github.com/insionng/yougam@v0.0.0-20170714101924-2bc18d833463/libraries/golang/snappy/encode.go (about)

     1  // Copyright 2011 The Snappy-Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package snappy
     6  
     7  import (
     8  	"encoding/binary"
     9  	"errors"
    10  	"io"
    11  )
    12  
    13  // maxOffset limits how far copy back-references can go, the same as the C++
    14  // code.
    15  const maxOffset = 1 << 15
    16  
    17  func load32(b []byte, i int) uint32 {
    18  	b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
    19  	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
    20  }
    21  
    22  func load64(b []byte, i int) uint64 {
    23  	b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
    24  	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
    25  		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
    26  }
    27  
    28  // emitLiteral writes a literal chunk and returns the number of bytes written.
    29  func emitLiteral(dst, lit []byte) int {
    30  	i, n := 0, uint(len(lit)-1)
    31  	switch {
    32  	case n < 60:
    33  		dst[0] = uint8(n)<<2 | tagLiteral
    34  		i = 1
    35  	case n < 1<<8:
    36  		dst[0] = 60<<2 | tagLiteral
    37  		dst[1] = uint8(n)
    38  		i = 2
    39  	case n < 1<<16:
    40  		dst[0] = 61<<2 | tagLiteral
    41  		dst[1] = uint8(n)
    42  		dst[2] = uint8(n >> 8)
    43  		i = 3
    44  	case n < 1<<24:
    45  		dst[0] = 62<<2 | tagLiteral
    46  		dst[1] = uint8(n)
    47  		dst[2] = uint8(n >> 8)
    48  		dst[3] = uint8(n >> 16)
    49  		i = 4
    50  	case int64(n) < 1<<32:
    51  		dst[0] = 63<<2 | tagLiteral
    52  		dst[1] = uint8(n)
    53  		dst[2] = uint8(n >> 8)
    54  		dst[3] = uint8(n >> 16)
    55  		dst[4] = uint8(n >> 24)
    56  		i = 5
    57  	default:
    58  		panic("snappy: source buffer is too long")
    59  	}
    60  	if copy(dst[i:], lit) != len(lit) {
    61  		panic("snappy: destination buffer is too short")
    62  	}
    63  	return i + len(lit)
    64  }
    65  
    66  // emitCopy writes a copy chunk and returns the number of bytes written.
    67  func emitCopy(dst []byte, offset, length int) int {
    68  	i := 0
    69  	// The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
    70  	// threshold for this loop is a little higher (at 68 = 64 + 4), and the
    71  	// length emitted down below is is a little lower (at 60 = 64 - 4), because
    72  	// it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
    73  	// by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
    74  	// a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
    75  	// 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
    76  	// tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
    77  	// encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
    78  	for length >= 68 {
    79  		// Emit a length 64 copy, encoded as 3 bytes.
    80  		dst[i+0] = 63<<2 | tagCopy2
    81  		dst[i+1] = uint8(offset)
    82  		dst[i+2] = uint8(offset >> 8)
    83  		i += 3
    84  		length -= 64
    85  	}
    86  	if length > 64 {
    87  		// Emit a length 60 copy, encoded as 3 bytes.
    88  		dst[i+0] = 59<<2 | tagCopy2
    89  		dst[i+1] = uint8(offset)
    90  		dst[i+2] = uint8(offset >> 8)
    91  		i += 3
    92  		length -= 60
    93  	}
    94  	if length >= 12 || offset >= 2048 {
    95  		// Emit the remaining copy, encoded as 3 bytes.
    96  		dst[i+0] = uint8(length-1)<<2 | tagCopy2
    97  		dst[i+1] = uint8(offset)
    98  		dst[i+2] = uint8(offset >> 8)
    99  		return i + 3
   100  	}
   101  	// Emit the remaining copy, encoded as 2 bytes.
   102  	dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
   103  	dst[i+1] = uint8(offset)
   104  	return i + 2
   105  }
   106  
   107  // Encode returns the encoded form of src. The returned slice may be a sub-
   108  // slice of dst if dst was large enough to hold the entire encoded block.
