github.com/insolar/x-crypto@v0.0.0-20191031140942-75fab8a325f6/rsa/rsa.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package rsa implements RSA encryption as specified in PKCS#1. 6 // 7 // RSA is a single, fundamental operation that is used in this package to 8 // implement either public-key encryption or public-key signatures. 9 // 10 // The original specification for encryption and signatures with RSA is PKCS#1 11 // and the terms "RSA encryption" and "RSA signatures" by default refer to 12 // PKCS#1 version 1.5. However, that specification has flaws and new designs 13 // should use version two, usually called by just OAEP and PSS, where 14 // possible. 15 // 16 // Two sets of interfaces are included in this package. When a more abstract 17 // interface isn't necessary, there are functions for encrypting/decrypting 18 // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract 19 // over the public-key primitive, the PrivateKey struct implements the 20 // Decrypter and Signer interfaces from the crypto package. 21 // 22 // The RSA operations in this package are not implemented using constant-time algorithms. 23 package rsa 24 25 import ( 26 "errors" 27 "github.com/insolar/x-crypto" 28 "github.com/insolar/x-crypto/rand" 29 "github.com/insolar/x-crypto/subtle" 30 "hash" 31 "io" 32 "math" 33 "math/big" 34 35 "github.com/insolar/x-crypto/internal/randutil" 36 ) 37 38 var bigZero = big.NewInt(0) 39 var bigOne = big.NewInt(1) 40 41 // A PublicKey represents the public part of an RSA key. 42 type PublicKey struct { 43 N *big.Int // modulus 44 E int // public exponent 45 } 46 47 // Size returns the modulus size in bytes. Raw signatures and ciphertexts 48 // for or by this public key will have the same size. 49 func (pub *PublicKey) Size() int { 50 return (pub.N.BitLen() + 7) / 8 51 } 52 53 // OAEPOptions is an interface for passing options to OAEP decryption using the 54 // crypto.Decrypter interface. 55 type OAEPOptions struct { 56 // Hash is the hash function that will be used when generating the mask. 57 Hash crypto.Hash 58 // Label is an arbitrary byte string that must be equal to the value 59 // used when encrypting. 60 Label []byte 61 } 62 63 var ( 64 errPublicModulus = errors.New("crypto/rsa: missing public modulus") 65 errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") 66 errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") 67 ) 68 69 // checkPub sanity checks the public key before we use it. 70 // We require pub.E to fit into a 32-bit integer so that we 71 // do not have different behavior depending on whether 72 // int is 32 or 64 bits. See also 73 // https://www.imperialviolet.org/2012/03/16/rsae.html. 74 func checkPub(pub *PublicKey) error { 75 if pub.N == nil { 76 return errPublicModulus 77 } 78 if pub.E < 2 { 79 return errPublicExponentSmall 80 } 81 if pub.E > 1<<31-1 { 82 return errPublicExponentLarge 83 } 84 return nil 85 } 86 87 // A PrivateKey represents an RSA key 88 type PrivateKey struct { 89 PublicKey // public part. 90 D *big.Int // private exponent 91 Primes []*big.Int // prime factors of N, has >= 2 elements. 92 93 // Precomputed contains precomputed values that speed up private 94 // operations, if available. 95 Precomputed PrecomputedValues 96 } 97 98 // Public returns the public key corresponding to priv. 99 func (priv *PrivateKey) Public() crypto.PublicKey { 100 return &priv.PublicKey 101 } 102 103 // Sign signs digest with priv, reading randomness from rand. If opts is a 104 // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will 105 // be used. 106 // 107 // This method implements crypto.Signer, which is an interface to support keys 108 // where the private part is kept in, for example, a hardware module. Common 109 // uses should use the Sign* functions in this package directly. 110 func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { 111 if pssOpts, ok := opts.