github.com/insolar/x-crypto@v0.0.0-20191031140942-75fab8a325f6/elliptic/p224.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package elliptic 6 7 // This is a constant-time, 32-bit implementation of P224. See FIPS 186-3, 8 // section D.2.2. 9 // 10 // See https://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. 11 12 import ( 13 "math/big" 14 ) 15 16 var p224 p224Curve 17 18 type p224Curve struct { 19 *CurveParams 20 gx, gy, b p224FieldElement 21 } 22 23 func initP224() { 24 // See FIPS 186-3, section D.2.2 25 p224.CurveParams = &CurveParams{Name: "P-224"} 26 p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) 27 p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) 28 p224.A, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffefffffffffffffffffffffffe", 16) 29 p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) 30 p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) 31 p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) 32 p224.BitSize = 224 33 34 p224FromBig(&p224.gx, p224.Gx) 35 p224FromBig(&p224.gy, p224.Gy) 36 p224FromBig(&p224.b, p224.B) 37 } 38 39 // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2). 40 // 41 // The cryptographic operations are implemented using constant-time algorithms. 42 func P224() Curve { 43 initonce.Do(initAll) 44 return p224 45 } 46 47 func (curve p224Curve) Params() *CurveParams { 48 return curve.CurveParams 49 } 50 51 func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool { 52 var x, y p224FieldElement 53 p224FromBig(&x, bigX) 54 p224FromBig(&y, bigY) 55 56 // y² = x³ - 3x + b 57 var tmp p224LargeFieldElement 58 var x3 p224FieldElement 59 p224Square(&x3, &x, &tmp) 60 p224Mul(&x3, &x3, &x, &tmp) 61 62 for i := 0; i < 8; i++ { 63 x[i] *= 3 64 } 65 p224Sub(&x3, &x3, &x) 66 p224Reduce(&x3) 67 p224Add(&x3, &x3, &curve.b) 68 p224Contract(&x3, &x3) 69 70 p224Square(&y, &y, &tmp) 71 p224Contract(&y, &y) 72 73 for i := 0; i < 8; i++ { 74 if y[i] != x3[i] { 75 return false 76 } 77 } 78 return true 79 } 80 81 func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) { 82 var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement 83 84 p224FromBig(&x1, bigX1) 85 p224FromBig(&y1, bigY1) 86 if bigX1.Sign() != 0 || bigY1.Sign() != 0 { 87 z1[0] = 1 88 } 89 p224FromBig(&x2, bigX2) 90 p224FromBig(&y2, bigY2) 91 if bigX2.Sign() != 0 || bigY2.Sign() != 0 { 92 z2[0] = 1 93 } 94 95 p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2) 96 return p224ToAffine(&x3, &y3, &z3) 97 } 98 99 func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) { 100 var x1, y1, z1, x2, y2, z2 p224FieldElement 101 102 p224FromBig(&x1, bigX1) 103 p224FromBig(&y1, bigY1) 104 z1[0] = 1 105 106 p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1) 107 return p224ToAffine(&x2, &y2, &z2) 108 } 109 110 func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) { 111 var x1, y1, z1, x2, y2, z2 p224FieldElement 112 113 p224FromBig(&x1, bigX1) 114 p224FromBig(&y1, bigY1) 115 z1[0] = 1 116 117 p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar) 118 return p224ToAffine(&x2, &y2, &z2) 119 } 120 121 func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { 122 var z1, x2, y2, z2 p224FieldElement 123 124 z1[0] = 1 125 p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar) 126 return p224ToAffine(&x2, &y2, &z2) 127 } 128 129 // Field element functions. 