   109  // Otherwise, a newly allocated slice will be returned.
   110  //
   111  // It is valid to pass a nil dst.
   112  func Encode(dst, src []byte) []byte {
   113  	if n := MaxEncodedLen(len(src)); n < 0 {
   114  		panic(ErrTooLarge)
   115  	} else if len(dst) < n {
   116  		dst = make([]byte, n)
   117  	}
   118  
   119  	// The block starts with the varint-encoded length of the decompressed bytes.
   120  	d := binary.PutUvarint(dst, uint64(len(src)))
   121  
   122  	for len(src) > 0 {
   123  		p := src
   124  		src = nil
   125  		if len(p) > maxBlockSize {
   126  			p, src = p[:maxBlockSize], p[maxBlockSize:]
   127  		}
   128  		if len(p) < minNonLiteralBlockSize {
   129  			d += emitLiteral(dst[d:], p)
   130  		} else {
   131  			d += encodeBlock(dst[d:], p)
   132  		}
   133  	}
   134  	return dst[:d]
   135  }
   136  
   137  // inputMargin is the minimum number of extra input bytes to keep, inside
   138  // encodeBlock's inner loop. On some architectures, this margin lets us
   139  // implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
   140  // literals can be implemented as a single load to and store from a 16-byte
   141  // register. That literal's actual length can be as short as 1 byte, so this
   142  // can copy up to 15 bytes too much, but that's OK as subsequent iterations of
   143  // the encoding loop will fix up the copy overrun, and this inputMargin ensures
   144  // that we don't overrun the dst and src buffers.
   145  //
   146  // TODO: implement this fast path.
   147  const inputMargin = 16 - 1
   148  
   149  // minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
   150  // could be encoded with a copy tag. This is the minimum with respect to the
   151  // algorithm used by encodeBlock, not a minimum enforced by the file format.
   152  //
   153  // The encoded output must start with at least a 1 byte literal, as there are
   154  // no previous bytes to copy. A minimal (1 byte) copy after that, generated
   155  // from an emitCopy call in encodeBlock's main loop, would require at least
   156  // another inputMargin bytes, for the reason above: we want any emitLiteral
   157  // calls inside encodeBlock's main loop to use the fast path if possible, which
   158  // requires being able to overrun by inputMargin bytes. Thus,
   159  // minNonLiteralBlockSize equals 1 + 1 + inputMargin.
   160  //
   161  // The C++ code doesn't use this exact threshold, but it could, as discussed at
   162  // https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
   163  // The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
   164  // optimization. It should not affect the encoded form. This is tested by
   165  // TestSameEncodingAsCppShortCopies.
   166  const minNonLiteralBlockSize = 1 + 1 + inputMargin
   167  
   168  func hash(u, shift uint32) uint32 {
   169  	return (u * 0x1e35a7bd) >> shift
   170  }
   171  
   172  // encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
   173  // assumes that the varint-encoded length of the decompressed bytes has already
   174  // been written.
   175  //
   176  // It also assumes that:
   177  //	len(dst) >= MaxEncodedLen(len(src)) &&
   178  // 	minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
   179  func encodeBlock(dst, src []byte) (d int) {
   180  	// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
   181  	// The table element type is uint16, as s < sLimit and sLimit < len(src)
   182  	// and len(src) <= maxBlockSize and maxBlockSize == 65536.
   183  	const (
   184  		maxTableSize = 1 << 14
   185  		// tableMask is redundant, but helps the compiler eliminate bounds
   186  		// checks.
   187  		tableMask = maxTableSize - 1
   188  	)
   189  	shift, tableSize := uint32(32-8), 1<<8
   190  	for tableSize < maxTableSize && tableSize < len(src) {
   191  		shift--
   192  		tableSize *= 2
   193  	}
   194  	var table [maxTableSize]uint16
   195  
   196  	// sLimit is when to stop looking for offset/length copies. The inputMargin
   197  	// lets us use a fast path for emitLiteral in the main loop, while we are
   198  	// looking for copies.
