github.com/insolar/x-crypto@v0.0.0-20191031140942-75fab8a325f6/x509/verify.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package x509 6 7 import ( 8 "bytes" 9 "errors" 10 "fmt" 11 "net" 12 "net/url" 13 "os" 14 "reflect" 15 "strings" 16 "time" 17 "unicode/utf8" 18 ) 19 20 // ignoreCN disables interpreting Common Name as a hostname. See issue 24151. 21 var ignoreCN = strings.Contains(os.Getenv("GODEBUG"), "x509ignoreCN=1") 22 23 type InvalidReason int 24 25 const ( 26 // NotAuthorizedToSign results when a certificate is signed by another 27 // which isn't marked as a CA certificate. 28 NotAuthorizedToSign InvalidReason = iota 29 // Expired results when a certificate has expired, based on the time 30 // given in the VerifyOptions. 31 Expired 32 // CANotAuthorizedForThisName results when an intermediate or root 33 // certificate has a name constraint which doesn't permit a DNS or 34 // other name (including IP address) in the leaf certificate. 35 CANotAuthorizedForThisName 36 // TooManyIntermediates results when a path length constraint is 37 // violated. 38 TooManyIntermediates 39 // IncompatibleUsage results when the certificate's key usage indicates 40 // that it may only be used for a different purpose. 41 IncompatibleUsage 42 // NameMismatch results when the subject name of a parent certificate 43 // does not match the issuer name in the child. 44 NameMismatch 45 // NameConstraintsWithoutSANs results when a leaf certificate doesn't 46 // contain a Subject Alternative Name extension, but a CA certificate 47 // contains name constraints, and the Common Name can be interpreted as 48 // a hostname. 49 // 50 // You can avoid this error by setting the experimental GODEBUG environment 51 // variable to "x509ignoreCN=1", disabling Common Name matching entirely. 52 // This behavior might become the default in the future. 53 NameConstraintsWithoutSANs 54 // UnconstrainedName results when a CA certificate contains permitted 55 // name constraints, but leaf certificate contains a name of an 56 // unsupported or unconstrained type. 57 UnconstrainedName 58 // TooManyConstraints results when the number of comparison operations 59 // needed to check a certificate exceeds the limit set by 60 // VerifyOptions.MaxConstraintComparisions. This limit exists to 61 // prevent pathological certificates can consuming excessive amounts of 62 // CPU time to verify. 63 TooManyConstraints 64 // CANotAuthorizedForExtKeyUsage results when an intermediate or root 65 // certificate does not permit a requested extended key usage. 66 CANotAuthorizedForExtKeyUsage 67 ) 68 69 // CertificateInvalidError results when an odd error occurs. Users of this 70 // library probably want to handle all these errors uniformly. 71 type CertificateInvalidError struct { 72 Cert *Certificate 73 Reason InvalidReason 74 Detail string 75 } 76 77 func (e CertificateInvalidError) Error() string { 78 switch e.Reason { 79 case NotAuthorizedToSign: 80 return "x509: certificate is not authorized to sign other certificates" 81 case Expired: 82 return "x509: certificate has expired or is not yet valid" 83 case CANotAuthorizedForThisName: 84 return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail 85 case CANotAuthorizedForExtKeyUsage: 86 return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail 87 case TooManyIntermediates: 88 return "x509: too many intermediates for path length constraint" 89 case IncompatibleUsage: 90 return "x509: certificate specifies an incompatible key usage" 91 case NameMismatch: 92 return "x509: issuer name does not match subject from issuing certificate" 93 case NameConstraintsWithoutSANs: 94 return "x509: issuer has name constraints but leaf doesn't have a SAN extension" 95 case UnconstrainedName: 96 return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail 97 } 98 return "x509: unknown error" 99 } 100 101 // HostnameError results when the set of authorized names doesn't match