github.com/insolar/x-crypto@v0.0.0-20191031140942-75fab8a325f6/ecdsa/ecdsa.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as 6 // defined in FIPS 186-3. 7 // 8 // This implementation derives the nonce from an AES-CTR CSPRNG keyed by 9 // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by 10 // a result of Coron; the AES-CTR stream is IRO under standard assumptions. 11 package ecdsa 12 13 // References: 14 // [NSA]: Suite B implementer's guide to FIPS 186-3, 15 // http://www.nsa.gov/ia/_files/ecdsa.pdf 16 // [SECG]: SECG, SEC1 17 // http://www.secg.org/sec1-v2.pdf 18 19 import ( 20 "crypto/aes" 21 "crypto/cipher" 22 "encoding/asn1" 23 "errors" 24 "github.com/insolar/x-crypto" 25 "github.com/insolar/x-crypto/elliptic" 26 "github.com/insolar/x-crypto/sha512" 27 "io" 28 "math/big" 29 30 "github.com/insolar/x-crypto/internal/randutil" 31 ) 32 33 // A invertible implements fast inverse mod Curve.Params().N 34 type invertible interface { 35 // Inverse returns the inverse of k in GF(P) 36 Inverse(k *big.Int) *big.Int 37 } 38 39 // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point) 40 type combinedMult interface { 41 CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) 42 } 43 44 const ( 45 aesIV = "IV for ECDSA CTR" 46 ) 47 48 // PublicKey represents an ECDSA public key. 49 type PublicKey struct { 50 elliptic.Curve 51 X, Y *big.Int 52 } 53 54 // PrivateKey represents an ECDSA private key. 55 type PrivateKey struct { 56 PublicKey 57 D *big.Int 58 } 59 60 type ecdsaSignature struct { 61 R, S *big.Int 62 } 63 64 // Public returns the public key corresponding to priv. 65 func (priv *PrivateKey) Public() crypto.PublicKey { 66 return &priv.PublicKey 67 } 68 69 // Sign signs digest with priv, reading randomness from rand. The opts argument 70 // is not currently used but, in keeping with the crypto.Signer interface, 71 // should be the hash function used to digest the message. 72 // 73 // This method implements crypto.Signer, which is an interface to support keys 74 // where the private part is kept in, for example, a hardware module. Common 75 // uses should use the Sign function in this package directly. 76 func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { 77 r, s, err := Sign(rand, priv, digest) 78 if err != nil { 79 return nil, err 80 } 81 82 return asn1.Marshal(ecdsaSignature{r, s}) 83 } 84 85 var one = new(big.Int).SetInt64(1) 86 87 // randFieldElement returns a random element of the field underlying the given 88 // curve using the procedure given in [NSA] A.2.1. 89 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { 90 params := c.Params() 91 b := make([]byte, params.BitSize/8+8) 92 _, err = io.ReadFull(rand, b) 93 if err != nil { 94 return 95 } 96 97 k = new(big.Int).SetBytes(b) 98 n := new(big.Int).Sub(params.N, one) 99 k.Mod(k, n) 100 k.Add(k, one) 101 return 102 } 103 104 // GenerateKey generates a public and private key pair. 105 func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { 106 k, err := randFieldElement(c, rand) 107 if err != nil { 108 return nil, err 109 } 110 111 priv := new(PrivateKey) 112 priv.PublicKey.Curve = c 113 priv.D = k 114 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) 115 return priv, nil 116 } 117 118 // hashToInt converts a hash value to an integer. There is some disagreement 119 // about how this is done. [NSA] suggests that this is done in the obvious 120 // manner, but [SECG] truncates the hash to the bit-length of the curve order 121 // first. We follow [SECG] because that's what OpenSSL does. Additionally, 122 // OpenSSL right shifts excess bits from the number if the hash is too large 123 // and we mirror that too. 124 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 125 orderBits := c.Params().N.BitLen() 126 orderBytes := (orderBits + 7) / 8 127 if len(hash) > orderBytes { 128 hash = hash[:orderBytes] 129 } 130 131 ret := new(big.Int).SetBytes(hash) 132 excess := len(hash)*8 - orderBits 133 if excess > 0 { 134 ret.Rsh(ret, uint(excess)) 135 } 136 return ret 137 } 138 139 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. 