github.com/insionng/yougam@v0.0.0-20170714101924-2bc18d833463/libraries/golang/freetype/raster/stroke.go (about) 1 // Copyright 2010 The Freetype-Go Authors. All rights reserved. 2 // Use of this source code is governed by your choice of either the 3 // FreeType License or the GNU General Public License version 2 (or 4 // any later version), both of which can be found in the LICENSE file. 5 6 package raster 7 8 import ( 9 "github.com/insionng/yougam/libraries/x/image/math/fixed" 10 ) 11 12 // Two points are considered practically equal if the square of the distance 13 // between them is less than one quarter (i.e. 1024 / 4096). 14 const epsilon = fixed.Int52_12(1024) 15 16 // A Capper signifies how to begin or end a stroked path. 17 type Capper interface { 18 // Cap adds a cap to p given a pivot point and the normal vector of a 19 // terminal segment. The normal's length is half of the stroke width. 20 Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) 21 } 22 23 // The CapperFunc type adapts an ordinary function to be a Capper. 24 type CapperFunc func(Adder, fixed.Int26_6, fixed.Point26_6, fixed.Point26_6) 25 26 func (f CapperFunc) Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) { 27 f(p, halfWidth, pivot, n1) 28 } 29 30 // A Joiner signifies how to join interior nodes of a stroked path. 31 type Joiner interface { 32 // Join adds a join to the two sides of a stroked path given a pivot 33 // point and the normal vectors of the trailing and leading segments. 34 // Both normals have length equal to half of the stroke width. 35 Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) 36 } 37 38 // The JoinerFunc type adapts an ordinary function to be a Joiner. 39 type JoinerFunc func(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) 40 41 func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) { 42 f(lhs, rhs, halfWidth, pivot, n0, n1) 43 } 44 45 // RoundCapper adds round caps to a stroked path. 46 var RoundCapper Capper = CapperFunc(roundCapper) 47 48 func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) { 49 // The cubic Bézier approximation to a circle involves the magic number 50 // (√2 - 1) * 4/3, which is approximately 35/64. 51 const k = 35 52 e := pRot90CCW(n1) 53 side := pivot.Add(e) 54 start, end := pivot.Sub(n1), pivot.Add(n1) 55 d, e := n1.Mul(k), e.Mul(k) 56 p.Add3(start.Add(e), side.Sub(d), side) 57 p.Add3(side.Add(d), end.Add(e), end) 58 } 59 60 // ButtCapper adds butt caps to a stroked path. 61 var ButtCapper Capper = CapperFunc(buttCapper) 62 63 func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) { 64 p.Add1(pivot.Add(n1)) 65 } 66 67 // SquareCapper adds square caps to a stroked path. 68 var SquareCapper Capper = CapperFunc(squareCapper) 69 70 func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) { 71 e := pRot90CCW(n1) 72 side := pivot.Add(e) 73 p.Add1(side.Sub(n1)) 74 p.Add1(side.Add(n1)) 75 p.Add1(pivot.Add(n1)) 76 } 77 78 // RoundJoiner adds round joins to a stroked path. 79 var RoundJoiner Joiner = JoinerFunc(roundJoiner) 80 81 func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) { 82 dot := pDot(pRot90CW(n0), n1) 83 if dot >= 0 { 84 addArc(lhs, pivot, n0, n1) 85 rhs.Add1(pivot.Sub(n1)) 86 } else { 87 lhs.Add1(pivot.Add(n1)) 88 addArc(rhs, pivot, pNeg(n0), pNeg(n1)) 89 } 90 } 91 92 // BevelJoiner adds bevel joins to a stroked path. 93 var BevelJoiner Joiner = JoinerFunc(bevelJoiner) 94 95 func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) { 96 lhs.Add1(pivot.Add(n1)) 97 rhs.Add1(pivot.Sub(n1)) 98 } 99 100 // addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of 101 // the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The 102 // two vectors n0 and n1 must be of equal length. 103 func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) { 104 // r2 is the square of the length of n0. 105 r2 := pDot(n0, n0) 106 if r2 < epsilon { 107 // The arc radius is so small that we collapse to a straight line. 108 p.Add1(pivot.Add(n1)) 109 return 110 } 111 // We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus 112 // a final quadratic segment from s to n1. Each 45-degree segment has 113 // control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled, 114 // rotated and translated. tan(π/8) is approximately 27/64. 