKey {
    68  	return &PublicKey{
    69  		X:      pub.X,
    70  		Y:      pub.Y,
    71  		Curve:  pub.Curve,
    72  		Params: ParamsFromCurve(pub.Curve),
    73  	}
    74  }
    75  
    76  // PrivateKey is a representation of an elliptic curve private key.
    77  type PrivateKey struct {
    78  	PublicKey
    79  	D *big.Int
    80  }
    81  
    82  // Export an ECIES private key as an ECDSA private key.
    83  func (prv *PrivateKey) ExportECDSA() *ecdsa.PrivateKey {
    84  	pub := &prv.PublicKey
    85  	pubECDSA := pub.ExportECDSA()
    86  	return &ecdsa.PrivateKey{*pubECDSA, prv.D}
    87  }
    88  
    89  // Import an ECDSA private key as an ECIES private key.
    90  func ImportECDSA(prv *ecdsa.PrivateKey) *PrivateKey {
    91  	pub := ImportECDSAPublic(&prv.PublicKey)
    92  	return &PrivateKey{*pub, prv.D}
    93  }
    94  
    95  // Generate an elliptic curve public / private keypair. If params is nil,
    96  // the recommended default paramters for the key will be chosen.
    97  func GenerateKey(rand io.Reader, curve elliptic.Curve, params *ECIESParams) (prv *PrivateKey, err error) {
    98  	pb, x, y, err := elliptic.GenerateKey(curve, rand)
    99  	if err != nil {
   100  		return
   101  	}
   102  	prv = new(PrivateKey)
   103  	prv.PublicKey.X = x
   104  	prv.PublicKey.Y = y
   105  	prv.PublicKey.Curve = curve
   106  	prv.D = new(big.Int).SetBytes(pb)
   107  	if params == nil {
   108  		params = ParamsFromCurve(curve)
   109  	}
   110  	prv.PublicKey.Params = params
   111  	return
   112  }
   113  
   114  // MaxSharedKeyLength returns the maximum length of the shared key the
   115  // public key can produce.
   116  func MaxSharedKeyLength(pub *PublicKey) int {
   117  	return (pub.Curve.Params().BitSize + 7) / 8
   118  }
   119  
   120  // ECDH key agreement method used to establish secret keys for encryption.
   121  func (prv *PrivateKey) GenerateShared(pub *PublicKey, skLen, macLen int) (sk []byte, err error) {
   122  	if prv.PublicKey.Curve != pub.Curve {
   123  		return nil, ErrInvalidCurve
   124  	}
   125  	if skLen+macLen > MaxSharedKeyLength(pub) {
   126  		return nil, ErrSharedKeyTooBig
   127  	}
   128  	x, _ := pub.Curve.ScalarMult(pub.X, pub.Y, prv.D.Bytes())
   129  	if x == nil {
   130  		return nil, ErrSharedKeyIsPointAtInfinity
   131  	}
   132  
   133  	sk = make([]byte, skLen+macLen)
   134  	skBytes := x.Bytes()
   135  	copy(sk[len(sk)-len(skBytes):], skBytes)
   136  	return sk, nil
   137  }
   138  
   139  var (
   140  	ErrKeyDataTooLong = fmt.Errorf("ecies: can't supply requested key data")
   141  	ErrSharedTooLong  = fmt.Errorf("ecies: shared secret is too long")
   142  	ErrInvalidMessage = fmt.Errorf("ecies: invalid message")
   143  )
   144  
   145  var (
   146  	big2To32   = new(big.Int).Exp(big.NewInt(2), big.NewInt(32), nil)
   147  	big2To32M1 = new(big.Int).Sub(big2To32, big.NewInt(1))
   148  )
   149  
   150  func incCounter(ctr []byte) {
   151  	if ctr[3]++; ctr[3] != 0 {
   152  		return
   153  	} else if ctr[2]++; ctr[2] != 0 {
   154  		return
   155  	} else if ctr[1]++; ctr[1] != 0 {
   156  		return
   157  	} else if ctr[0]++; ctr[0] != 0 {
   158  		return
   159  	}
   160  	return
   161  }
   162  
   163  // NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1).
