github.com/insolar/x-crypto@v0.0.0-20191031140942-75fab8a325f6/rsa/pkcs1v15.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package rsa
     6  
     7  import (
     8  	"errors"
     9  	"github.com/insolar/x-crypto"
    10  	"github.com/insolar/x-crypto/subtle"
    11  	"io"
    12  	"math/big"
    13  
    14  	"github.com/insolar/x-crypto/internal/randutil"
    15  )
    16  
    17  // This file implements encryption and decryption using PKCS#1 v1.5 padding.
    18  
    19  // PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using
    20  // the crypto.Decrypter interface.
    21  type PKCS1v15DecryptOptions struct {
    22  	// SessionKeyLen is the length of the session key that is being
    23  	// decrypted. If not zero, then a padding error during decryption will
    24  	// cause a random plaintext of this length to be returned rather than
    25  	// an error. These alternatives happen in constant time.
    26  	SessionKeyLen int
    27  }
    28  
    29  // EncryptPKCS1v15 encrypts the given message with RSA and the padding
    30  // scheme from PKCS#1 v1.5.  The message must be no longer than the
    31  // length of the public modulus minus 11 bytes.
    32  //
    33  // The rand parameter is used as a source of entropy to ensure that
    34  // encrypting the same message twice doesn't result in the same
    35  // ciphertext.
    36  //
    37  // WARNING: use of this function to encrypt plaintexts other than
    38  // session keys is dangerous. Use RSA OAEP in new protocols.
    39  func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error) {
    40  	randutil.MaybeReadByte(rand)
    41  
    42  	if err := checkPub(pub); err != nil {
    43  		return nil, err
    44  	}
    45  	k := pub.Size()
    46  	if len(msg) > k-11 {
    47  		return nil, ErrMessageTooLong
    48  	}
    49  
    50  	// EM = 0x00 || 0x02 || PS || 0x00 || M
    51  	em := make([]byte, k)
    52  	em[1] = 2
    53  	ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
    54  	err := nonZeroRandomBytes(ps, rand)
    55  	if err != nil {
    56  		return nil, err
    57  	}
    58  	em[len(em)-len(msg)-1] = 0
    59  	copy(mm, msg)
    60  
    61  	m := new(big.Int).SetBytes(em)
    62  	c := encrypt(new(big.Int), pub, m)
    63  
    64  	copyWithLeftPad(em, c.Bytes())
    65  	return em, nil
    66  }
    67  
    68  // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5.
    69  // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
    70  //
    71  // Note that whether this function returns an error or not discloses secret
    72  // information. If an attacker can cause this function to run repeatedly and
    73  // learn whether each instance returned an error then they can decrypt and
    74  // forge signatures as if they had the private key. See
    75  // DecryptPKCS1v15SessionKey for a way of solving this problem.
    76  func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) {
    77  	if err := checkPub(&priv.PublicKey); err != nil {
    78  		return nil, err
    79  	}
    80  	valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
    81  	if err != nil {
    82  		return nil, err
    83  	}
    84  	if valid == 0 {
    85  		return nil, ErrDecryption
    86  	}
    87  	return out[index:], nil
    88  }
    89  
    90  // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5.
    91  // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
    92  // It returns an error if the ciphertext is the wrong length or if the
    93  // ciphertext is greater than the public modulus. Otherwise, no error is
    94  // returned. If the padding is valid, the resulting plaintext message is copied
    95  // into key. Otherwise, key is unchanged. These alternatives occur in constant
    96  // time. It is intended that the user of this function generate a random
    97  // session key beforehand and continue the protocol with the resulting value.
    98  // This will remove any possibility that an attacker can learn any information
    99  // about the plaintext.
   100  // See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
   101  // Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
   102  // (Crypto '98).
   103  //
   104  // Note that if the session key is too small then it may be possible for an
   105  // attacker to brute-force it. If they can do that then they can learn whether
   106  // a random value was used (because it'll be different for the same ciphertext)
   107  // and thus whether the padding was correct. This defeats the point of this
   108  // function. Using at least a 16-byte key will protect against this attack.