115 const tpo8 = 27 116 var s fixed.Point26_6 117 // We determine which octant the angle between n0 and n1 is in via three 118 // dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135 119 // degrees. 120 m0 := pRot45CW(n0) 121 m1 := pRot90CW(n0) 122 m2 := pRot90CW(m0) 123 if pDot(m1, n1) >= 0 { 124 if pDot(n0, n1) >= 0 { 125 if pDot(m2, n1) <= 0 { 126 // n1 is between 0 and 45 degrees clockwise of n0. 127 s = n0 128 } else { 129 // n1 is between 45 and 90 degrees clockwise of n0. 130 p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0)) 131 s = m0 132 } 133 } else { 134 pm1, n0t := pivot.Add(m1), n0.Mul(tpo8) 135 p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0)) 136 p.Add2(pm1.Add(n0t), pm1) 137 if pDot(m0, n1) >= 0 { 138 // n1 is between 90 and 135 degrees clockwise of n0. 139 s = m1 140 } else { 141 // n1 is between 135 and 180 degrees clockwise of n0. 142 p.Add2(pm1.Sub(n0t), pivot.Add(m2)) 143 s = m2 144 } 145 } 146 } else { 147 if pDot(n0, n1) >= 0 { 148 if pDot(m0, n1) >= 0 { 149 // n1 is between 0 and 45 degrees counter-clockwise of n0. 150 s = n0 151 } else { 152 // n1 is between 45 and 90 degrees counter-clockwise of n0. 153 p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2)) 154 s = pNeg(m2) 155 } 156 } else { 157 pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8) 158 p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2)) 159 p.Add2(pm1.Add(n0t), pm1) 160 if pDot(m2, n1) <= 0 { 161 // n1 is between 90 and 135 degrees counter-clockwise of n0. 162 s = pNeg(m1) 163 } else { 164 // n1 is between 135 and 180 degrees counter-clockwise of n0. 165 p.Add2(pm1.Sub(n0t), pivot.Sub(m0)) 166 s = pNeg(m0) 167 } 168 } 169 } 170 // The final quadratic segment has two endpoints s and n1 and the middle 171 // control point is a multiple of s.Add(n1), i.e. it is on the angle 172 // bisector of those two points. The multiple ranges between 128/256 and 173 // 150/256 as the angle between s and n1 ranges between 0 and 45 degrees. 174 // 175 // When the angle is 0 degrees (i.e. s and n1 are coincident) then 176 // s.Add(n1) is twice s and so the middle control point of the degenerate 177 // quadratic segment should be half s.Add(n1), and half = 128/256. 178 // 179 // When the angle is 45 degrees then 150/256 is the ratio of the lengths of 180 // the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}. 181 // 182 // d is the normalized dot product between s and n1. Since the angle ranges 183 // between 0 and 45 degrees then d ranges between 256/256 and 181/256. 184 d := 256 * pDot(s, n1) / r2 185 multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2 186 p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1)) 187 } 188 189 // midpoint returns the midpoint of two Points. 190 func midpoint(a, b fixed.Point26_6) fixed.Point26_6 { 191 return fixed.Point26_6{(a.X + b.X) / 2, (a.Y + b.Y) / 2} 192 } 193 194 // angleGreaterThan45 returns whether the angle between two vectors is more 195 // than 45 degrees. 196 func angleGreaterThan45(v0, v1 fixed.Point26_6) bool { 197 v := pRot45CCW(v0) 198 return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0 199 } 200 201 // interpolate returns the point (1-t)*a + t*b. 202 func interpolate(a, b fixed.Point26_6, t fixed.Int52_12) fixed.Point26_6 { 203 s := 1<<12 - t 204 x := s*fixed.Int52_12(a.X) + t*fixed.Int52_12(b.X) 205 y := s*fixed.Int52_12(a.Y) + t*fixed.Int52_12(b.Y) 206 return fixed.Point26_6{fixed.Int26_6(x >> 12), fixed.Int26_6(y >> 12)} 207 } 208 209 // curviest2 returns the value of t for which the quadratic parametric curve 210 // (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature. 211 // 212 // The curvature of the parametric curve f(t) = (x(t), y(t)) is 213 // |x′y″-y′x″| / (x′²+y′²)^(3/2). 