the 102 // requested name. 103 type HostnameError struct { 104 Certificate *Certificate 105 Host string 106 } 107 108 func (h HostnameError) Error() string { 109 c := h.Certificate 110 111 if !c.hasSANExtension() && !validHostname(c.Subject.CommonName) && 112 matchHostnames(toLowerCaseASCII(c.Subject.CommonName), toLowerCaseASCII(h.Host)) { 113 // This would have validated, if it weren't for the validHostname check on Common Name. 114 return "x509: Common Name is not a valid hostname: " + c.Subject.CommonName 115 } 116 117 var valid string 118 if ip := net.ParseIP(h.Host); ip != nil { 119 // Trying to validate an IP 120 if len(c.IPAddresses) == 0 { 121 return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs" 122 } 123 for _, san := range c.IPAddresses { 124 if len(valid) > 0 { 125 valid += ", " 126 } 127 valid += san.String() 128 } 129 } else { 130 if c.commonNameAsHostname() { 131 valid = c.Subject.CommonName 132 } else { 133 valid = strings.Join(c.DNSNames, ", ") 134 } 135 } 136 137 if len(valid) == 0 { 138 return "x509: certificate is not valid for any names, but wanted to match " + h.Host 139 } 140 return "x509: certificate is valid for " + valid + ", not " + h.Host 141 } 142 143 // UnknownAuthorityError results when the certificate issuer is unknown 144 type UnknownAuthorityError struct { 145 Cert *Certificate 146 // hintErr contains an error that may be helpful in determining why an 147 // authority wasn't found. 148 hintErr error 149 // hintCert contains a possible authority certificate that was rejected 150 // because of the error in hintErr. 151 hintCert *Certificate 152 } 153 154 func (e UnknownAuthorityError) Error() string { 155 s := "x509: certificate signed by unknown authority" 156 if e.hintErr != nil { 157 certName := e.hintCert.Subject.CommonName 158 if len(certName) == 0 { 159 if len(e.hintCert.Subject.Organization) > 0 { 160 certName = e.hintCert.Subject.Organization[0] 161 } else { 162 certName = "serial:" + e.hintCert.SerialNumber.String() 163 } 164 } 165 s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName) 166 } 167 return s 168 } 169 170 // SystemRootsError results when we fail to load the system root certificates. 171 type SystemRootsError struct { 172 Err error 173 } 174 175 func (se SystemRootsError) Error() string { 176 msg := "x509: failed to load system roots and no roots provided" 177 if se.Err != nil { 178 return msg + "; " + se.Err.Error() 179 } 180 return msg 181 } 182 183 // errNotParsed is returned when a certificate without ASN.1 contents is 184 // verified. Platform-specific verification needs the ASN.1 contents. 185 var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate") 186 187 // VerifyOptions contains parameters for Certificate.Verify. It's a structure 188 // because other PKIX verification APIs have ended up needing many options. 189 type VerifyOptions struct { 190 DNSName string 191 Intermediates *CertPool 192 Roots *CertPool // if nil, the system roots are used 193 CurrentTime time.Time // if zero, the current time is used 194 // KeyUsage specifies which Extended Key Usage values are acceptable. A leaf 195 // certificate is accepted if it contains any of the listed values. An empty 196 // list means ExtKeyUsageServerAuth. To accept any key usage, include 197 // ExtKeyUsageAny. 198 // 199 // Certificate chains are required to nest these extended key usage values. 200 // (This matches the Windows CryptoAPI behavior, but not the spec.) 201 KeyUsages []ExtKeyUsage 202 // MaxConstraintComparisions is the maximum number of comparisons to 203 // perform when checking a given certificate's name constraints. If 204 // zero, a sensible default is used. This limit prevents pathological 205 // certificates from consuming excessive amounts of CPU time when 206 // validating. 