140 // This has better constant-time properties than Euclid's method (implemented 141 // in math/big.Int.ModInverse) although math/big itself isn't strictly 142 // constant-time so it's not perfect. 143 func fermatInverse(k, N *big.Int) *big.Int { 144 two := big.NewInt(2) 145 nMinus2 := new(big.Int).Sub(N, two) 146 return new(big.Int).Exp(k, nMinus2, N) 147 } 148 149 var errZeroParam = errors.New("zero parameter") 150 151 // Sign signs a hash (which should be the result of hashing a larger message) 152 // using the private key, priv. If the hash is longer than the bit-length of the 153 // private key's curve order, the hash will be truncated to that length. It 154 // returns the signature as a pair of integers. The security of the private key 155 // depends on the entropy of rand. 156 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 157 randutil.MaybeReadByte(rand) 158 159 // Get min(log2(q) / 2, 256) bits of entropy from rand. 160 entropylen := (priv.Curve.Params().BitSize + 7) / 16 161 if entropylen > 32 { 162 entropylen = 32 163 } 164 entropy := make([]byte, entropylen) 165 _, err = io.ReadFull(rand, entropy) 166 if err != nil { 167 return 168 } 169 170 // Initialize an SHA-512 hash context; digest ... 171 md := sha512.New() 172 md.Write(priv.D.Bytes()) // the private key, 173 md.Write(entropy) // the entropy, 174 md.Write(hash) // and the input hash; 175 key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), 176 // which is an indifferentiable MAC. 177 178 // Create an AES-CTR instance to use as a CSPRNG. 179 block, err := aes.NewCipher(key) 180 if err != nil { 181 return nil, nil, err 182 } 183 184 // Create a CSPRNG that xors a stream of zeros with 185 // the output of the AES-CTR instance. 186 csprng := cipher.StreamReader{ 187 R: zeroReader, 188 S: cipher.NewCTR(block, []byte(aesIV)), 189 } 190 191 // See [NSA] 3.4.1 192 c := priv.PublicKey.Curve 193 N := c.Params().N 194 if N.Sign() == 0 { 195 return nil, nil, errZeroParam 196 } 197 var k, kInv *big.Int 198 for { 199 for { 200 k, err = randFieldElement(c, csprng) 201 if err != nil { 202 r = nil 203 return 204 } 205 206 if in, ok := priv.Curve.(invertible); ok { 207 kInv = in.Inverse(k) 208 } else { 209 kInv = fermatInverse(k, N) // N != 0 210 } 211 212 r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) 213 r.Mod(r, N) 214 if r.Sign() != 0 { 215 break 216 } 217 } 218 219 e := hashToInt(hash, c) 220 s = new(big.Int).Mul(priv.D, r) 221 s.Add(s, e) 222 s.Mul(s, kInv) 223 s.Mod(s, N) // N != 0 224 if s.Sign() != 0 { 225 break 226 } 227 } 228 229 return 230 } 231 232 // Verify verifies the signature in r, s of hash using the public key, pub. Its 233 // return value records whether the signature is valid. 234 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 235 // See [NSA] 3.4.2 236 c := pub.Curve 237 N := c.Params().N 238 239 if r.Sign() <= 0 || s.Sign() <= 0 { 240 return false 241 } 242 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { 243 return false 244 } 245 e := hashToInt(hash, c) 246 247 var w *big.Int 248 if in, ok := c.(invertible); ok { 249 w = in.Inverse(s) 250 } else { 251 w = new(big.Int).ModInverse(s, N) 252 } 253 254 u1 := e.Mul(e, w) 255 u1.Mod(u1, N) 256 u2 := w.Mul(r, w) 257 u2.Mod(u2, N) 258 259 // Check if implements S1*g + S2*p 260 var x, y *big.Int 261 if opt, ok := c.(combinedMult); ok { 262 x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) 263 } else { 264 x1, y1 := c.ScalarBaseMult(u1.Bytes()) 265 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) 266 x, y = c.Add(x1, y1, x2, y2) 267 } 268 269 if x.Sign() == 0 && y.Sign() == 0 { 270 return false 271 } 272 x.Mod(x, N) 273 return x.Cmp(r) == 0 274 } 275 276 type zr struct { 277 io.Reader 278 } 279 280 // Read replaces the contents of dst with zeros. 281 func (z *zr) Read(dst []byte) (n int, err error) { 282 for i := range dst { 283 dst[i] = 0 284 } 285 return len(dst), nil 286 } 287 288 var zeroReader = &zr{}