214 // 215 // Let d = b-a and e = c-2*b+a, so that f′(t) = 2*d+2*e*t and f″(t) = 2*e. 216 // The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex), 217 // which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t. 218 // 219 // Thus, curvature is extreme where the denominator is extreme, i.e. where 220 // (x′²+y′²) is extreme. The first order condition is that 221 // 2*x′*x″+2*y′*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0. 222 // Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey). 223 func curviest2(a, b, c fixed.Point26_6) fixed.Int52_12 { 224 dx := int64(b.X - a.X) 225 dy := int64(b.Y - a.Y) 226 ex := int64(c.X - 2*b.X + a.X) 227 ey := int64(c.Y - 2*b.Y + a.Y) 228 if ex == 0 && ey == 0 { 229 return 2048 230 } 231 return fixed.Int52_12(-4096 * (dx*ex + dy*ey) / (ex*ex + ey*ey)) 232 } 233 234 // A stroker holds state for stroking a path. 235 type stroker struct { 236 // p is the destination that records the stroked path. 237 p Adder 238 // u is the half-width of the stroke. 239 u fixed.Int26_6 240 // cr and jr specify how to end and connect path segments. 241 cr Capper 242 jr Joiner 243 // r is the reverse path. Stroking a path involves constructing two 244 // parallel paths 2*u apart. The first path is added immediately to p, 245 // the second path is accumulated in r and eventually added in reverse. 246 r Path 247 // a is the most recent segment point. anorm is the segment normal of 248 // length u at that point. 249 a, anorm fixed.Point26_6 250 } 251 252 // addNonCurvy2 adds a quadratic segment to the stroker, where the segment 253 // defined by (k.a, b, c) achieves maximum curvature at either k.a or c. 254 func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) { 255 // We repeatedly divide the segment at its middle until it is straight 256 // enough to approximate the stroke by just translating the control points. 257 // ds and ps are stacks of depths and points. t is the top of the stack. 258 const maxDepth = 5 259 var ( 260 ds [maxDepth + 1]int 261 ps [2*maxDepth + 3]fixed.Point26_6 262 t int 263 ) 264 // Initially the ps stack has one quadratic segment of depth zero. 265 ds[0] = 0 266 ps[2] = k.a 267 ps[1] = b 268 ps[0] = c 269 anorm := k.anorm 270 var cnorm fixed.Point26_6 271 272 for { 273 depth := ds[t] 274 a := ps[2*t+2] 275 b := ps[2*t+1] 276 c := ps[2*t+0] 277 ab := b.Sub(a) 278 bc := c.Sub(b) 279 abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12) 280 bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12) 281 if abIsSmall && bcIsSmall { 282 // Approximate the segment by a circular arc. 283 cnorm = pRot90CCW(pNorm(bc, k.u)) 284 mac := midpoint(a, c) 285 addArc(k.p, mac, anorm, cnorm) 286 addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm)) 287 } else if depth < maxDepth && angleGreaterThan45(ab, bc) { 288 // Divide the segment in two and push both halves on the stack. 289 mab := midpoint(a, b) 290 mbc := midpoint(b, c) 291 t++ 292 ds[t+0] = depth + 1 293 ds[t-1] = depth + 1 294 ps[2*t+2] = a 295 ps[2*t+1] = mab 296 ps[2*t+0] = midpoint(mab, mbc) 297 ps[2*t-1] = mbc 298 continue 299 } else { 300 // Translate the control points. 301 bnorm := pRot90CCW(pNorm(c.Sub(a), k.u)) 302 cnorm = pRot90CCW(pNorm(bc, k.u)) 303 k.p.Add2(b.Add(bnorm), c.Add(cnorm)) 304 k.r.Add2(b.Sub(bnorm), c.Sub(cnorm)) 305 } 306 if t == 0 { 307 k.a, k.anorm = c, cnorm 308 return 309 } 310 t-- 311 anorm = cnorm 312 } 313 panic("unreachable") 314 } 315 316 // Add1 adds a linear segment to the stroker. 317 func (k *stroker) Add1(b fixed.Point26_6) { 318 bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u)) 319 if len(k.r) == 0 { 320 k.p.Start(k.a.Add(bnorm)) 321 k.r.Start(k.a.Sub(bnorm)) 322 } else { 323 k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm) 324 } 325 k.p.Add1(b.Add(bnorm)) 326 k.r.Add1(b.Sub(bnorm)) 327 k.a, k.anorm = b, bnorm 328 } 329 330 // Add2 adds a quadratic segment to the stroker. 331 func (k *stroker) Add2(b, c fixed.Point26_6) { 332 ab := b.Sub(k.a) 333 bc := c.Sub(b) 334 abnorm := pRot90CCW(pNorm(ab, k.u)) 335 if len(k.r) == 0 { 336 k.p.Start(k.a.Add(abnorm)) 337 k.r.Start(k.a.Sub(abnorm)) 338 } else { 339 k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm) 340 } 341 342 // Approximate nearly-degenerate quadratics by linear segments. 