github.com/insolar/x-crypto@v0.0.0-20191031140942-75fab8a325f6/rsa/pkcs1v15.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package rsa 6 7 import ( 8 "errors" 9 "github.com/insolar/x-crypto" 10 "github.com/insolar/x-crypto/subtle" 11 "io" 12 "math/big" 13 14 "github.com/insolar/x-crypto/internal/randutil" 15 ) 16 17 // This file implements encryption and decryption using PKCS#1 v1.5 padding. 18 19 // PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using 20 // the crypto.Decrypter interface. 21 type PKCS1v15DecryptOptions struct { 22 // SessionKeyLen is the length of the session key that is being 23 // decrypted. If not zero, then a padding error during decryption will 24 // cause a random plaintext of this length to be returned rather than 25 // an error. These alternatives happen in constant time. 26 SessionKeyLen int 27 } 28 29 // EncryptPKCS1v15 encrypts the given message with RSA and the padding 30 // scheme from PKCS#1 v1.5. The message must be no longer than the 31 // length of the public modulus minus 11 bytes. 32 // 33 // The rand parameter is used as a source of entropy to ensure that 34 // encrypting the same message twice doesn't result in the same 35 // ciphertext. 36 // 37 // WARNING: use of this function to encrypt plaintexts other than 38 // session keys is dangerous. Use RSA OAEP in new protocols. 39 func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error) { 40 randutil.MaybeReadByte(rand) 41 42 if err := checkPub(pub); err != nil { 43 return nil, err 44 } 45 k := pub.Size() 46 if len(msg) > k-11 { 47 return nil, ErrMessageTooLong 48 } 49 50 // EM = 0x00 || 0x02 || PS || 0x00 || M 51 em := make([]byte, k) 52 em[1] = 2 53 ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):] 54 err := nonZeroRandomBytes(ps, rand) 55 if err != nil { 56 return nil, err 57 } 58 em[len(em)-len(msg)-1] = 0 59 copy(mm, msg) 60 61 m := new(big.Int).SetBytes(em) 62 c := encrypt(new(big.Int), pub, m) 63 64 copyWithLeftPad(em, c.Bytes()) 65 return em, nil 66 } 67 68 // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. 69 // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. 70 // 71 // Note that whether this function returns an error or not discloses secret 72 // information. If an attacker can cause this function to run repeatedly and 73 // learn whether each instance returned an error then they can decrypt and 74 // forge signatures as if they had the private key. See 75 // DecryptPKCS1v15SessionKey for a way of solving this problem. 76 func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) { 77 if err := checkPub(&priv.PublicKey); err != nil { 78 return nil, err 79 } 80 valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext) 81 if err != nil { 82 return nil, err 83 } 84 if valid == 0 { 85 return nil, ErrDecryption 86 } 87 return out[index:], nil 88 } 89 90 // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5. 91 // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. 92 // It returns an error if the ciphertext is the wrong length or if the 93 // ciphertext is greater than the public modulus. Otherwise, no error is 94 // returned. If the padding is valid, the resulting plaintext message is copied 95 // into key. Otherwise, key is unchanged. These alternatives occur in constant 96 // time. It is intended that the user of this function generate a random 97 // session key beforehand and continue the protocol with the resulting value. 98 // This will remove any possibility that an attacker can learn any information 99 // about the plaintext. 100 // See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA 101 // Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology 102 // (Crypto '98). 103 // 104 // Note that if the session key is too small then it may be possible for an 105 // attacker to brute-force it. If they can do that then they can learn whether 106 // a random value was used (because it'll be different for the same ciphertext) 107 // and thus whether the padding was correct. This defeats the point of this 108 // function. Using at least a 16-byte key will protect against this attack. 109 func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error { 110 if err := checkPub(&priv.PublicKey); err != nil { 111 return err 112 } 113 k := priv.Size() 114 if k-(len(key)+3+8) < 0 { 115 return ErrDecryption 116 } 117 118 valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext) 119 if err != nil { 120 return err 121 } 122 123 if len(em) != k { 124 // This should be impossible because decryptPKCS1v15 always 125 // returns the full slice. 126 return ErrDecryption 127 } 128 129 valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key))) 130 subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):]) 131 return nil 132 } 133 134 // decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if 135 // rand is not nil. It returns one or zero in valid that indicates whether the 136 // plaintext was correctly structured. In either case, the plaintext is 137 // returned in em so that it may be read independently of whether it was valid 138 // in order to maintain constant memory access patterns. If the plaintext was 139 // valid then index contains the index of the original message in em. 140 func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) { 141 k := priv.Size() 142 if k < 11 { 143 err = ErrDecryption 144 return 145 } 146 147 c := new(big.Int).SetBytes(ciphertext) 148 m, err := decrypt(rand, priv, c) 149 if err != nil { 150 return 151 } 152 153 em = leftPad(m.Bytes(), k) 154 firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) 155 secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2) 156 157 // The remainder of the plaintext must be a string of non-zero random 158 // octets, followed by a 0, followed by the message. 