130 // 131 // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. 132 // 133 // Field elements are represented by a FieldElement, which is a typedef to an 134 // array of 8 uint32's. The value of a FieldElement, a, is: 135 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] 136 // 137 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less 138 // than we would really like. But it has the useful feature that we hit 2**224 139 // exactly, making the reflections during a reduce much nicer. 140 type p224FieldElement [8]uint32 141 142 // p224P is the order of the field, represented as a p224FieldElement. 143 var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff} 144 145 // p224IsZero returns 1 if a == 0 mod p and 0 otherwise. 146 // 147 // a[i] < 2**29 148 func p224IsZero(a *p224FieldElement) uint32 { 149 // Since a p224FieldElement contains 224 bits there are two possible 150 // representations of 0: 0 and p. 151 var minimal p224FieldElement 152 p224Contract(&minimal, a) 153 154 var isZero, isP uint32 155 for i, v := range minimal { 156 isZero |= v 157 isP |= v - p224P[i] 158 } 159 160 // If either isZero or isP is 0, then we should return 1. 161 isZero |= isZero >> 16 162 isZero |= isZero >> 8 163 isZero |= isZero >> 4 164 isZero |= isZero >> 2 165 isZero |= isZero >> 1 166 167 isP |= isP >> 16 168 isP |= isP >> 8 169 isP |= isP >> 4 170 isP |= isP >> 2 171 isP |= isP >> 1 172 173 // For isZero and isP, the LSB is 0 iff all the bits are zero. 174 result := isZero & isP 175 result = (^result) & 1 176 177 return result 178 } 179 180 // p224Add computes *out = a+b 181 // 182 // a[i] + b[i] < 2**32 183 func p224Add(out, a, b *p224FieldElement) { 184 for i := 0; i < 8; i++ { 185 out[i] = a[i] + b[i] 186 } 187 } 188 189 const two31p3 = 1<<31 + 1<<3 190 const two31m3 = 1<<31 - 1<<3 191 const two31m15m3 = 1<<31 - 1<<15 - 1<<3 192 193 // p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can 194 // subtract smaller amounts without underflow. See the section "Subtraction" in 195 // [1] for reasoning. 196 var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3} 197 198 // p224Sub computes *out = a-b 199 // 200 // a[i], b[i] < 2**30 201 // out[i] < 2**32 202 func p224Sub(out, a, b *p224FieldElement) { 203 for i := 0; i < 8; i++ { 204 out[i] = a[i] + p224ZeroModP31[i] - b[i] 205 } 206 } 207 208 // LargeFieldElement also represents an element of the field. The limbs are 209 // still spaced 28-bits apart and in little-endian order. So the limbs are at 210 // 0, 28, 56, ..., 392 bits, each 64-bits wide. 211 type p224LargeFieldElement [15]uint64 212 213 const two63p35 = 1<<63 + 1<<35 214 const two63m35 = 1<<63 - 1<<35 215 const two63m35m19 = 1<<63 - 1<<35 - 1<<19 216 217 // p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section 218 // "Subtraction" in [1] for why. 219 var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35} 220 221 const bottom12Bits = 0xfff 222 const bottom28Bits = 0xfffffff 223 224 // p224Mul computes *out = a*b 225 // 226 // a[i] < 2**29, b[i] < 2**30 (or vice versa) 227 // out[i] < 2**29 228 