github.com/insionng/yougam@v0.0.0-20170714101924-2bc18d833463/libraries/klauspost/compress/flate/huffman_code.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package flate
     6  
     7  import (
     8  	"math"
     9  	"sort"
    10  )
    11  
    12  type hcode uint32
    13  
    14  type huffmanEncoder struct {
    15  	codes     []hcode
    16  	freqcache []literalNode
    17  	bitCount  [17]int32
    18  	lns       literalNodeSorter
    19  	lfs       literalFreqSorter
    20  }
    21  
    22  type literalNode struct {
    23  	literal uint16
    24  	freq    int32
    25  }
    26  
    27  // A levelInfo describes the state of the constructed tree for a given depth.
    28  type levelInfo struct {
    29  	// Our level.  for better printing
    30  	level int32
    31  
    32  	// The frequency of the last node at this level
    33  	lastFreq int32
    34  
    35  	// The frequency of the next character to add to this level
    36  	nextCharFreq int32
    37  
    38  	// The frequency of the next pair (from level below) to add to this level.
    39  	// Only valid if the "needed" value of the next lower level is 0.
    40  	nextPairFreq int32
    41  
    42  	// The number of chains remaining to generate for this level before moving
    43  	// up to the next level
    44  	needed int32
    45  }
    46  
    47  func (h hcode) codeBits() (code uint16, bits uint8) {
    48  	return uint16(h), uint8(h >> 16)
    49  }
    50  
    51  func (h *hcode) set(code uint16, bits uint8) {
    52  	*h = hcode(code) | hcode(uint32(bits)<<16)
    53  }
    54  
    55  func (h *hcode) setBits(bits uint8) {
    56  	*h = hcode(*h&0xffff) | hcode(uint32(bits)<<16)
    57  }
    58  
    59  func toCode(code uint16, bits uint8) hcode {
    60  	return hcode(code) | hcode(uint32(bits)<<16)
    61  }
    62  
    63  func (h hcode) code() (code uint16) {
    64  	return uint16(h)
    65  }
    66  
    67  func (h hcode) bits() (bits uint) {
    68  	return uint(h >> 16)
    69  }
    70  
    71  func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
    72  
    73  func newHuffmanEncoder(size int) *huffmanEncoder {
    74  	return &huffmanEncoder{codes: make([]hcode, size), freqcache: nil}
    75  }
    76  
    77  // Generates a HuffmanCode corresponding to the fixed literal table
    78  func generateFixedLiteralEncoding() *huffmanEncoder {
    79  	h := newHuffmanEncoder(maxNumLit)
    80  	codes := h.codes
    81  	var ch uint16
    82  	for ch = 0; ch < maxNumLit; ch++ {
    83  		var bits uint16
    84  		var size uint8
    85  		switch {
    86  		case ch < 144:
    87  			// size 8, 000110000  .. 10111111
    88  			bits = ch + 48
    89  			size = 8
    90  			break
    91  		case ch < 256:
    92  			// size 9, 110010000 .. 111111111
    93  			bits = ch + 400 - 144
    94  			size = 9
    95  			break
    96  		case ch < 280:
    97  			// size 7, 0000000 .. 0010111
    98  			bits = ch - 256
    99  			size = 7
   100  			break
   101  		default:
   102  			// size 8, 11000000 .. 11000111
   103  			bits = ch + 192 - 280
   104  			size = 8
   105  		}
   106  		codes[ch] = toCode(reverseBits(bits, size), size)
   107  	}
   108  	return h
   109  }
   110  
   111  func generateFixedOffsetEncoding() *huffmanEncoder {
   112  	h := newHuffmanEncoder(30)
   113  	codes := h.codes
   114  	for ch := uint16(0); ch < 30; ch++ {
   115  		codes[ch] = toCode(reverseBits(ch, 5), 5)
   116  	}
   117  	return h
   118  }
   119  
   120  var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
   121  var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
   122  
   123  func (h *huffmanEncoder) bitLength(freq []int32) int64 {
   124  	var total int64
   125  	for i, f := range freq {
   126  		if f != 0 {
   127  			total += int64(f) * int64(h.codes[i].bits())
   128  		}
   129  	}
   130  	return total
   131  }
   132  
   133  const maxBitsLimit = 16
   134  
   135  // Return the number of literals assigned to each bit size in the Huffman encoding
   136  //
   137  // This method is only called when list.length >= 3
   138  // The cases of 0, 1, and 2 literals are handled by special case code.
