github.com/immesys/bw2bc@v1.1.0/crypto/sha3/sha3.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // 3 // Redistribution and use in source and binary forms, with or without 4 // modification, are permitted provided that the following conditions are 5 // met: 6 // 7 // * Redistributions of source code must retain the above copyright 8 // notice, this list of conditions and the following disclaimer. 9 // * Redistributions in binary form must reproduce the above 10 // copyright notice, this list of conditions and the following disclaimer 11 // in the documentation and/or other materials provided with the 12 // distribution. 13 // * Neither the name of Google Inc. nor the names of its 14 // contributors may be used to endorse or promote products derived from 15 // this software without specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 29 // Package sha3 implements the SHA3 hash algorithm (formerly called Keccak) chosen by NIST in 2012. 30 // This file provides a SHA3 implementation which implements the standard hash.Hash interface. 31 // Writing input data, including padding, and reading output data are computed in this file. 32 // Note that the current implementation can compute the hash of an integral number of bytes only. 33 // This is a consequence of the hash interface in which a buffer of bytes is passed in. 34 // The internals of the Keccak-f function are computed in keccakf.go. 35 // For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/). 36 package sha3 37 38 import ( 39 "encoding/binary" 40 "hash" 41 ) 42 43 // laneSize is the size in bytes of each "lane" of the internal state of SHA3 (5 * 5 * 8). 44 // Note that changing this size would requires using a type other than uint64 to store each lane. 45 const laneSize = 8 46 47 // sliceSize represents the dimensions of the internal state, a square matrix of 48 // sliceSize ** 2 lanes. This is the size of both the "rows" and "columns" dimensions in the 49 // terminology of the SHA3 specification. 50 const sliceSize = 5 51 52 // numLanes represents the total number of lanes in the state. 53 const numLanes = sliceSize * sliceSize 54 55 // stateSize is the size in bytes of the internal state of SHA3 (5 * 5 * WSize). 56 const stateSize = laneSize * numLanes 57 58 // digest represents the partial evaluation of a checksum. 59 // Note that capacity, and not outputSize, is the critical security parameter, as SHA3 can output 60 // an arbitrary number of bytes for any given capacity. The Keccak proposal recommends that 61 // capacity = 2*outputSize to ensure that finding a collision of size outputSize requires 62 // O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the 63 // capacity/outputSize ratio to allow for more output with lower cryptographic security. 64 type digest struct { 65 a [numLanes]uint64 // main state of the hash 66 outputSize int // desired output size in bytes 67 capacity int // number of bytes to leave untouched during squeeze/absorb 68 absorbed int // number of bytes absorbed thus far 69 } 70 71 // minInt returns the lesser of two integer arguments, to simplify the absorption routine. 72 func minInt(v1, v2 int) int { 73 if v1 <= v2 { 74 return v1 75 } 76 return v2 77 } 78 79 // rate returns the number of bytes of the internal state which can be absorbed or squeezed 80 // in between calls to the permutation function. 81 func (d *digest) rate() int { 82 return stateSize - d.capacity 83 } 84 85 // Reset clears the internal state by zeroing bytes in the state buffer. 86 // This can be skipped for a newly-created hash state; the default zero-allocated state is correct. 87 func (d *digest) Reset() { 88 d.absorbed = 0 89 for i := range d.a { 90 d.a[i] = 0 91 } 92 } 93 94 // BlockSize, required by the hash.Hash interface, does not have a standard intepretation 95 // for a sponge-based construction like SHA3. We return the data rate: the number of bytes which 96 // can be absorbed per invocation of the permutation function. For Merkle-Damgård based hashes 97 // (ie SHA1, SHA2, MD5) the output size of the internal compression function is returned. 98 // We consider this to be roughly equivalent because it represents the number of bytes of output 99 // produced per cryptographic operation. 100 func (d *digest) BlockSize() int { return d.rate() } 101 102 // Size returns the output size of the hash function in bytes. 103 func (d *digest) Size() int { 104 return d.outputSize 105 } 106 107 // unalignedAbsorb is a helper function for Write, which absorbs data that isn't aligned with an 108 // 8-byte lane. This requires shifting the individual bytes into position in a uint64. 109 func (d *digest) unalignedAbsorb(p []byte) { 110 var t uint64 111 for i := len(p) - 1; i >= 0; i-- { 112 t <<= 8 113 t |= uint64(p[i]) 114 } 115 offset := (d.absorbed) % d.rate() 116 t <<= 8 * uint(offset%laneSize) 117 d.a[offset/laneSize] ^= t 118 d.absorbed += len(p) 119 } 120 121 // Write "absorbs" bytes into the state of the SHA3 hash, updating as needed when the sponge 122 // "fills up" with rate() bytes. Since lanes are stored internally as type uint64, this requires 123 // converting the incoming bytes into uint64s using a little endian interpretation. This 124 // implementation is optimized for large, aligned writes of multiples of 8 bytes (laneSize). 