(*PSSOptions); ok { 112 return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts) 113 } 114 115 return SignPKCS1v15(rand, priv, opts.HashFunc(), digest) 116 } 117 118 // Decrypt decrypts ciphertext with priv. If opts is nil or of type 119 // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise 120 // opts must have type *OAEPOptions and OAEP decryption is done. 121 func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { 122 if opts == nil { 123 return DecryptPKCS1v15(rand, priv, ciphertext) 124 } 125 126 switch opts := opts.(type) { 127 case *OAEPOptions: 128 return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label) 129 130 case *PKCS1v15DecryptOptions: 131 if l := opts.SessionKeyLen; l > 0 { 132 plaintext = make([]byte, l) 133 if _, err := io.ReadFull(rand, plaintext); err != nil { 134 return nil, err 135 } 136 if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { 137 return nil, err 138 } 139 return plaintext, nil 140 } else { 141 return DecryptPKCS1v15(rand, priv, ciphertext) 142 } 143 144 default: 145 return nil, errors.New("crypto/rsa: invalid options for Decrypt") 146 } 147 } 148 149 type PrecomputedValues struct { 150 Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) 151 Qinv *big.Int // Q^-1 mod P 152 153 // CRTValues is used for the 3rd and subsequent primes. Due to a 154 // historical accident, the CRT for the first two primes is handled 155 // differently in PKCS#1 and interoperability is sufficiently 156 // important that we mirror this. 157 CRTValues []CRTValue 158 } 159 160 // CRTValue contains the precomputed Chinese remainder theorem values. 161 type CRTValue struct { 162 Exp *big.Int // D mod (prime-1). 163 Coeff *big.Int // R·Coeff ≡ 1 mod Prime. 164 R *big.Int // product of primes prior to this (inc p and q). 165 } 166 167 // Validate performs basic sanity checks on the key. 168 // It returns nil if the key is valid, or else an error describing a problem. 169 func (priv *PrivateKey) Validate() error { 170 if err := checkPub(&priv.PublicKey); err != nil { 171 return err 172 } 173 174 // Check that Πprimes == n. 175 modulus := new(big.Int).Set(bigOne) 176 for _, prime := range priv.Primes { 177 // Any primes ≤ 1 will cause divide-by-zero panics later. 178 if prime.Cmp(bigOne) <= 0 { 179 return errors.New("crypto/rsa: invalid prime value") 180 } 181 modulus.Mul(modulus, prime) 182 } 183 if modulus.Cmp(priv.N) != 0 { 184 return errors.New("crypto/rsa: invalid modulus") 185 } 186 187 // Check that de ≡ 1 mod p-1, for each prime. 188 // This implies that e is coprime to each p-1 as e has a multiplicative 189 // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = 190 // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 191 // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. 192 congruence := new(big.Int) 193 de := new(big.Int).SetInt64(int64(priv.E)) 194 de.Mul(de, priv.D) 195 for _, prime := range priv.Primes { 196 pminus1 := new(big.Int).Sub(prime, bigOne) 197 congruence.Mod(de, pminus1) 198 if congruence.Cmp(bigOne) != 0 { 199 return errors.New("crypto/rsa: invalid exponents") 200 } 201 } 202 return nil 203 } 204 205 // GenerateKey generates an RSA keypair of the given bit size using the 206 // random source random (for example, crypto/rand.Reader). 207 func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) { 208 return GenerateMultiPrimeKey(random, 2, bits) 209 } 210 211 // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit 212 // size and the given random source, as suggested in [1]. Although the public 213 // keys are compatible (actually, indistinguishable) from the 2-prime case, 214 // the private keys are not. Thus it may not be possible to export multi-prime 215 // private keys in certain formats or to subsequently import them into other 216 // code. 217 // 218 // Table 1 in [2] suggests maximum numbers of primes for a given size. 219 // 220 // [1] US patent 4405829 (1972, expired) 221 // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf 222 func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) { 223 randutil.MaybeReadByte(random) 224 225 priv := new(PrivateKey) 226 priv.E = 65537 227 228 if nprimes < 2 { 229 return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") 230 } 231 232 if bits < 64 { 233 primeLimit := float64(uint64(1) << uint(bits/nprimes)) 234 // pi approximates the number of primes less than primeLimit 235 pi := primeLimit / (math.Log(primeLimit) - 1) 236 // Generated primes start with 11 (in binary) so we can only 237 // use a quarter of them. 238 pi /= 4 239 // Use a factor of two to ensure that key generation terminates 240 // in a reasonable amount of time. 241 pi /= 2 242 if pi <= float64(nprimes) { 243 return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") 244 } 245 } 246 247 primes := make([]*big.Int, nprimes) 248 249 NextSetOfPrimes: 250 for { 251 todo := bits 252 // crypto/rand should set the top two bits in each prime. 