func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) { 229 for i := 0; i < 15; i++ { 230 tmp[i] = 0 231 } 232 233 for i := 0; i < 8; i++ { 234 for j := 0; j < 8; j++ { 235 tmp[i+j] += uint64(a[i]) * uint64(b[j]) 236 } 237 } 238 239 p224ReduceLarge(out, tmp) 240 } 241 242 // Square computes *out = a*a 243 // 244 // a[i] < 2**29 245 // out[i] < 2**29 246 func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) { 247 for i := 0; i < 15; i++ { 248 tmp[i] = 0 249 } 250 251 for i := 0; i < 8; i++ { 252 for j := 0; j <= i; j++ { 253 r := uint64(a[i]) * uint64(a[j]) 254 if i == j { 255 tmp[i+j] += r 256 } else { 257 tmp[i+j] += r << 1 258 } 259 } 260 } 261 262 p224ReduceLarge(out, tmp) 263 } 264 265 // ReduceLarge converts a p224LargeFieldElement to a p224FieldElement. 266 // 267 // in[i] < 2**62 268 func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) { 269 for i := 0; i < 8; i++ { 270 in[i] += p224ZeroModP63[i] 271 } 272 273 // Eliminate the coefficients at 2**224 and greater. 274 for i := 14; i >= 8; i-- { 275 in[i-8] -= in[i] 276 in[i-5] += (in[i] & 0xffff) << 12 277 in[i-4] += in[i] >> 16 278 } 279 in[8] = 0 280 // in[0..8] < 2**64 281 282 // As the values become small enough, we start to store them in |out| 283 // and use 32-bit operations. 284 for i := 1; i < 8; i++ { 285 in[i+1] += in[i] >> 28 286 out[i] = uint32(in[i] & bottom28Bits) 287 } 288 in[0] -= in[8] 289 out[3] += uint32(in[8]&0xffff) << 12 290 out[4] += uint32(in[8] >> 16) 291 // in[0] < 2**64 292 // out[3] < 2**29 293 // out[4] < 2**29 294 // out[1,2,5..7] < 2**28 295 296 out[0] = uint32(in[0] & bottom28Bits) 297 out[1] += uint32((in[0] >> 28) & bottom28Bits) 298 out[2] += uint32(in[0] >> 56) 299 // out[0] < 2**28 300 // out[1..4] < 2**29 301 // out[5..7] < 2**28 302 } 303 304 // Reduce reduces the coefficients of a to smaller bounds. 305 // 306 // On entry: a[i] < 2**31 + 2**30 307 // On exit: a[i] < 2**29 308 func p224Reduce(a *p224FieldElement) { 309 for i := 0; i < 7; i++ { 310 a[i+1] += a[i] >> 28 311 a[i] &= bottom28Bits 312 } 313 top := a[7] >> 28 314 a[7] &= bottom28Bits 315 316 // top < 2**4 317 mask := top 318 mask |= mask >> 2 319 mask |= mask >> 1 320 mask <<= 31 321 mask = uint32(int32(mask) >> 31) 322 // Mask is all ones if top != 0, all zero otherwise 323 324 a[0] -= top 325 a[3] += top << 12 326 327 // We may have just made a[0] negative but, if we did, then we must 328 // have added something to a[3], this it's > 2**12. Therefore we can 329 // carry down to a[0]. 330 a[3] -= 1 & mask 331 a[2] += mask & (1<<28 - 1) 332 a[1] += mask & (1<<28 - 1) 333 a[0] += mask & (1 << 28) 334 } 335 336 // p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1), 337 // i.e. Fermat's little theorem. 338 func p224Invert(out, in *p224FieldElement) { 339 var f1, f2, f3, f4 p224FieldElement 340 var c p224LargeFieldElement 341 342 p224Square(&f1, in, &c) // 2 343 p224Mul(&f1, &f1, in, &c) // 2**2 - 1 344 p224Square(&f1, &f1, &c) // 2**3 - 2 345 p224Mul(&f1, &f1, in, &c) // 2**3 - 1 346 p224Square(&f2, &f1, &c) // 2**4 - 2 347 p224Square(&f2, &f2, &c) // 2**5 - 4 348 p224Square(&f2, &f2, &c) // 2**6 - 8 349 p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1 350 p224Square(&f2, &f1, &c) // 