125 // Non-aligned or uneven numbers of bytes require shifting and are slower. 126 func (d *digest) Write(p []byte) (int, error) { 127 // An initial offset is needed if the we aren't absorbing to the first lane initially. 128 offset := d.absorbed % d.rate() 129 toWrite := len(p) 130 131 // The first lane may need to absorb unaligned and/or incomplete data. 132 if (offset%laneSize != 0 || len(p) < 8) && len(p) > 0 { 133 toAbsorb := minInt(laneSize-(offset%laneSize), len(p)) 134 d.unalignedAbsorb(p[:toAbsorb]) 135 p = p[toAbsorb:] 136 offset = (d.absorbed) % d.rate() 137 138 // For every rate() bytes absorbed, the state must be permuted via the F Function. 139 if (d.absorbed)%d.rate() == 0 { 140 keccakF1600(&d.a) 141 } 142 } 143 144 // This loop should absorb the bulk of the data into full, aligned lanes. 145 // It will call the update function as necessary. 146 for len(p) > 7 { 147 firstLane := offset / laneSize 148 lastLane := minInt(d.rate()/laneSize, firstLane+len(p)/laneSize) 149 150 // This inner loop absorbs input bytes into the state in groups of 8, converted to uint64s. 151 for lane := firstLane; lane < lastLane; lane++ { 152 d.a[lane] ^= binary.LittleEndian.Uint64(p[:laneSize]) 153 p = p[laneSize:] 154 } 155 d.absorbed += (lastLane - firstLane) * laneSize 156 // For every rate() bytes absorbed, the state must be permuted via the F Function. 157 if (d.absorbed)%d.rate() == 0 { 158 keccakF1600(&d.a) 159 } 160 161 offset = 0 162 } 163 164 // If there are insufficient bytes to fill the final lane, an unaligned absorption. 165 // This should always start at a correct lane boundary though, or else it would be caught 166 // by the uneven opening lane case above. 167 if len(p) > 0 { 168 d.unalignedAbsorb(p) 169 } 170 171 return toWrite, nil 172 } 173 174 // pad computes the SHA3 padding scheme based on the number of bytes absorbed. 175 // The padding is a 1 bit, followed by an arbitrary number of 0s and then a final 1 bit, such that 176 // the input bits plus padding bits are a multiple of rate(). Adding the padding simply requires 177 // xoring an opening and closing bit into the appropriate lanes. 178 func (d *digest) pad() { 179 offset := d.absorbed % d.rate() 180 // The opening pad bit must be shifted into position based on the number of bytes absorbed 181 padOpenLane := offset / laneSize 182 d.a[padOpenLane] ^= 0x0000000000000001 << uint(8*(offset%laneSize)) 183 // The closing padding bit is always in the last position 184 padCloseLane := (d.rate() / laneSize) - 1 185 d.a[padCloseLane] ^= 0x8000000000000000 186 } 187 188 // finalize prepares the hash to output data by padding and one final permutation of the state. 189 func (d *digest) finalize() { 190 d.pad() 191 keccakF1600(&d.a) 192 } 193 194 // squeeze outputs an arbitrary number of bytes from the hash state. 195 // Squeezing can require multiple calls to the F function (one per rate() bytes squeezed), 196 // although this is not the case for standard SHA3 parameters. This implementation only supports 197 // squeezing a single time, subsequent squeezes may lose alignment. Future implementations 198 // may wish to support multiple squeeze calls, for example to support use as a PRNG. 199 func (d *digest) squeeze(in []byte, toSqueeze int) []byte { 200 // Because we read in blocks of laneSize, we need enough room to read 201 // an integral number of lanes 202 needed := toSqueeze + (laneSize-toSqueeze%laneSize)%laneSize 203 if cap(in)-len(in) < needed { 204 newIn := make([]byte, len(in), len(in)+needed) 205 copy(newIn, in) 206 in = newIn 207 } 208 out := in[len(in) : len(in)+needed] 209 210 for len(out) > 0 { 211 for i := 0; i < d.rate() && len(out) > 0; i += laneSize { 212 binary.LittleEndian.PutUint64(out[:], d.a[i/laneSize]) 213 out = out[laneSize:] 214 } 215 if len(out) > 0 { 216 keccakF1600(&d.a) 217 } 218 } 219 return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data. 220 } 221 222 // Sum applies padding to the hash state and then squeezes out the desired nubmer of output bytes. 223 func (d *digest) Sum(in []byte) []byte { 224 // Make a copy of the original hash so that caller can keep writing and summing. 225 dup := *d 226 dup.finalize() 227 return dup.squeeze(in, dup.outputSize) 228 } 229 230 // The NewKeccakX constructors enable initializing a hash in any of the four recommend sizes 231 // from the Keccak specification, all of which set capacity=2*outputSize. Note that the final 232 // NIST standard for SHA3 may specify different input/output lengths. 233 // The output size is indicated in bits but converted into bytes internally. 234 func NewKeccak224() hash.Hash { return &digest{outputSize: 224 / 8, capacity: 2 * 224 / 8} } 235 func NewKeccak256() hash.Hash { return &digest{outputSize: 256 / 8, capacity: 2 * 256 / 8} } 236 func NewKeccak384() hash.Hash { return &digest{outputSize: 384 / 8, capacity: 2 * 384 / 8} } 237 func NewKeccak512() hash.Hash { return &digest{outputSize: 512 / 8, capacity: 2 * 512 / 8} }