   139  //
   140  // list  An array of the literals with non-zero frequencies
   141  //             and their associated frequencies.  The array is in order of increasing
   142  //             frequency, and has as its last element a special element with frequency
   143  //             MaxInt32
   144  // maxBits     The maximum number of bits that should be used to encode any literal.
   145  //             Must be less than 16.
   146  // return      An integer array in which array[i] indicates the number of literals
   147  //             that should be encoded in i bits.
   148  func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
   149  	if maxBits >= maxBitsLimit {
   150  		panic("flate: maxBits too large")
   151  	}
   152  	n := int32(len(list))
   153  	list = list[0 : n+1]
   154  	list[n] = maxNode()
   155  
   156  	// The tree can't have greater depth than n - 1, no matter what.  This
   157  	// saves a little bit of work in some small cases
   158  	if maxBits > n-1 {
   159  		maxBits = n - 1
   160  	}
   161  
   162  	// Create information about each of the levels.
   163  	// A bogus "Level 0" whose sole purpose is so that
   164  	// level1.prev.needed==0.  This makes level1.nextPairFreq
   165  	// be a legitimate value that never gets chosen.
   166  	var levels [maxBitsLimit]levelInfo
   167  	// leafCounts[i] counts the number of literals at the left
   168  	// of ancestors of the rightmost node at level i.
   169  	// leafCounts[i][j] is the number of literals at the left
   170  	// of the level j ancestor.
   171  	var leafCounts [maxBitsLimit][maxBitsLimit]int32
   172  
   173  	for level := int32(1); level <= maxBits; level++ {
   174  		// For every level, the first two items are the first two characters.
   175  		// We initialize the levels as if we had already figured this out.
   176  		levels[level] = levelInfo{
   177  			level:        level,
   178  			lastFreq:     list[1].freq,
   179  			nextCharFreq: list[2].freq,
   180  			nextPairFreq: list[0].freq + list[1].freq,
   181  		}
   182  		leafCounts[level][level] = 2
   183  		if level == 1 {
   184  			levels[level].nextPairFreq = math.MaxInt32
   185  		}
   186  	}
   187  
   188  	// We need a total of 2*n - 2 items at top level and have already generated 2.
   189  	levels[maxBits].needed = 2*n - 4
   190  
   191  	level := maxBits
   192  	for {
   193  		l := &levels[level]
   194  		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
   195  			// We've run out of both leafs and pairs.
   196  			// End all calculations for this level.
   197  			// To make sure we never come back to this level or any lower level,
   198  			// set nextPairFreq impossibly large.
   199  			l.needed = 0
   200  			levels[level+1].nextPairFreq = math.MaxInt32
   201  			level++
   202  			continue
   203  		}
   204  
   205  		prevFreq := l.lastFreq
   206  		if l.nextCharFreq < l.nextPairFreq {
   207  			// The next item on this row is a leaf node.
   208  			n := leafCounts[level][level] + 1
   209  			l.lastFreq = l.nextCharFreq
   210  			// Lower leafCounts are the same of the previous node.
   211  			leafCounts[level][level] = n
   212  			l.nextCharFreq = list[n].freq
   213  		} else {
   214  			// The next item on this row is a pair from the previous row.
   215  			// nextPairFreq isn't valid until we generate two
   216  			// more values in the level below
   217  			l.lastFreq = l.nextPairFreq
   218  			// Take leaf counts from the lower level, except counts[level] remains the same.
   219  			copy(leafCounts[level][:level], leafCounts[level-1][:level])
   220  			levels[l.level-1].needed = 2
   221  		}
   222  
   223  		if l.needed--; l.needed == 0 {
   224  			// We've done everything we need to do for this level.
   225  			// Continue calculating one level up.  Fill in nextPairFreq
   226  			// of that level with the sum of the two nodes we've just calculated on
   227  			// this level.
   228  			if l.level == maxBits {
   229  				// All done!
   230  				break
   231  			}
   232  			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
   233  			level++
   234  		} else {
   235  			// If we stole from below, move down temporarily to replenish it.
   236  			for levels[level-1].needed > 0 {
   237  				level--
   238  			}
   239  		}
   240  	}
   241  
   242  	// Somethings is wrong if at the end, the top level is null or hasn't used
   243  	// all of the leaves.