   199  	sLimit := len(src) - inputMargin
   200  
   201  	// nextEmit is where in src the next emitLiteral should start from.
   202  	nextEmit := 0
   203  
   204  	// The encoded form must start with a literal, as there are no previous
   205  	// bytes to copy, so we start looking for hash matches at s == 1.
   206  	s := 1
   207  	nextHash := hash(load32(src, s), shift)
   208  
   209  	for {
   210  		// Copied from the C++ snappy implementation:
   211  		//
   212  		// Heuristic match skipping: If 32 bytes are scanned with no matches
   213  		// found, start looking only at every other byte. If 32 more bytes are
   214  		// scanned (or skipped), look at every third byte, etc.. When a match
   215  		// is found, immediately go back to looking at every byte. This is a
   216  		// small loss (~5% performance, ~0.1% density) for compressible data
   217  		// due to more bookkeeping, but for non-compressible data (such as
   218  		// JPEG) it's a huge win since the compressor quickly "realizes" the
   219  		// data is incompressible and doesn't bother looking for matches
   220  		// everywhere.
   221  		//
   222  		// The "skip" variable keeps track of how many bytes there are since
   223  		// the last match; dividing it by 32 (ie. right-shifting by five) gives
   224  		// the number of bytes to move ahead for each iteration.
   225  		skip := 32
   226  
   227  		nextS := s
   228  		candidate := 0
   229  		for {
   230  			s = nextS
   231  			bytesBetweenHashLookups := skip >> 5
   232  			nextS = s + bytesBetweenHashLookups
   233  			skip += bytesBetweenHashLookups
   234  			if nextS > sLimit {
   235  				goto emitRemainder
   236  			}
   237  			candidate = int(table[nextHash&tableMask])
   238  			table[nextHash&tableMask] = uint16(s)
   239  			nextHash = hash(load32(src, nextS), shift)
   240  			if load32(src, s) == load32(src, candidate) {
   241  				break
   242  			}
   243  		}
   244  
   245  		// A 4-byte match has been found. We'll later see if more than 4 bytes
   246  		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
   247  		// them as literal bytes.
   248  		d += emitLiteral(dst[d:], src[nextEmit:s])
   249  
   250  		// Call emitCopy, and then see if another emitCopy could be our next
   251  		// move. Repeat until we find no match for the input immediately after
   252  		// what was consumed by the last emitCopy call.
   253  		//
   254  		// If we exit this loop normally then we need to call emitLiteral next,
   255  		// though we don't yet know how big the literal will be. We handle that
   256  		// by proceeding to the next iteration of the main loop. We also can
   257  		// exit this loop via goto if we get close to exhausting the input.
   258  		for {
   259  			// Invariant: we have a 4-byte match at s, and no need to emit any
   260  			// literal bytes prior to s.
   261  			base := s
   262  			s += 4
   263  			for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
   264  			}
   265  			d += emitCopy(dst[d:], base-candidate, s-base)
   266  			nextEmit = s
   267  			if s >= sLimit {
   268  				goto emitRemainder
   269  			}
   270  
   271  			// We could immediately start working at s now, but to improve
   272  			// compression we first update the hash table at s-1 and at s. If
   273  			// another emitCopy is not our next move, also calculate nextHash
   274  			// at s+1. At least on GOARCH=amd64, these three hash calculations
   275  			// are faster as one load64 call (with some shifts) instead of
   276  			// three load32 calls.
   277  			x := load64(src, s-1)
   278  			prevHash := hash(uint32(x>>0), shift)
   279  			table[prevHash&tableMask] = uint16(s - 1)
   280  			currHash := hash(uint32(x>>8), shift)
   281  			candidate = int(table[currHash&tableMask])
   282  			table[currHash&tableMask] = uint16(s)
   283  			if uint32(x>>8) != load32(src, candidate) {
   284  				nextHash = hash(uint32(x>>16), shift)
   285  				s++
   286  				break
   287  			}
   288  		}
   289  	}
   290  
   291  emitRemainder:
   292  	if nextEmit < len(src) {
   293  		d += emitLiteral(dst[d:], src[nextEmit:])
   294  	}
   295  	return d
   296  }
   297  
   298  // MaxEncodedLen returns the maximum length of a snappy block, given its
   299  // uncompressed length.