253 // Thus each prime has the form 254 // p_i = 2^bitlen(p_i) × 0.11... (in base 2). 255 // And the product is: 256 // P = 2^todo × α 257 // where α is the product of nprimes numbers of the form 0.11... 258 // 259 // If α < 1/2 (which can happen for nprimes > 2), we need to 260 // shift todo to compensate for lost bits: the mean value of 0.11... 261 // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 262 // will give good results. 263 if nprimes >= 7 { 264 todo += (nprimes - 2) / 5 265 } 266 for i := 0; i < nprimes; i++ { 267 var err error 268 primes[i], err = rand.Prime(random, todo/(nprimes-i)) 269 if err != nil { 270 return nil, err 271 } 272 todo -= primes[i].BitLen() 273 } 274 275 // Make sure that primes is pairwise unequal. 276 for i, prime := range primes { 277 for j := 0; j < i; j++ { 278 if prime.Cmp(primes[j]) == 0 { 279 continue NextSetOfPrimes 280 } 281 } 282 } 283 284 n := new(big.Int).Set(bigOne) 285 totient := new(big.Int).Set(bigOne) 286 pminus1 := new(big.Int) 287 for _, prime := range primes { 288 n.Mul(n, prime) 289 pminus1.Sub(prime, bigOne) 290 totient.Mul(totient, pminus1) 291 } 292 if n.BitLen() != bits { 293 // This should never happen for nprimes == 2 because 294 // crypto/rand should set the top two bits in each prime. 295 // For nprimes > 2 we hope it does not happen often. 296 continue NextSetOfPrimes 297 } 298 299 priv.D = new(big.Int) 300 e := big.NewInt(int64(priv.E)) 301 ok := priv.D.ModInverse(e, totient) 302 303 if ok != nil { 304 priv.Primes = primes 305 priv.N = n 306 break 307 } 308 } 309 310 priv.Precompute() 311 return priv, nil 312 } 313 314 // incCounter increments a four byte, big-endian counter. 315 func incCounter(c *[4]byte) { 316 if c[3]++; c[3] != 0 { 317 return 318 } 319 if c[2]++; c[2] != 0 { 320 return 321 } 322 if c[1]++; c[1] != 0 { 323 return 324 } 325 c[0]++ 326 } 327 328 // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function 329 // specified in PKCS#1 v2.1. 330 func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { 331 var counter [4]byte 332 var digest []byte 333 334 done := 0 335 for done < len(out) { 336 hash.Write(seed) 337 hash.Write(counter[0:4]) 338 digest = hash.Sum(digest[:0]) 339 hash.Reset() 340 341 for i := 0; i < len(digest) && done < len(out); i++ { 342 out[done] ^= digest[i] 343 done++ 344 } 345 incCounter(&counter) 346 } 347 } 348 349 // ErrMessageTooLong is returned when attempting to encrypt a message which is 350 // too large for the size of the public key. 351 var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") 352 353 func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { 354 e := big.NewInt(int64(pub.E)) 355 c.Exp(m, e, pub.N) 356 return c 357 } 358 359 // EncryptOAEP encrypts the given message with RSA-OAEP. 360 // 361 // OAEP is parameterised by a hash function that is used as a random oracle. 362 // Encryption and decryption of a given message must use the same hash function 363 // and sha256.New() is a reasonable choice. 364 // 365 // The random parameter is used as a source of entropy to ensure that 366 // encrypting the same message twice doesn't result in the same ciphertext. 367 // 368 // The label parameter may contain arbitrary data that will not be encrypted, 369 // but which gives important context to the message. For example, if a given 370 // public key is used to decrypt two types of messages then distinct label 371 // values could be used to ensure that a ciphertext for one purpose cannot be 372 // used for another by an attacker. If not required it can be empty. 