   244  	if leafCounts[maxBits][maxBits] != n {
   245  		panic("leafCounts[maxBits][maxBits] != n")
   246  	}
   247  
   248  	bitCount := h.bitCount[:maxBits+1]
   249  	//make([]int32, maxBits+1)
   250  	bits := 1
   251  	counts := &leafCounts[maxBits]
   252  	for level := maxBits; level > 0; level-- {
   253  		// chain.leafCount gives the number of literals requiring at least "bits"
   254  		// bits to encode.
   255  		bitCount[bits] = counts[level] - counts[level-1]
   256  		bits++
   257  	}
   258  	return bitCount
   259  }
   260  
   261  // Look at the leaves and assign them a bit count and an encoding as specified
   262  // in RFC 1951 3.2.2
   263  func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
   264  	code := uint16(0)
   265  	for n, bits := range bitCount {
   266  		code <<= 1
   267  		if n == 0 || bits == 0 {
   268  			continue
   269  		}
   270  		// The literals list[len(list)-bits] .. list[len(list)-bits]
   271  		// are encoded using "bits" bits, and get the values
   272  		// code, code + 1, ....  The code values are
   273  		// assigned in literal order (not frequency order).
   274  		chunk := list[len(list)-int(bits):]
   275  
   276  		h.lns.Sort(chunk)
   277  		for _, node := range chunk {
   278  			h.codes[node.literal] = toCode(reverseBits(code, uint8(n)), uint8(n))
   279  			code++
   280  		}
   281  		list = list[0 : len(list)-int(bits)]
   282  	}
   283  }
   284  
   285  // Update this Huffman Code object to be the minimum code for the specified frequency count.
   286  //
   287  // freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
   288  // maxBits  The maximum number of bits to use for any literal.
   289  func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
   290  	if h.freqcache == nil {
   291  		h.freqcache = make([]literalNode, 300)
   292  	}
   293  	list := h.freqcache[:len(freq)+1]
   294  	// Number of non-zero literals
   295  	count := 0
   296  	// Set list to be the set of all non-zero literals and their frequencies
   297  	for i, f := range freq {
   298  		if f != 0 {
   299  			list[count] = literalNode{uint16(i), f}
   300  			count++
   301  		} else {
   302  			list[count] = literalNode{}
   303  			//h.codeBits[i] = 0
   304  			h.codes[i].setBits(0)
   305  		}
   306  	}
   307  	list[len(freq)] = literalNode{}
   308  	// If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros
   309  	// FIXME: Doesn't do what it says on the tin (klauspost)
   310  	//h.codeBits = h.codeBits[0:len(freq)]
   311  
   312  	list = list[0:count]
   313  	if count <= 2 {
   314  		// Handle the small cases here, because they are awkward for the general case code.  With
   315  		// two or fewer literals, everything has bit length 1.
   316  		for i, node := range list {
   317  			// "list" is in order of increasing literal value.
   318  			h.codes[node.literal].set(uint16(i), 1)
   319  			//h.codeBits[node.literal] = 1
   320  			//h.code[node.literal] = uint16(i)
   321  		}
   322  		return
   323  	}
   324  	h.lfs.Sort(list)
   325  
   326  	// Get the number of literals for each bit count
   327  	bitCount := h.bitCounts(list, maxBits)
   328  	// And do the assignment
   329  	h.assignEncodingAndSize(bitCount, list)
   330  }
   331  
   332  type literalNodeSorter []literalNode
   333  
   334  func (s *literalNodeSorter) Sort(a []literalNode) {
   335  	*s = literalNodeSorter(a)
   336  	sort.Sort(s)
   337  }
   338  
   339  func (s literalNodeSorter) Len() int { return len(s) }
   340  
   341  func (s literalNodeSorter) Less(i, j int) bool {
   342  	return s[i].literal < s[j].literal
   343  }
   344  
   345  func (s literalNodeSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
   346  
   347  type literalFreqSorter []literalNode
   348  
   349  func (s *literalFreqSorter) Sort(a []literalNode) {
   350  	*s = literalFreqSorter(a)
   351  	sort.Sort(s)
   352  }
   353  
   354  func (s literalFreqSorter) Len() int { return len(s) }
   355  
   356  func (s literalFreqSorter) Less(i, j int) bool {
   357  	if s[i].freq == s[j].freq {
   358  		return s[i].literal < s[j].literal
   359  	}
   360  	return s[i].freq < s[j].freq
   361  }
   362  
   363  func (s literalFreqSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] }