   300  //
   301  // It will return a negative value if srcLen is too large to encode.
   302  func MaxEncodedLen(srcLen int) int {
   303  	n := uint64(srcLen)
   304  	if n > 0xffffffff {
   305  		return -1
   306  	}
   307  	// Compressed data can be defined as:
   308  	//    compressed := item* literal*
   309  	//    item       := literal* copy
   310  	//
   311  	// The trailing literal sequence has a space blowup of at most 62/60
   312  	// since a literal of length 60 needs one tag byte + one extra byte
   313  	// for length information.
   314  	//
   315  	// Item blowup is trickier to measure. Suppose the "copy" op copies
   316  	// 4 bytes of data. Because of a special check in the encoding code,
   317  	// we produce a 4-byte copy only if the offset is < 65536. Therefore
   318  	// the copy op takes 3 bytes to encode, and this type of item leads
   319  	// to at most the 62/60 blowup for representing literals.
   320  	//
   321  	// Suppose the "copy" op copies 5 bytes of data. If the offset is big
   322  	// enough, it will take 5 bytes to encode the copy op. Therefore the
   323  	// worst case here is a one-byte literal followed by a five-byte copy.
   324  	// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
   325  	//
   326  	// This last factor dominates the blowup, so the final estimate is:
   327  	n = 32 + n + n/6
   328  	if n > 0xffffffff {
   329  		return -1
   330  	}
   331  	return int(n)
   332  }
   333  
   334  var errClosed = errors.New("snappy: Writer is closed")
   335  
   336  // NewWriter returns a new Writer that compresses to w.
   337  //
   338  // The Writer returned does not buffer writes. There is no need to Flush or
   339  // Close such a Writer.
   340  //
   341  // Deprecated: the Writer returned is not suitable for many small writes, only
   342  // for few large writes. Use NewBufferedWriter instead, which is efficient
   343  // regardless of the frequency and shape of the writes, and remember to Close
   344  // that Writer when done.
   345  func NewWriter(w io.Writer) *Writer {
   346  	return &Writer{
   347  		w:    w,
   348  		obuf: make([]byte, obufLen),
   349  	}
   350  }
   351  
   352  // NewBufferedWriter returns a new Writer that compresses to w, using the
   353  // framing format described at
   354  // https://yougam/libraries/google/snappy/blob/master/framing_format.txt
   355  //
   356  // The Writer returned buffers writes. Users must call Close to guarantee all
   357  // data has been forwarded to the underlying io.Writer. They may also call
   358  // Flush zero or more times before calling Close.
   359  func NewBufferedWriter(w io.Writer) *Writer {
   360  	return &Writer{
   361  		w:    w,
   362  		ibuf: make([]byte, 0, maxBlockSize),
   363  		obuf: make([]byte, obufLen),
   364  	}
   365  }
   366  
   367  // Writer is an io.Writer than can write Snappy-compressed bytes.
   368  type Writer struct {
   369  	w   io.Writer
   370  	err error
   371  
   372  	// ibuf is a buffer for the incoming (uncompressed) bytes.
   373  	//
   374  	// Its use is optional. For backwards compatibility, Writers created by the
   375  	// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
   376  	// therefore do not need to be Flush'ed or Close'd.
   377  	ibuf []byte
   378  
   379  	// obuf is a buffer for the outgoing (compressed) bytes.
   380  	obuf []byte
   381  
   382  	// wroteStreamHeader is whether we have written the stream header.
   383  	wroteStreamHeader bool
   384  }
   385  
   386  // Reset discards the writer's state and switches the Snappy writer to write to
   387  // w. This permits reusing a Writer rather than allocating a new one.