373 // 374 // The message must be no longer than the length of the public modulus minus 375 // twice the hash length, minus a further 2. 376 func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) { 377 if err := checkPub(pub); err != nil { 378 return nil, err 379 } 380 hash.Reset() 381 k := pub.Size() 382 if len(msg) > k-2*hash.Size()-2 { 383 return nil, ErrMessageTooLong 384 } 385 386 hash.Write(label) 387 lHash := hash.Sum(nil) 388 hash.Reset() 389 390 em := make([]byte, k) 391 seed := em[1 : 1+hash.Size()] 392 db := em[1+hash.Size():] 393 394 copy(db[0:hash.Size()], lHash) 395 db[len(db)-len(msg)-1] = 1 396 copy(db[len(db)-len(msg):], msg) 397 398 _, err := io.ReadFull(random, seed) 399 if err != nil { 400 return nil, err 401 } 402 403 mgf1XOR(db, hash, seed) 404 mgf1XOR(seed, hash, db) 405 406 m := new(big.Int) 407 m.SetBytes(em) 408 c := encrypt(new(big.Int), pub, m) 409 out := c.Bytes() 410 411 if len(out) < k { 412 // If the output is too small, we need to left-pad with zeros. 413 t := make([]byte, k) 414 copy(t[k-len(out):], out) 415 out = t 416 } 417 418 return out, nil 419 } 420 421 // ErrDecryption represents a failure to decrypt a message. 422 // It is deliberately vague to avoid adaptive attacks. 423 var ErrDecryption = errors.New("crypto/rsa: decryption error") 424 425 // ErrVerification represents a failure to verify a signature. 426 // It is deliberately vague to avoid adaptive attacks. 427 var ErrVerification = errors.New("crypto/rsa: verification error") 428 429 // Precompute performs some calculations that speed up private key operations 430 // in the future. 431 func (priv *PrivateKey) Precompute() { 432 if priv.Precomputed.Dp != nil { 433 return 434 } 435 436 priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) 437 priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) 438 439 priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) 440 priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) 441 442 priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) 443 444 r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) 445 priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) 446 for i := 2; i < len(priv.Primes); i++ { 447 prime := priv.Primes[i] 448 values := &priv.Precomputed.CRTValues[i-2] 449 450 values.Exp = new(big.Int).Sub(prime, bigOne) 451 values.Exp.Mod(priv.D, values.Exp) 452 453 values.R = new(big.Int).Set(r) 454 values.Coeff = new(big.Int).ModInverse(r, prime) 455 456 r.Mul(r, prime) 457 } 458 } 459 460 // decrypt performs an RSA decryption, resulting in a plaintext integer. If a 461 // random source is given, RSA blinding is used. 462 func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { 463 // TODO(agl): can we get away with reusing blinds? 464 if c.Cmp(priv.N) > 0 { 465 err = ErrDecryption 466 return 467 } 468 if priv.N.Sign() == 0 { 469 return nil, ErrDecryption 470 } 471 472 var ir *big.Int 473 if random != nil { 474 randutil.MaybeReadByte(random) 475 476 // Blinding enabled. Blinding involves multiplying c by r^e. 477 // Then the decryption operation performs (m^e * r^e)^d mod n 478 // which equals mr mod n. The factor of r can then be removed 479 // by multiplying by the multiplicative inverse of r. 480 481 var r *big.Int 482 ir = new(big.Int) 483 for { 484 r, err = rand.Int(random, priv.N) 485 if err != nil { 486 return 487 } 488 if r.Cmp(bigZero) == 0 { 489 r = bigOne 490 } 491 ok := ir.ModInverse(r, priv.N) 492 if ok != nil { 493 break 494 } 495 } 496 bigE := big.NewInt(int64(priv.E)) 497 rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0 498 cCopy := new(big.Int).Set(c) 499 cCopy.Mul(cCopy, rpowe) 500 cCopy.Mod(cCopy, priv.N) 501 c = cCopy 502 } 503 504 if priv.Precomputed.Dp == nil { 505 m = new(big.Int).Exp(c, priv.D, priv.N) 506 } else { 507 // We have the precalculated values needed for the CRT. 508 m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) 509 m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) 510 m.Sub(m, m2) 511 if m.Sign() < 0 { 512 m.Add(m, priv.Primes[0]) 513 } 514 m.Mul(m, priv.Precomputed.Qinv) 515 m.Mod(m, priv.Primes[0]) 516 m.Mul(m, priv.Primes[1]) 517 m.Add(m, m2) 518 519 for i, values := range priv.Precomputed.CRTValues { 520 prime := priv.Primes[2+i] 521 m2.Exp(c, values.Exp, prime) 522 m2.Sub(m2, m) 523 m2.Mul(m2, values.Coeff) 524 m2.Mod(m2, prime) 525 if m2.Sign() < 0 { 526 m2.Add(m2, prime) 527 } 528 m2.Mul(m2, values.R) 529 m.Add(m, m2) 530 } 531 } 532 533 if ir != nil { 534 // Unblind. 