2**7 - 2 351 for i := 0; i < 5; i++ { // 2**12 - 2**6 352 p224Square(&f2, &f2, &c) 353 } 354 p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1 355 p224Square(&f3, &f2, &c) // 2**13 - 2 356 for i := 0; i < 11; i++ { // 2**24 - 2**12 357 p224Square(&f3, &f3, &c) 358 } 359 p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1 360 p224Square(&f3, &f2, &c) // 2**25 - 2 361 for i := 0; i < 23; i++ { // 2**48 - 2**24 362 p224Square(&f3, &f3, &c) 363 } 364 p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1 365 p224Square(&f4, &f3, &c) // 2**49 - 2 366 for i := 0; i < 47; i++ { // 2**96 - 2**48 367 p224Square(&f4, &f4, &c) 368 } 369 p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1 370 p224Square(&f4, &f3, &c) // 2**97 - 2 371 for i := 0; i < 23; i++ { // 2**120 - 2**24 372 p224Square(&f4, &f4, &c) 373 } 374 p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1 375 for i := 0; i < 6; i++ { // 2**126 - 2**6 376 p224Square(&f2, &f2, &c) 377 } 378 p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1 379 p224Square(&f1, &f1, &c) // 2**127 - 2 380 p224Mul(&f1, &f1, in, &c) // 2**127 - 1 381 for i := 0; i < 97; i++ { // 2**224 - 2**97 382 p224Square(&f1, &f1, &c) 383 } 384 p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1 385 } 386 387 // p224Contract converts a FieldElement to its unique, minimal form. 388 // 389 // On entry, in[i] < 2**29 390 // On exit, in[i] < 2**28 391 func p224Contract(out, in *p224FieldElement) { 392 copy(out[:], in[:]) 393 394 for i := 0; i < 7; i++ { 395 out[i+1] += out[i] >> 28 396 out[i] &= bottom28Bits 397 } 398 top := out[7] >> 28 399 out[7] &= bottom28Bits 400 401 out[0] -= top 402 out[3] += top << 12 403 404 // We may just have made out[i] negative. So we carry down. If we made 405 // out[0] negative then we know that out[3] is sufficiently positive 406 // because we just added to it. 407 for i := 0; i < 3; i++ { 408 mask := uint32(int32(out[i]) >> 31) 409 out[i] += (1 << 28) & mask 410 out[i+1] -= 1 & mask 411 } 412 413 // We might have pushed out[3] over 2**28 so we perform another, partial, 414 // carry chain. 415 for i := 3; i < 7; i++ { 416 out[i+1] += out[i] >> 28 417 out[i] &= bottom28Bits 418 } 419 top = out[7] >> 28 420 out[7] &= bottom28Bits 421 422 // Eliminate top while maintaining the same value mod p. 423 out[0] -= top 424 out[3] += top << 12 425 426 // There are two cases to consider for out[3]: 427 // 1) The first time that we eliminated top, we didn't push out[3] over 428 // 2**28. In this case, the partial carry chain didn't change any values 429 // and top is zero. 430 // 2) We did push out[3] over 2**28 the first time that we eliminated top. 431 // The first value of top was in [0..16), therefore, prior to eliminating 432 // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after 433 // overflowing and being reduced by the second carry chain, out[3] <= 434 // 0xf000. Thus it cannot have overflowed when we eliminated top for the 435 // second time. 436 437 // Again, we may just have made out[0] negative, so do the same carry down. 438 // As before, if we made out[0] negative then we know that out[3] is 439 // sufficiently positive. 