207 MaxConstraintComparisions int 208 } 209 210 const ( 211 leafCertificate = iota 212 intermediateCertificate 213 rootCertificate 214 ) 215 216 // rfc2821Mailbox represents a “mailbox” (which is an email address to most 217 // people) by breaking it into the “local” (i.e. before the '@') and “domain” 218 // parts. 219 type rfc2821Mailbox struct { 220 local, domain string 221 } 222 223 // parseRFC2821Mailbox parses an email address into local and domain parts, 224 // based on the ABNF for a “Mailbox” from RFC 2821. According to 225 // https://tools.ietf.org/html/rfc5280#section-4.2.1.6 that's correct for an 226 // rfc822Name from a certificate: “The format of an rfc822Name is a "Mailbox" 227 // as defined in https://tools.ietf.org/html/rfc2821#section-4.1.2”. 228 func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) { 229 if len(in) == 0 { 230 return mailbox, false 231 } 232 233 localPartBytes := make([]byte, 0, len(in)/2) 234 235 if in[0] == '"' { 236 // Quoted-string = DQUOTE *qcontent DQUOTE 237 // non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127 238 // qcontent = qtext / quoted-pair 239 // qtext = non-whitespace-control / 240 // %d33 / %d35-91 / %d93-126 241 // quoted-pair = ("\" text) / obs-qp 242 // text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text 243 // 244 // (Names beginning with “obs-” are the obsolete syntax from 245 // https://tools.ietf.org/html/rfc2822#section-4. Since it has 246 // been 16 years, we no longer accept that.) 247 in = in[1:] 248 QuotedString: 249 for { 250 if len(in) == 0 { 251 return mailbox, false 252 } 253 c := in[0] 254 in = in[1:] 255 256 switch { 257 case c == '"': 258 break QuotedString 259 260 case c == '\\': 261 // quoted-pair 262 if len(in) == 0 { 263 return mailbox, false 264 } 265 if in[0] == 11 || 266 in[0] == 12 || 267 (1 <= in[0] && in[0] <= 9) || 268 (14 <= in[0] && in[0] <= 127) { 269 localPartBytes = append(localPartBytes, in[0]) 270 in = in[1:] 271 } else { 272 return mailbox, false 273 } 274 275 case c == 11 || 276 c == 12 || 277 // Space (char 32) is not allowed based on the 278 // BNF, but RFC 3696 gives an example that 279 // assumes that it is. Several “verified” 280 // errata continue to argue about this point. 281 // We choose to accept it. 282 c == 32 || 283 c == 33 || 284 c == 127 || 285 (1 <= c && c <= 8) || 286 (14 <= c && c <= 31) || 287 (35 <= c && c <= 91) || 288 (93 <= c && c <= 126): 289 // qtext 290 localPartBytes = append(localPartBytes, c) 291 292 default: 293 return mailbox, false 294 } 295 } 296 } else { 297 // Atom ("." Atom)* 298 NextChar: 299 for len(in) > 0 { 300 // atext from https://tools.ietf.org/html/rfc2822#section-3.2.4 301 c := in[0] 302 303 switch { 304 case c == '\\': 305 // Examples given in RFC 3696 suggest that 306 // escaped characters can appear outside of a 307 // quoted string. Several “verified” errata 308 // continue to argue the point. We choose to 309 // accept it. 310 in = in[1:] 311 if len(in) == 0 { 312 return mailbox, false 313 } 314 fallthrough 315 316 case ('0' <= c && c <= '9') || 317 ('a' <= c && c <= 'z') || 318 ('A' <= c && c <= 'Z') || 319 c == '!' || c == '#' || c == '$' || c == '%' || 320 c == '&' || c == '\'' || c == '*' || c == '+' || 321 c == '-' || c == '/' || c == '=' || c == '?' || 322 c == '^' || c == '_' || c == '`' || c == '{' || 323 c == '|' || c == '}' || c == '~' || c == '.': 324 localPartBytes = append(localPartBytes, in[0]) 325 in = in[1:] 326 327 default: 328 break NextChar 329 } 330 } 331 332 if len(localPartBytes) == 0 { 333 return mailbox, false 334 } 335 336 // https://tools.ietf.org/html/rfc3696#section-3 337 // “period (".") may also appear, but may not be used to start 338 // or end the local part, nor may two or more consecutive 339 // periods appear.” 340 twoDots := []byte{'.', '.'