   164  func concatKDF(hash hash.Hash, z, s1 []byte, kdLen int) (k []byte, err error) {
   165  	if s1 == nil {
   166  		s1 = make([]byte, 0)
   167  	}
   168  
   169  	reps := ((kdLen + 7) * 8) / (hash.BlockSize() * 8)
   170  	if big.NewInt(int64(reps)).Cmp(big2To32M1) > 0 {
   171  		fmt.Println(big2To32M1)
   172  		return nil, ErrKeyDataTooLong
   173  	}
   174  
   175  	counter := []byte{0, 0, 0, 1}
   176  	k = make([]byte, 0)
   177  
   178  	for i := 0; i <= reps; i++ {
   179  		hash.Write(counter)
   180  		hash.Write(z)
   181  		hash.Write(s1)
   182  		k = append(k, hash.Sum(nil)...)
   183  		hash.Reset()
   184  		incCounter(counter)
   185  	}
   186  
   187  	k = k[:kdLen]
   188  	return
   189  }
   190  
   191  // messageTag computes the MAC of a message (called the tag) as per
   192  // SEC 1, 3.5.
   193  func messageTag(hash func() hash.Hash, km, msg, shared []byte) []byte {
   194  	if shared == nil {
   195  		shared = make([]byte, 0)
   196  	}
   197  	mac := hmac.New(hash, km)
   198  	mac.Write(msg)
   199  	tag := mac.Sum(nil)
   200  	return tag
   201  }
   202  
   203  // Generate an initialisation vector for CTR mode.
   204  func generateIV(params *ECIESParams, rand io.Reader) (iv []byte, err error) {
   205  	iv = make([]byte, params.BlockSize)
   206  	_, err = io.ReadFull(rand, iv)
   207  	return
   208  }
   209  
   210  // symEncrypt carries out CTR encryption using the block cipher specified in the
   211  // parameters.
   212  func symEncrypt(rand io.Reader, params *ECIESParams, key, m []byte) (ct []byte, err error) {
   213  	c, err := params.Cipher(key)
   214  	if err != nil {
   215  		return
   216  	}
   217  
   218  	iv, err := generateIV(params, rand)
   219  	if err != nil {
   220  		return
   221  	}
   222  	ctr := cipher.NewCTR(c, iv)
   223  
   224  	ct = make([]byte, len(m)+params.BlockSize)
   225  	copy(ct, iv)
   226  	ctr.XORKeyStream(ct[params.BlockSize:], m)
   227  	return
   228  }
   229  
   230  // symDecrypt carries out CTR decryption using the block cipher specified in
   231  // the parameters
   232  func symDecrypt(rand io.Reader, params *ECIESParams, key, ct []byte) (m []byte, err error) {
   233  	c, err := params.Cipher(key)
   234  	if err != nil {
   235  		return
   236  	}
   237  
   238  	ctr := cipher.NewCTR(c, ct[:params.BlockSize])
   239  
   240  	m = make([]byte, len(ct)-params.BlockSize)
   241  	ctr.XORKeyStream(m, ct[params.BlockSize:])
   242  	return
   243  }
   244  
   245  // Encrypt encrypts a message using ECIES as specified in SEC 1, 5.1. If
   246  // the shared information parameters aren't being used, they should be
   247  // nil.