440 for i := 0; i < 3; i++ { 441 mask := uint32(int32(out[i]) >> 31) 442 out[i] += (1 << 28) & mask 443 out[i+1] -= 1 & mask 444 } 445 446 // Now we see if the value is >= p and, if so, subtract p. 447 448 // First we build a mask from the top four limbs, which must all be 449 // equal to bottom28Bits if the whole value is >= p. If top4AllOnes 450 // ends up with any zero bits in the bottom 28 bits, then this wasn't 451 // true. 452 top4AllOnes := uint32(0xffffffff) 453 for i := 4; i < 8; i++ { 454 top4AllOnes &= out[i] 455 } 456 top4AllOnes |= 0xf0000000 457 // Now we replicate any zero bits to all the bits in top4AllOnes. 458 top4AllOnes &= top4AllOnes >> 16 459 top4AllOnes &= top4AllOnes >> 8 460 top4AllOnes &= top4AllOnes >> 4 461 top4AllOnes &= top4AllOnes >> 2 462 top4AllOnes &= top4AllOnes >> 1 463 top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31) 464 465 // Now we test whether the bottom three limbs are non-zero. 466 bottom3NonZero := out[0] | out[1] | out[2] 467 bottom3NonZero |= bottom3NonZero >> 16 468 bottom3NonZero |= bottom3NonZero >> 8 469 bottom3NonZero |= bottom3NonZero >> 4 470 bottom3NonZero |= bottom3NonZero >> 2 471 bottom3NonZero |= bottom3NonZero >> 1 472 bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31) 473 474 // Everything depends on the value of out[3]. 475 // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p 476 // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, 477 // then the whole value is >= p 478 // If it's < 0xffff000, then the whole value is < p 479 n := out[3] - 0xffff000 480 out3Equal := n 481 out3Equal |= out3Equal >> 16 482 out3Equal |= out3Equal >> 8 483 out3Equal |= out3Equal >> 4 484 out3Equal |= out3Equal >> 2 485 out3Equal |= out3Equal >> 1 486 out3Equal = ^uint32(int32(out3Equal<<31) >> 31) 487 488 // If out[3] > 0xffff000 then n's MSB will be zero. 489 out3GT := ^uint32(int32(n) >> 31) 490 491 mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT) 492 out[0] -= 1 & mask 493 out[3] -= 0xffff000 & mask 494 out[4] -= 0xfffffff & mask 495 out[5] -= 0xfffffff & mask 496 out[6] -= 0xfffffff & mask 497 out[7] -= 0xfffffff & mask 498 } 499 500 // Group element functions. 501 // 502 // These functions deal with group elements. The group is an elliptic curve 503 // group with a = -3 defined in FIPS 186-3, section D.2.2. 504 505 // p224AddJacobian computes *out = a+b where a != b. 506 func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) { 507 // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl 508 var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement 509 var c p224LargeFieldElement 510 511 z1IsZero := p224IsZero(z1) 512 z2IsZero := p224IsZero(z2) 513 514 // Z1Z1 = Z1² 515 p224Square(&z1z1, z1, &c) 516 // Z2Z2 = Z2² 517 p224Square(&z2z2, z2, &c) 518 // U1 = X1*Z2Z2 519 p224Mul(&u1, x1, &z2z2, &c) 520 // U2 = X2*Z1Z1 521 p224Mul(&u2, x2, &z1z1, &c) 522 // S1 = Y1*Z2*Z2Z2 523 p224Mul(&s1, z2, &z2z2, &c) 524 p224Mul(&s1, y1, &s1, &c) 525 // S2 = Y2*Z1*Z1Z1 526 p224Mul(&s2, z1, &z1z1, &c) 527 p224Mul(&s2, y2, &s2, &c) 528 // H = U2-U1 529 p224Sub(&h, &u2, &u1) 530 p224Reduce(&h) 531 xEqual := p224IsZero(&h) 532 // I = (2*H)² 533 for j := 0; j < 8; j++ { 534 i[j] = h[j] << 1 535 } 536 p224Reduce(&i) 537 p224Square(&i, &i, &c) 