} 341 if localPartBytes[0] == '.' || 342 localPartBytes[len(localPartBytes)-1] == '.' || 343 bytes.Contains(localPartBytes, twoDots) { 344 return mailbox, false 345 } 346 } 347 348 if len(in) == 0 || in[0] != '@' { 349 return mailbox, false 350 } 351 in = in[1:] 352 353 // The RFC species a format for domains, but that's known to be 354 // violated in practice so we accept that anything after an '@' is the 355 // domain part. 356 if _, ok := domainToReverseLabels(in); !ok { 357 return mailbox, false 358 } 359 360 mailbox.local = string(localPartBytes) 361 mailbox.domain = in 362 return mailbox, true 363 } 364 365 // domainToReverseLabels converts a textual domain name like foo.example.com to 366 // the list of labels in reverse order, e.g. ["com", "example", "foo"]. 367 func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) { 368 for len(domain) > 0 { 369 if i := strings.LastIndexByte(domain, '.'); i == -1 { 370 reverseLabels = append(reverseLabels, domain) 371 domain = "" 372 } else { 373 reverseLabels = append(reverseLabels, domain[i+1:]) 374 domain = domain[:i] 375 } 376 } 377 378 if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 { 379 // An empty label at the end indicates an absolute value. 380 return nil, false 381 } 382 383 for _, label := range reverseLabels { 384 if len(label) == 0 { 385 // Empty labels are otherwise invalid. 386 return nil, false 387 } 388 389 for _, c := range label { 390 if c < 33 || c > 126 { 391 // Invalid character. 392 return nil, false 393 } 394 } 395 } 396 397 return reverseLabels, true 398 } 399 400 func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) { 401 // If the constraint contains an @, then it specifies an exact mailbox 402 // name. 403 if strings.Contains(constraint, "@") { 404 constraintMailbox, ok := parseRFC2821Mailbox(constraint) 405 if !ok { 406 return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint) 407 } 408 return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil 409 } 410 411 // Otherwise the constraint is like a DNS constraint of the domain part 412 // of the mailbox. 413 return matchDomainConstraint(mailbox.domain, constraint) 414 } 415 416 func matchURIConstraint(uri *url.URL, constraint string) (bool, error) { 417 // https://tools.ietf.org/html/rfc5280#section-4.2.1.10 418 // “a uniformResourceIdentifier that does not include an authority 419 // component with a host name specified as a fully qualified domain 420 // name (e.g., if the URI either does not include an authority 421 // component or includes an authority component in which the host name 422 // is specified as an IP address), then the application MUST reject the 423 // certificate.” 424 425 host := uri.Host 426 if len(host) == 0 { 427 return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String()) 428 } 429 430 if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") { 431 var err error 432 host, _, err = net.SplitHostPort(uri.Host) 433 if err != nil { 434 return false, err 435 } 436 } 437 438 if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") || 439 net.ParseIP(host) != nil { 440 return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String()) 441 } 442 443 return matchDomainConstraint(host, constraint) 444 } 445 446 func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) { 447 if len(ip) != len(constraint.IP) { 448 return false, nil 449 } 450 451 for i := range ip { 452 if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask { 453 return false, nil 454 } 455 } 456 457 return true, nil 458 } 459 460 func matchDomainConstraint(domain, constraint string) (bool, error) { 461 // The meaning of zero length constraints is not specified, but this 462 // code follows NSS and accepts them as matching everything. 463 if len(constraint) == 0 { 464 return true, nil 465 } 466 467 domainLabels, ok := domainToReverseLabels(domain) 468 if !ok { 469 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain) 470 } 471 472 // RFC 5280 says that a leading period in a domain name means that at 473 // least one label must be prepended, but only for URI and email 474 // constraints, not DNS constraints. The code also supports that 475 // behaviour for DNS constraints. 