   388  func (w *Writer) Reset(writer io.Writer) {
   389  	w.w = writer
   390  	w.err = nil
   391  	if w.ibuf != nil {
   392  		w.ibuf = w.ibuf[:0]
   393  	}
   394  	w.wroteStreamHeader = false
   395  }
   396  
   397  // Write satisfies the io.Writer interface.
   398  func (w *Writer) Write(p []byte) (nRet int, errRet error) {
   399  	if w.ibuf == nil {
   400  		// Do not buffer incoming bytes. This does not perform or compress well
   401  		// if the caller of Writer.Write writes many small slices. This
   402  		// behavior is therefore deprecated, but still supported for backwards
   403  		// compatibility with code that doesn't explicitly Flush or Close.
   404  		return w.write(p)
   405  	}
   406  
   407  	// The remainder of this method is based on bufio.Writer.Write from the
   408  	// standard library.
   409  
   410  	for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
   411  		var n int
   412  		if len(w.ibuf) == 0 {
   413  			// Large write, empty buffer.
   414  			// Write directly from p to avoid copy.
   415  			n, _ = w.write(p)
   416  		} else {
   417  			n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
   418  			w.ibuf = w.ibuf[:len(w.ibuf)+n]
   419  			w.Flush()
   420  		}
   421  		nRet += n
   422  		p = p[n:]
   423  	}
   424  	if w.err != nil {
   425  		return nRet, w.err
   426  	}
   427  	n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
   428  	w.ibuf = w.ibuf[:len(w.ibuf)+n]
   429  	nRet += n
   430  	return nRet, nil
   431  }
   432  
   433  func (w *Writer) write(p []byte) (nRet int, errRet error) {
   434  	if w.err != nil {
   435  		return 0, w.err
   436  	}
   437  	for len(p) > 0 {
   438  		obufStart := len(magicChunk)
   439  		if !w.wroteStreamHeader {
   440  			w.wroteStreamHeader = true
   441  			copy(w.obuf, magicChunk)
   442  			obufStart = 0
   443  		}
   444  
   445  		var uncompressed []byte
   446  		if len(p) > maxBlockSize {
   447  			uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
   448  		} else {
   449  			uncompressed, p = p, nil
   450  		}
   451  		checksum := crc(uncompressed)
   452  
   453  		// Compress the buffer, discarding the result if the improvement
   454  		// isn't at least 12.5%.
   455  		compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
   456  		chunkType := uint8(chunkTypeCompressedData)
   457  		chunkLen := 4 + len(compressed)
   458  		obufEnd := obufHeaderLen + len(compressed)
   459  		if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
   460  			chunkType = chunkTypeUncompressedData
   461  			chunkLen = 4 + len(uncompressed)
   462  			obufEnd = obufHeaderLen
   463  		}
   464  
   465  		// Fill in the per-chunk header that comes before the body.
   466  		w.obuf[len(magicChunk)+0] = chunkType
   467  		w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
   468  		w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
   469  		w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
   470  		w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
   471  		w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
   472  		w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
   473  		w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
   474  
   475  		if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
   476  			w.err = err
   477  			return nRet, err
   478  		}
   479  		if chunkType == chunkTypeUncompressedData {
   480  			if _, err := w.w.Write(uncompressed); err != nil {
   481  				w.err = err
   482  				return nRet, err
   483  			}
   484  		}
   485  		nRet += len(uncompressed)
   486  	}
   487  	return nRet, nil
   488  }
   489  
   490  // Flush flushes the Writer to its underlying io.Writer.
   491  func (w *Writer) Flush() error {
   492  	if w.err != nil {
   493  		return w.err
   494  	}
   495  	if len(w.ibuf) == 0 {
   496  		return nil
   497  	}
   498  	w.write(w.ibuf)
   499  	w.ibuf = w.ibuf[:0]
   500  	return w.err
   501  }
   502  
   503  // Close calls Flush and then closes the Writer.
   504  func (w *Writer) Close() error {
   505  	w.Flush()
   506  	ret := w.err
   507  	if w.err == nil {
   508  		w.err = errClosed
   509  	}
   510  	return ret
   511  }