538 // J = H*I 539 p224Mul(&j, &h, &i, &c) 540 // r = 2*(S2-S1) 541 p224Sub(&r, &s2, &s1) 542 p224Reduce(&r) 543 yEqual := p224IsZero(&r) 544 if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 { 545 p224DoubleJacobian(x3, y3, z3, x1, y1, z1) 546 return 547 } 548 for i := 0; i < 8; i++ { 549 r[i] <<= 1 550 } 551 p224Reduce(&r) 552 // V = U1*I 553 p224Mul(&v, &u1, &i, &c) 554 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H 555 p224Add(&z1z1, &z1z1, &z2z2) 556 p224Add(&z2z2, z1, z2) 557 p224Reduce(&z2z2) 558 p224Square(&z2z2, &z2z2, &c) 559 p224Sub(z3, &z2z2, &z1z1) 560 p224Reduce(z3) 561 p224Mul(z3, z3, &h, &c) 562 // X3 = r²-J-2*V 563 for i := 0; i < 8; i++ { 564 z1z1[i] = v[i] << 1 565 } 566 p224Add(&z1z1, &j, &z1z1) 567 p224Reduce(&z1z1) 568 p224Square(x3, &r, &c) 569 p224Sub(x3, x3, &z1z1) 570 p224Reduce(x3) 571 // Y3 = r*(V-X3)-2*S1*J 572 for i := 0; i < 8; i++ { 573 s1[i] <<= 1 574 } 575 p224Mul(&s1, &s1, &j, &c) 576 p224Sub(&z1z1, &v, x3) 577 p224Reduce(&z1z1) 578 p224Mul(&z1z1, &z1z1, &r, &c) 579 p224Sub(y3, &z1z1, &s1) 580 p224Reduce(y3) 581 582 p224CopyConditional(x3, x2, z1IsZero) 583 p224CopyConditional(x3, x1, z2IsZero) 584 p224CopyConditional(y3, y2, z1IsZero) 585 p224CopyConditional(y3, y1, z2IsZero) 586 p224CopyConditional(z3, z2, z1IsZero) 587 p224CopyConditional(z3, z1, z2IsZero) 588 } 589 590 // p224DoubleJacobian computes *out = a+a. 591 func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) { 592 var delta, gamma, beta, alpha, t p224FieldElement 593 var c p224LargeFieldElement 594 595 p224Square(&delta, z1, &c) 596 p224Square(&gamma, y1, &c) 597 p224Mul(&beta, x1, &gamma, &c) 598 599 // alpha = 3*(X1-delta)*(X1+delta) 600 p224Add(&t, x1, &delta) 601 for i := 0; i < 8; i++ { 602 t[i] += t[i] << 1 603 } 604 p224Reduce(&t) 605 p224Sub(&alpha, x1, &delta) 606 p224Reduce(&alpha) 607 p224Mul(&alpha, &alpha, &t, &c) 608 609 // Z3 = (Y1+Z1)²-gamma-delta 610 p224Add(z3, y1, z1) 611 p224Reduce(z3) 612 p224Square(z3, z3, &c) 613 p224Sub(z3, z3, &gamma) 614 p224Reduce(z3) 615 p224Sub(z3, z3, &delta) 616 p224Reduce(z3) 617 618 // X3 = alpha²-8*beta 619 for i := 0; i < 8; i++ { 620 delta[i] = beta[i] << 3 621 } 622 p224Reduce(&delta) 623 p224Square(x3, &alpha, &c) 624 p224Sub(x3, x3, &delta) 625 p224Reduce(x3) 626 627 // Y3 = alpha*(4*beta-X3)-8*gamma² 628 for i := 0; i < 8; i++ { 629 beta[i] <<= 2 630 } 631 p224Sub(&beta, &beta, x3) 632 p224Reduce(&beta) 633 p224Square(&gamma, &gamma, &c) 634 for i := 0; i < 8; i++ { 635 gamma[i] <<= 3 636 } 637 p224Reduce(&gamma) 638 p224Mul(y3, &alpha, &beta, &c) 639 p224Sub(y3, y3, &gamma) 640 p224Reduce(y3) 641 } 642 643 // p224CopyConditional sets *out = *in iff the least-significant-bit of control 644 // is true, and it runs in constant time. 645 func p224CopyConditional(out, in *p224FieldElement, control uint32) { 646 control <<= 31 647 control = uint32(int32(control) >> 31) 648 649 for i := 0; i < 8; i++ { 650 out[i] ^= (out[i] ^ in[i]) & control 651 } 652 } 653 654 func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) { 655 var xx, yy, zz p224FieldElement 656 for i := 0; i < 8; i++ { 657 outX[i] = 0 658 outY[i] = 0 659 outZ[i] = 0 660 } 661 662 for _, byte := range scalar { 663 for