476 477 mustHaveSubdomains := false 478 if constraint[0] == '.' { 479 mustHaveSubdomains = true 480 constraint = constraint[1:] 481 } 482 483 constraintLabels, ok := domainToReverseLabels(constraint) 484 if !ok { 485 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint) 486 } 487 488 if len(domainLabels) < len(constraintLabels) || 489 (mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) { 490 return false, nil 491 } 492 493 for i, constraintLabel := range constraintLabels { 494 if !strings.EqualFold(constraintLabel, domainLabels[i]) { 495 return false, nil 496 } 497 } 498 499 return true, nil 500 } 501 502 // checkNameConstraints checks that c permits a child certificate to claim the 503 // given name, of type nameType. The argument parsedName contains the parsed 504 // form of name, suitable for passing to the match function. The total number 505 // of comparisons is tracked in the given count and should not exceed the given 506 // limit. 507 func (c *Certificate) checkNameConstraints(count *int, 508 maxConstraintComparisons int, 509 nameType string, 510 name string, 511 parsedName interface{}, 512 match func(parsedName, constraint interface{}) (match bool, err error), 513 permitted, excluded interface{}) error { 514 515 excludedValue := reflect.ValueOf(excluded) 516 517 *count += excludedValue.Len() 518 if *count > maxConstraintComparisons { 519 return CertificateInvalidError{c, TooManyConstraints, ""} 520 } 521 522 for i := 0; i < excludedValue.Len(); i++ { 523 constraint := excludedValue.Index(i).Interface() 524 match, err := match(parsedName, constraint) 525 if err != nil { 526 return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()} 527 } 528 529 if match { 530 return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)} 531 } 532 } 533 534 permittedValue := reflect.ValueOf(permitted) 535 536 *count += permittedValue.Len() 537 if *count > maxConstraintComparisons { 538 return CertificateInvalidError{c, TooManyConstraints, ""} 539 } 540 541 ok := true 542 for i := 0; i < permittedValue.Len(); i++ { 543 constraint := permittedValue.Index(i).Interface() 544 545 var err error 546 if ok, err = match(parsedName, constraint); err != nil { 547 return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()} 548 } 549 550 if ok { 551 break 552 } 553 } 554 555 if !ok { 556 return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)} 557 } 558 559 return nil 560 } 561 562 // isValid performs validity checks on c given that it is a candidate to append 563 // to the chain in currentChain. 564 func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error { 565 if len(c.UnhandledCriticalExtensions) > 0 { 566 return UnhandledCriticalExtension{} 567 } 568 569 if len(currentChain) > 0 { 570 child := currentChain[len(currentChain)-1] 571 if !bytes.Equal(child.RawIssuer, c.RawSubject) { 572 return CertificateInvalidError{c, NameMismatch, ""} 573 } 574 } 575 576 now := opts.CurrentTime 577 if now.IsZero() { 578 now = time.Now() 579 } 580 if now.Before(c.NotBefore) || now.After(c.NotAfter) { 581 return CertificateInvalidError{c, Expired, ""} 582 } 583 584 maxConstraintComparisons := opts.MaxConstraintComparisions 585 if maxConstraintComparisons == 0 { 586 maxConstraintComparisons = 250000 587 } 588 comparisonCount := 0 589 590 var leaf *Certificate 591 if certType == intermediateCertificate || certType == rootCertificate { 592 if len(currentChain) == 0 { 593 return errors.New("x509: internal error: empty chain when appending CA cert") 594 } 595 leaf = currentChain[0] 596 } 597 598 checkNameConstraints := (certType == intermediateCertificate || certType == rootCertificate) && c.hasNameConstraints() 599 if checkNameConstraints && leaf.commonNameAsHostname() { 600 // This is the deprecated, legacy case of depending on the commonName as 601 // a hostname. We don't enforce name constraints against the CN, but 602 // VerifyHostname will look for hostnames in there if there are no SANs. 