   109  func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error {
   110  	if err := checkPub(&priv.PublicKey); err != nil {
   111  		return err
   112  	}
   113  	k := priv.Size()
   114  	if k-(len(key)+3+8) < 0 {
   115  		return ErrDecryption
   116  	}
   117  
   118  	valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
   119  	if err != nil {
   120  		return err
   121  	}
   122  
   123  	if len(em) != k {
   124  		// This should be impossible because decryptPKCS1v15 always
   125  		// returns the full slice.
   126  		return ErrDecryption
   127  	}
   128  
   129  	valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
   130  	subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
   131  	return nil
   132  }
   133  
   134  // decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
   135  // rand is not nil. It returns one or zero in valid that indicates whether the
   136  // plaintext was correctly structured. In either case, the plaintext is
   137  // returned in em so that it may be read independently of whether it was valid
   138  // in order to maintain constant memory access patterns. If the plaintext was
   139  // valid then index contains the index of the original message in em.
   140  func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
   141  	k := priv.Size()
   142  	if k < 11 {
   143  		err = ErrDecryption
   144  		return
   145  	}
   146  
   147  	c := new(big.Int).SetBytes(ciphertext)
   148  	m, err := decrypt(rand, priv, c)
   149  	if err != nil {
   150  		return
   151  	}
   152  
   153  	em = leftPad(m.Bytes(), k)
   154  	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
   155  	secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
   156  
   157  	// The remainder of the plaintext must be a string of non-zero random
   158  	// octets, followed by a 0, followed by the message.
   159  	//   lookingForIndex: 1 iff we are still looking for the zero.
   160  	//   index: the offset of the first zero byte.
   161  	lookingForIndex := 1
   162  
   163  	for i := 2; i < len(em); i++ {
   164  		equals0 := subtle.ConstantTimeByteEq(em[i], 0)
   165  		index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
   166  		lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
   167  	}
   168  
   169  	// The PS padding must be at least 8 bytes long, and it starts two
   170  	// bytes into em.
   171  	validPS := subtle.ConstantTimeLessOrEq(2+8, index)
   172  
   173  	valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
   174  	index = subtle.ConstantTimeSelect(valid, index+1, 0)
   175  	return valid, em, index, nil
   176  }
   177  
   178  // nonZeroRandomBytes fills the given slice with non-zero random octets.
   179  func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
   180  	_, err = io.ReadFull(rand, s)
   181  	if err != nil {
   182  		return
   183  	}
   184  
   185  	for i := 0; i < len(s); i++ {
   186  		for s[i] == 0 {
   187  			_, err = io.ReadFull(rand, s[i:i+1])
   188  			if err != nil {
   189  				return
   190  			}
   191  			// In tests, the PRNG may return all zeros so we do
   192  			// this to break the loop.
   193  			s[i] ^= 0x42
   194  		}
   195  	}
   196  
   197  	return
   198  }
   199  
   200  // These are ASN1 DER structures:
   201  //   DigestInfo ::= SEQUENCE {
   202  //     digestAlgorithm AlgorithmIdentifier,
   203  //     digest OCTET STRING
   204  //   }
   205  // For performance, we don't use the generic ASN1 encoder. Rather, we
   206  // precompute a prefix of the digest value that makes a valid ASN1 DER string
   207  // with the correct contents.
   208  var hashPrefixes = map[crypto.Hash][]byte{
   209  	crypto.MD5:       {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
   210  	crypto.SHA1:      {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
   211  	crypto.SHA224:    {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
   212  	crypto.SHA256:    {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
   213  	crypto.SHA384:    {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
   214  	crypto.SHA512:    {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
   215  	crypto.MD5SHA1:   {}, // A special TLS case which doesn't use an ASN1 prefix.