bitNum := uint(0); bitNum < 8; bitNum++ { 664 p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ) 665 bit := uint32((byte >> (7 - bitNum)) & 1) 666 p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ) 667 p224CopyConditional(outX, &xx, bit) 668 p224CopyConditional(outY, &yy, bit) 669 p224CopyConditional(outZ, &zz, bit) 670 } 671 } 672 } 673 674 // p224ToAffine converts from Jacobian to affine form. 675 func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) { 676 var zinv, zinvsq, outx, outy p224FieldElement 677 var tmp p224LargeFieldElement 678 679 if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 { 680 return new(big.Int), new(big.Int) 681 } 682 683 p224Invert(&zinv, z) 684 p224Square(&zinvsq, &zinv, &tmp) 685 p224Mul(x, x, &zinvsq, &tmp) 686 p224Mul(&zinvsq, &zinvsq, &zinv, &tmp) 687 p224Mul(y, y, &zinvsq, &tmp) 688 689 p224Contract(&outx, x) 690 p224Contract(&outy, y) 691 return p224ToBig(&outx), p224ToBig(&outy) 692 } 693 694 // get28BitsFromEnd returns the least-significant 28 bits from buf>>shift, 695 // where buf is interpreted as a big-endian number. 696 func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) { 697 var ret uint32 698 699 for i := uint(0); i < 4; i++ { 700 var b byte 701 if l := len(buf); l > 0 { 702 b = buf[l-1] 703 // We don't remove the byte if we're about to return and we're not 704 // reading all of it. 705 if i != 3 || shift == 4 { 706 buf = buf[:l-1] 707 } 708 } 709 ret |= uint32(b) << (8 * i) >> shift 710 } 711 ret &= bottom28Bits 712 return ret, buf 713 } 714 715 // p224FromBig sets *out = *in. 716 func p224FromBig(out *p224FieldElement, in *big.Int) { 717 bytes := in.Bytes() 718 out[0], bytes = get28BitsFromEnd(bytes, 0) 719 out[1], bytes = get28BitsFromEnd(bytes, 4) 720 out[2], bytes = get28BitsFromEnd(bytes, 0) 721 out[3], bytes = get28BitsFromEnd(bytes, 4) 722 out[4], bytes = get28BitsFromEnd(bytes, 0) 723 out[5], bytes = get28BitsFromEnd(bytes, 4) 724 out[6], bytes = get28BitsFromEnd(bytes, 0) 725 out[7], bytes = get28BitsFromEnd(bytes, 4) 726 } 727 728 // p224ToBig returns in as a big.Int. 729 func p224ToBig(in *p224FieldElement) *big.Int { 730 var buf [28]byte 731 buf[27] = byte(in[0]) 732 buf[26] = byte(in[0] >> 8) 733 buf[25] = byte(in[0] >> 16) 734 buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0) 735 736 buf[23] = byte(in[1] >> 4) 737 buf[22] = byte(in[1] >> 12) 738 buf[21] = byte(in[1] >> 20) 739 740 buf[20] = byte(in[2]) 741 buf[19] = byte(in[2] >> 8) 742 buf[18] = byte(in[2] >> 16) 743 buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0) 744 745 buf[16] = byte(in[3] >> 4) 746 buf[15] = byte(in[3] >> 12) 747 buf[14] = byte(in[3] >> 20) 748 749 buf[13] = byte(in[4]) 750 buf[12] = byte(in[4] >> 8) 751 buf[11] = byte(in[4] >> 16) 752 buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0) 753 754 buf[9] = byte(in[5] >> 4) 755 buf[8] = byte(in[5] >> 12) 756 buf[7] = byte(in[5] >> 20) 757 758 buf[6] = byte(in[6]) 759 buf[5] = byte(in[6] >> 8) 760 buf[4] = byte(in[6] >> 16) 761 buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0) 762 763 buf[2] = byte(in[7] >> 4) 764 buf[1] = byte(in[7] >> 12) 765 buf[0] = byte(in[7] >> 20) 766 767 return new(big.Int).SetBytes(buf[:]) 768 }