603 // In order to ensure VerifyHostname will not accept an unchecked name, 604 // return an error here. 605 return CertificateInvalidError{c, NameConstraintsWithoutSANs, ""} 606 } else if checkNameConstraints && leaf.hasSANExtension() { 607 err := forEachSAN(leaf.getSANExtension(), func(tag int, data []byte) error { 608 switch tag { 609 case nameTypeEmail: 610 name := string(data) 611 mailbox, ok := parseRFC2821Mailbox(name) 612 if !ok { 613 return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox) 614 } 615 616 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox, 617 func(parsedName, constraint interface{}) (bool, error) { 618 return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string)) 619 }, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil { 620 return err 621 } 622 623 case nameTypeDNS: 624 name := string(data) 625 if _, ok := domainToReverseLabels(name); !ok { 626 return fmt.Errorf("x509: cannot parse dnsName %q", name) 627 } 628 629 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name, 630 func(parsedName, constraint interface{}) (bool, error) { 631 return matchDomainConstraint(parsedName.(string), constraint.(string)) 632 }, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil { 633 return err 634 } 635 636 case nameTypeURI: 637 name := string(data) 638 uri, err := url.Parse(name) 639 if err != nil { 640 return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name) 641 } 642 643 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri, 644 func(parsedName, constraint interface{}) (bool, error) { 645 return matchURIConstraint(parsedName.(*url.URL), constraint.(string)) 646 }, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil { 647 return err 648 } 649 650 case nameTypeIP: 651 ip := net.IP(data) 652 if l := len(ip); l != net.IPv4len && l != net.IPv6len { 653 return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data) 654 } 655 656 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip, 657 func(parsedName, constraint interface{}) (bool, error) { 658 return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet)) 659 }, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil { 660 return err 661 } 662 663 default: 664 // Unknown SAN types are ignored. 665 } 666 667 return nil 668 }) 669 670 if err != nil { 671 return err 672 } 673 } 674 675 // KeyUsage status flags are ignored. From Engineering Security, Peter 676 // Gutmann: A European government CA marked its signing certificates as 677 // being valid for encryption only, but no-one noticed. Another 678 // European CA marked its signature keys as not being valid for 679 // signatures. A different CA marked its own trusted root certificate 680 // as being invalid for certificate signing. Another national CA 681 // distributed a certificate to be used to encrypt data for the 682 // country’s tax authority that was marked as only being usable for 683 // digital signatures but not for encryption. Yet another CA reversed 684 // the order of the bit flags in the keyUsage due to confusion over 685 // encoding endianness, essentially setting a random keyUsage in 686 // certificates that it issued. Another CA created a self-invalidating 687 // certificate by adding a certificate policy statement stipulating 688 // that the certificate had to be used strictly as specified in the 689 // keyUsage, and a keyUsage containing a flag indicating that the RSA 690 // encryption key could only be used for Diffie-Hellman key agreement. 