343 abIsSmall := pDot(ab, ab) < epsilon 344 bcIsSmall := pDot(bc, bc) < epsilon 345 if abIsSmall || bcIsSmall { 346 acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u)) 347 k.p.Add1(c.Add(acnorm)) 348 k.r.Add1(c.Sub(acnorm)) 349 k.a, k.anorm = c, acnorm 350 return 351 } 352 353 // The quadratic segment (k.a, b, c) has a point of maximum curvature. 354 // If this occurs at an end point, we process the segment as a whole. 355 t := curviest2(k.a, b, c) 356 if t <= 0 || 4096 <= t { 357 k.addNonCurvy2(b, c) 358 return 359 } 360 361 // Otherwise, we perform a de Casteljau decomposition at the point of 362 // maximum curvature and process the two straighter parts. 363 mab := interpolate(k.a, b, t) 364 mbc := interpolate(b, c, t) 365 mabc := interpolate(mab, mbc, t) 366 367 // If the vectors ab and bc are close to being in opposite directions, 368 // then the decomposition can become unstable, so we approximate the 369 // quadratic segment by two linear segments joined by an arc. 370 bcnorm := pRot90CCW(pNorm(bc, k.u)) 371 if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 { 372 pArc := pDot(abnorm, bc) < 0 373 374 k.p.Add1(mabc.Add(abnorm)) 375 if pArc { 376 z := pRot90CW(abnorm) 377 addArc(k.p, mabc, abnorm, z) 378 addArc(k.p, mabc, z, bcnorm) 379 } 380 k.p.Add1(mabc.Add(bcnorm)) 381 k.p.Add1(c.Add(bcnorm)) 382 383 k.r.Add1(mabc.Sub(abnorm)) 384 if !pArc { 385 z := pRot90CW(abnorm) 386 addArc(&k.r, mabc, pNeg(abnorm), z) 387 addArc(&k.r, mabc, z, pNeg(bcnorm)) 388 } 389 k.r.Add1(mabc.Sub(bcnorm)) 390 k.r.Add1(c.Sub(bcnorm)) 391 392 k.a, k.anorm = c, bcnorm 393 return 394 } 395 396 // Process the decomposed parts. 397 k.addNonCurvy2(mab, mabc) 398 k.addNonCurvy2(mbc, c) 399 } 400 401 // Add3 adds a cubic segment to the stroker. 402 func (k *stroker) Add3(b, c, d fixed.Point26_6) { 403 panic("freetype/raster: stroke unimplemented for cubic segments") 404 } 405 406 // stroke adds the stroked Path q to p, where q consists of exactly one curve. 407 func (k *stroker) stroke(q Path) { 408 // Stroking is implemented by deriving two paths each k.u apart from q. 409 // The left-hand-side path is added immediately to k.p; the right-hand-side 410 // path is accumulated in k.r. Once we've finished adding the LHS to k.p, 411 // we add the RHS in reverse order. 412 k.r = make(Path, 0, len(q)) 413 k.a = fixed.Point26_6{q[1], q[2]} 414 for i := 4; i < len(q); { 415 switch q[i] { 416 case 1: 417 k.Add1( 418 fixed.Point26_6{q[i+1], q[i+2]}, 419 ) 420 i += 4 421 case 2: 422 k.Add2( 423 fixed.Point26_6{q[i+1], q[i+2]}, 424 fixed.Point26_6{q[i+3], q[i+4]}, 425 ) 426 i += 6 427 case 3: 428 k.Add3( 429 fixed.Point26_6{q[i+1], q[i+2]}, 430 fixed.Point26_6{q[i+3], q[i+4]}, 431 fixed.Point26_6{q[i+5], q[i+6]}, 432 ) 433 i += 8 434 default: 435 panic("freetype/raster: bad path") 436 } 437 } 438 if len(k.r) == 0 { 439 return 440 } 441 // TODO(nigeltao): if q is a closed curve then we should join the first and 442 // last segments instead of capping them. 443 k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm)) 444 addPathReversed(k.p, k.r) 445 pivot := q.firstPoint() 446 k.cr.Cap(k.p, k.u, pivot, pivot.Sub(fixed.Point26_6{k.r[1], k.r[2]})) 447 } 448 449 // Stroke adds q stroked with the given width to p. The result is typically 450 // self-intersecting and should be rasterized with UseNonZeroWinding. 451 // cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner. 452 func Stroke(p Adder, q Path, width fixed.Int26_6, cr Capper, jr Joiner) { 453 if len(q) == 0 { 454 return 455 } 456 if cr == nil { 457 cr = RoundCapper 458 } 459 if jr == nil { 460 jr = RoundJoiner 461 } 462 if q[0] != 0 { 463 panic("freetype/raster: bad path") 464 } 465 s := stroker{p: p, u: width / 2, cr: cr, jr: jr} 466 i := 0 467 for j := 4; j < len(q); { 468 switch q[j] { 469 case 0: 470 s.stroke(q[i:j]) 471 i, j = j, j+4 472 case 1: 473 j += 4 474 case 2: 475 j += 6 476 case 3: 477 j += 8 478 default: 479 panic("freetype/raster: bad path") 480 } 481 } 482 s.stroke(q[i:]) 483 }