   216  	crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
   217  }
   218  
   219  // SignPKCS1v15 calculates the signature of hashed using
   220  // RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5.  Note that hashed must
   221  // be the result of hashing the input message using the given hash
   222  // function. If hash is zero, hashed is signed directly. This isn't
   223  // advisable except for interoperability.
   224  //
   225  // If rand is not nil then RSA blinding will be used to avoid timing
   226  // side-channel attacks.
   227  //
   228  // This function is deterministic. Thus, if the set of possible
   229  // messages is small, an attacker may be able to build a map from
   230  // messages to signatures and identify the signed messages. As ever,
   231  // signatures provide authenticity, not confidentiality.
   232  func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) {
   233  	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
   234  	if err != nil {
   235  		return nil, err
   236  	}
   237  
   238  	tLen := len(prefix) + hashLen
   239  	k := priv.Size()
   240  	if k < tLen+11 {
   241  		return nil, ErrMessageTooLong
   242  	}
   243  
   244  	// EM = 0x00 || 0x01 || PS || 0x00 || T
   245  	em := make([]byte, k)
   246  	em[1] = 1
   247  	for i := 2; i < k-tLen-1; i++ {
   248  		em[i] = 0xff
   249  	}
   250  	copy(em[k-tLen:k-hashLen], prefix)
   251  	copy(em[k-hashLen:k], hashed)
   252  
   253  	m := new(big.Int).SetBytes(em)
   254  	c, err := decryptAndCheck(rand, priv, m)
   255  	if err != nil {
   256  		return nil, err
   257  	}
   258  
   259  	copyWithLeftPad(em, c.Bytes())
   260  	return em, nil
   261  }
   262  
   263  // VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature.
   264  // hashed is the result of hashing the input message using the given hash
   265  // function and sig is the signature. A valid signature is indicated by
   266  // returning a nil error. If hash is zero then hashed is used directly. This
   267  // isn't advisable except for interoperability.
   268  func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error {
   269  	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
   270  	if err != nil {
   271  		return err
   272  	}
   273  
   274  	tLen := len(prefix) + hashLen
   275  	k := pub.Size()
   276  	if k < tLen+11 {
   277  		return ErrVerification
   278  	}
   279  
   280  	c := new(big.Int).SetBytes(sig)
   281  	m := encrypt(new(big.Int), pub, c)
   282  	em := leftPad(m.Bytes(), k)
   283  	// EM = 0x00 || 0x01 || PS || 0x00 || T
   284  
   285  	ok := subtle.ConstantTimeByteEq(em[0], 0)
   286  	ok &= subtle.ConstantTimeByteEq(em[1], 1)
   287  	ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
   288  	ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
   289  	ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
   290  
   291  	for i := 2; i < k-tLen-1; i++ {
   292  		ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
   293  	}
   294  
   295  	if ok != 1 {
   296  		return ErrVerification
   297  	}
   298  
   299  	return nil
   300  }
   301  
   302  func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
   303  	// Special case: crypto.Hash(0) is used to indicate that the data is
   304  	// signed directly.
   305  	if hash == 0 {
   306  		return inLen, nil, nil
   307  	}
   308  
   309  	hashLen = hash.Size()
   310  	if inLen != hashLen {
   311  		return 0, nil, errors.New("crypto/rsa: input must be hashed message")
   312  	}
   313  	prefix, ok := hashPrefixes[hash]
   314  	if !ok {
   315  		return 0, nil, errors.New("crypto/rsa: unsupported hash function")
   316  	}
   317  	return
   318  }
   319  
   320  // copyWithLeftPad copies src to the end of dest, padding with zero bytes as
   321  // needed.
   322  func copyWithLeftPad(dest, src []byte) {
   323  	numPaddingBytes := len(dest) - len(src)
   324  	for i := 0; i < numPaddingBytes; i++ {
   325  		dest[i] = 0
   326  	}
   327  	copy(dest[numPaddingBytes:], src)
   328  }