   248  func Encrypt(rand io.Reader, pub *PublicKey, m, s1, s2 []byte) (ct []byte, err error) {
   249  	params := pub.Params
   250  	if params == nil {
   251  		if params = ParamsFromCurve(pub.Curve); params == nil {
   252  			err = ErrUnsupportedECIESParameters
   253  			return
   254  		}
   255  	}
   256  	R, err := GenerateKey(rand, pub.Curve, params)
   257  	if err != nil {
   258  		return
   259  	}
   260  
   261  	hash := params.Hash()
   262  	z, err := R.GenerateShared(pub, params.KeyLen, params.KeyLen)
   263  	if err != nil {
   264  		return
   265  	}
   266  	K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
   267  	if err != nil {
   268  		return
   269  	}
   270  	Ke := K[:params.KeyLen]
   271  	Km := K[params.KeyLen:]
   272  	hash.Write(Km)
   273  	Km = hash.Sum(nil)
   274  	hash.Reset()
   275  
   276  	em, err := symEncrypt(rand, params, Ke, m)
   277  	if err != nil || len(em) <= params.BlockSize {
   278  		return
   279  	}
   280  
   281  	d := messageTag(params.Hash, Km, em, s2)
   282  
   283  	Rb := elliptic.Marshal(pub.Curve, R.PublicKey.X, R.PublicKey.Y)
   284  	ct = make([]byte, len(Rb)+len(em)+len(d))
   285  	copy(ct, Rb)
   286  	copy(ct[len(Rb):], em)
   287  	copy(ct[len(Rb)+len(em):], d)
   288  	return
   289  }
   290  
   291  // Decrypt decrypts an ECIES ciphertext.
   292  func (prv *PrivateKey) Decrypt(rand io.Reader, c, s1, s2 []byte) (m []byte, err error) {
   293  	if c == nil || len(c) == 0 {
   294  		err = ErrInvalidMessage
   295  		return
   296  	}
   297  	params := prv.PublicKey.Params
   298  	if params == nil {
   299  		if params = ParamsFromCurve(prv.PublicKey.Curve); params == nil {
   300  			err = ErrUnsupportedECIESParameters
   301  			return
   302  		}
   303  	}
   304  	hash := params.Hash()
   305  
   306  	var (
   307  		rLen   int
   308  		hLen   int = hash.Size()
   309  		mStart int
   310  		mEnd   int
   311  	)
   312  
   313  	switch c[0] {
   314  	case 2, 3, 4:
   315  		rLen = ((prv.PublicKey.Curve.Params().BitSize + 7) / 4)
   316  		if len(c) < (rLen + hLen + 1) {
   317  			err = ErrInvalidMessage
   318  			return
   319  		}
   320  	default:
   321  		err = ErrInvalidPublicKey
   322  		return
   323  	}
   324  
   325  	mStart = rLen
   326  	mEnd = len(c) - hLen
   327  
   328  	R := new(PublicKey)
   329  	R.Curve = prv.PublicKey.Curve
   330  	R.X, R.Y = elliptic.Unmarshal(R.Curve, c[:rLen])
   331  	if R.X == nil {
   332  		err = ErrInvalidPublicKey
   333  		return
   334  	}
   335  	if !R.Curve.IsOnCurve(R.X, R.Y) {
   336  		err = ErrInvalidCurve
   337  		return
   338  	}
   339  
   340  	z, err := prv.GenerateShared(R, params.KeyLen, params.KeyLen)
   341  	if err != nil {
   342  		return
   343  	}
   344  
   345  	K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
   346  	if err != nil {
   347  		return
   348  	}
   349  
   350  	Ke := K[:params.KeyLen]
   351  	Km := K[params.KeyLen:]
   352  	hash.Write(Km)
   353  	Km = hash.Sum(nil)
   354  	hash.Reset()
   355  
   356  	d := messageTag(params.Hash, Km, c[mStart:mEnd], s2)
   357  	if subtle.ConstantTimeCompare(c[mEnd:], d) != 1 {
   358  		err = ErrInvalidMessage
   359  		return
   360  	}
   361  
   362  	m, err = symDecrypt(rand, params, Ke, c[mStart:mEnd])
   363  	return
   364  }