535 m.Mul(m, ir) 536 m.Mod(m, priv.N) 537 } 538 539 return 540 } 541 542 func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { 543 m, err = decrypt(random, priv, c) 544 if err != nil { 545 return nil, err 546 } 547 548 // In order to defend against errors in the CRT computation, m^e is 549 // calculated, which should match the original ciphertext. 550 check := encrypt(new(big.Int), &priv.PublicKey, m) 551 if c.Cmp(check) != 0 { 552 return nil, errors.New("rsa: internal error") 553 } 554 return m, nil 555 } 556 557 // DecryptOAEP decrypts ciphertext using RSA-OAEP. 558 559 // OAEP is parameterised by a hash function that is used as a random oracle. 560 // Encryption and decryption of a given message must use the same hash function 561 // and sha256.New() is a reasonable choice. 562 // 563 // The random parameter, if not nil, is used to blind the private-key operation 564 // and avoid timing side-channel attacks. Blinding is purely internal to this 565 // function – the random data need not match that used when encrypting. 566 // 567 // The label parameter must match the value given when encrypting. See 568 // EncryptOAEP for details. 569 func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { 570 if err := checkPub(&priv.PublicKey); err != nil { 571 return nil, err 572 } 573 k := priv.Size() 574 if len(ciphertext) > k || 575 k < hash.Size()*2+2 { 576 return nil, ErrDecryption 577 } 578 579 c := new(big.Int).SetBytes(ciphertext) 580 581 m, err := decrypt(random, priv, c) 582 if err != nil { 583 return nil, err 584 } 585 586 hash.Write(label) 587 lHash := hash.Sum(nil) 588 hash.Reset() 589 590 // Converting the plaintext number to bytes will strip any 591 // leading zeros so we may have to left pad. We do this unconditionally 592 // to avoid leaking timing information. (Although we still probably 593 // leak the number of leading zeros. It's not clear that we can do 594 // anything about this.) 595 em := leftPad(m.Bytes(), k) 596 597 firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) 598 599 seed := em[1 : hash.Size()+1] 600 db := em[hash.Size()+1:] 601 602 mgf1XOR(seed, hash, db) 603 mgf1XOR(db, hash, seed) 604 605 lHash2 := db[0:hash.Size()] 606 607 // We have to validate the plaintext in constant time in order to avoid 608 // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal 609 // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 610 // v2.0. In J. Kilian, editor, Advances in Cryptology. 611 lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) 612 613 // The remainder of the plaintext must be zero or more 0x00, followed 614 // by 0x01, followed by the message. 615 // lookingForIndex: 1 iff we are still looking for the 0x01 616 // index: the offset of the first 0x01 byte 617 // invalid: 1 iff we saw a non-zero byte before the 0x01. 618 var lookingForIndex, index, invalid int 619 lookingForIndex = 1 620 rest := db[hash.Size():] 621 622 for i := 0; i < len(rest); i++ { 623 equals0 := subtle.ConstantTimeByteEq(rest[i], 0) 624 equals1 := subtle.ConstantTimeByteEq(rest[i], 1) 625 index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) 626 lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) 627 invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) 628 } 629 630 if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { 631 return nil, ErrDecryption 632 } 633 634 return rest[index+1:], nil 635 } 636 637 // leftPad returns a new slice of length size. The contents of input are right 638 // aligned in the new slice. 639 func leftPad(input []byte, size int) (out []byte) { 640 n := len(input) 641 if n > size { 642 n = size 643 } 644 out = make([]byte, size) 645 copy(out[len(out)-n:], input) 646 return 647 }