159 // lookingForIndex: 1 iff we are still looking for the zero. 160 // index: the offset of the first zero byte. 161 lookingForIndex := 1 162 163 for i := 2; i < len(em); i++ { 164 equals0 := subtle.ConstantTimeByteEq(em[i], 0) 165 index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) 166 lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) 167 } 168 169 // The PS padding must be at least 8 bytes long, and it starts two 170 // bytes into em. 171 validPS := subtle.ConstantTimeLessOrEq(2+8, index) 172 173 valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS 174 index = subtle.ConstantTimeSelect(valid, index+1, 0) 175 return valid, em, index, nil 176 } 177 178 // nonZeroRandomBytes fills the given slice with non-zero random octets. 179 func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) { 180 _, err = io.ReadFull(rand, s) 181 if err != nil { 182 return 183 } 184 185 for i := 0; i < len(s); i++ { 186 for s[i] == 0 { 187 _, err = io.ReadFull(rand, s[i:i+1]) 188 if err != nil { 189 return 190 } 191 // In tests, the PRNG may return all zeros so we do 192 // this to break the loop. 193 s[i] ^= 0x42 194 } 195 } 196 197 return 198 } 199 200 // These are ASN1 DER structures: 201 // DigestInfo ::= SEQUENCE { 202 // digestAlgorithm AlgorithmIdentifier, 203 // digest OCTET STRING 204 // } 205 // For performance, we don't use the generic ASN1 encoder. Rather, we 206 // precompute a prefix of the digest value that makes a valid ASN1 DER string 207 // with the correct contents. 208 var hashPrefixes = map[crypto.Hash][]byte{ 209 crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, 210 crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, 211 crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, 212 crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, 213 crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, 214 crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, 215 crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix. 216 crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14}, 217 } 218 219 // SignPKCS1v15 calculates the signature of hashed using 220 // RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5. Note that hashed must 221 // be the result of hashing the input message using the given hash 222 // function. If hash is zero, hashed is signed directly. This isn't 223 // advisable except for interoperability. 224 // 225 // If rand is not nil then RSA blinding will be used to avoid timing 226 // side-channel attacks. 227 // 228 // This function is deterministic. Thus, if the set of possible 229 // messages is small, an attacker may be able to build a map from 230 // messages to signatures and identify the signed messages. As ever, 231 // signatures provide authenticity, not confidentiality. 232 func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) { 233 hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) 234 if err != nil { 235 return nil, err 236 } 237 238 tLen := len(prefix) + hashLen 239 k := priv.Size() 240 if k < tLen+11 { 241 return nil, ErrMessageTooLong 242 } 243 244 // EM = 0x00 || 0x01 || PS || 0x00 || T 245 em := make([]byte, k) 246 em[1] = 1 247 for i := 2; i < k-tLen-1; i++ { 248 em[i] = 0xff 249 } 250 copy(em[k-tLen:k-hashLen], prefix) 251 copy(em[k-hashLen:k], hashed) 252 253 m := new(big.Int).SetBytes(em) 254 c, err := decryptAndCheck(rand, priv, m) 255 if err != nil { 256 return nil, err 257 } 258 259 copyWithLeftPad(em, c.Bytes()) 260 return em, nil 261 } 262 263 // VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature. 264 // hashed is the result of hashing the input message using the given hash 265 // function and sig is the signature. A valid signature is indicated by 266 // returning a nil error. If hash is zero then hashed is used directly. This 267 // isn't advisable except for interoperability. 268 func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error { 269 hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) 270 if err != nil { 271 return err 272 } 273 274 tLen := len(prefix) + hashLen 275 k := pub.Size() 276 if k < tLen+11 { 277 return ErrVerification 278 } 279 280 c := new(big.Int).SetBytes(sig) 281 m := encrypt(new(big.Int), pub, c) 282 em := leftPad(m.Bytes(), k) 283 // EM = 0x00 || 0x01 || PS || 0x00 || T 284 285 ok := subtle.ConstantTimeByteEq(em[0], 0) 286 ok &= subtle.ConstantTimeByteEq(em[1], 1) 287 ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed) 288 ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix) 289 ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0) 290 291 for i := 2; i < k-tLen-1; i++ { 292 ok &= subtle.ConstantTimeByteEq(em[i], 0xff) 293 } 294 295 if ok != 1 { 296 return ErrVerification 297 } 298 299 return nil 300 } 301 302 func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) { 303 // Special case: crypto.Hash(0) is used to indicate that the data is 304 // signed directly. 305 if hash == 0 { 306 return inLen, nil, nil 307 } 308 309 hashLen = hash.Size() 310 if inLen != hashLen { 311 return 0, nil, errors.New("crypto/rsa: input must be hashed message") 312 } 313 prefix, ok := hashPrefixes[hash] 314 if !ok { 315 return 0, nil, errors.New("crypto/rsa: unsupported hash function") 316 } 317 return 318 } 319 320 // copyWithLeftPad copies src to the end of dest, padding with zero bytes as 321 // needed. 322 func copyWithLeftPad(dest, src []byte) { 323 numPaddingBytes := len(dest) - len(src) 324 for i := 0; i < numPaddingBytes; i++ { 325 dest[i] = 0 326 } 327 copy(dest[numPaddingBytes:], src) 328 }