691 692 if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) { 693 return CertificateInvalidError{c, NotAuthorizedToSign, ""} 694 } 695 696 if c.BasicConstraintsValid && c.MaxPathLen >= 0 { 697 numIntermediates := len(currentChain) - 1 698 if numIntermediates > c.MaxPathLen { 699 return CertificateInvalidError{c, TooManyIntermediates, ""} 700 } 701 } 702 703 return nil 704 } 705 706 func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate { 707 n := make([]*Certificate, len(chain)+1) 708 copy(n, chain) 709 n[len(chain)] = cert 710 return n 711 } 712 713 func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) { 714 possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c) 715 nextRoot: 716 for _, rootNum := range possibleRoots { 717 root := opts.Roots.certs[rootNum] 718 719 for _, cert := range currentChain { 720 if cert.Equal(root) { 721 continue nextRoot 722 } 723 } 724 725 err = root.isValid(rootCertificate, currentChain, opts) 726 if err != nil { 727 continue 728 } 729 chains = append(chains, appendToFreshChain(currentChain, root)) 730 } 731 732 possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c) 733 nextIntermediate: 734 for _, intermediateNum := range possibleIntermediates { 735 intermediate := opts.Intermediates.certs[intermediateNum] 736 for _, cert := range currentChain { 737 if cert.Equal(intermediate) { 738 continue nextIntermediate 739 } 740 } 741 err = intermediate.isValid(intermediateCertificate, currentChain, opts) 742 if err != nil { 743 continue 744 } 745 var childChains [][]*Certificate 746 childChains, ok := cache[intermediateNum] 747 if !ok { 748 childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts) 749 cache[intermediateNum] = childChains 750 } 751 chains = append(chains, childChains...) 752 } 753 754 if len(chains) > 0 { 755 err = nil 756 } 757 758 if len(chains) == 0 && err == nil { 759 hintErr := rootErr 760 hintCert := failedRoot 761 if hintErr == nil { 762 hintErr = intermediateErr 763 hintCert = failedIntermediate 764 } 765 err = UnknownAuthorityError{c, hintErr, hintCert} 766 } 767 768 return 769 } 770 771 // validHostname returns whether host is a valid hostname that can be matched or 772 // matched against according to RFC 6125 2.2, with some leniency to accomodate 773 // legacy values. 774 func validHostname(host string) bool { 775 host = strings.TrimSuffix(host, ".") 776 777 if len(host) == 0 { 778 return false 779 } 780 781 for i, part := range strings.Split(host, ".") { 782 if part == "" { 783 // Empty label. 784 return false 785 } 786 if i == 0 && part == "*" { 787 // Only allow full left-most wildcards, as those are the only ones 788 // we match, and matching literal '*' characters is probably never 789 // the expected behavior. 790 continue 791 } 792 for j, c := range part { 793 if 'a' <= c && c <= 'z' { 794 continue 795 } 796 if '0' <= c && c <= '9' { 797 continue 798 } 799 if 'A' <= c && c <= 'Z' { 800 continue 801 } 802 if c == '-' && j != 0 { 803 continue 804 } 805 if c == '_' { 806 // _ is not a valid character in hostnames, but it's commonly 807 // found in deployments outside the WebPKI. 808 continue 809 } 810 return false 811 } 812 } 813 814 return true 815 } 816 817 // commonNameAsHostname reports whether the Common Name field should be 818 // considered the hostname that the certificate is valid for. This is a legacy 819 // behavior, disabled if the Subject Alt Name extension is present. 820 // 821 // It applies the strict validHostname check to the Common Name field, so that 822 // certificates without SANs can still be validated against CAs with name 823 // constraints if there is no risk the CN would be matched as a hostname. 824 // See NameConstraintsWithoutSANs and issue 24151. 825 func (c *Certificate) commonNameAsHostname() bool { 826 return !ignoreCN && !c.hasSANExtension() && validHostname(c.Subject.CommonName) 827 } 828 829 func matchHostnames(pattern, host string) bool { 830 host = strings.TrimSuffix(host, ".") 831 pattern = strings.TrimSuffix(pattern, ".") 832 833 if len(pattern) == 0 || len(host) == 0 { 834 return false 835 } 836 837 patternParts := strings.Split(pattern, ".") 838 hostParts := strings.Split(host, ".") 839 840 if len(patternParts) != len(hostParts) { 841 return false 842 } 843 844 for i, patternPart := range patternParts { 845 if i == 0 && patternPart == "*" { 846 continue 847 } 848 if patternPart != hostParts[i] { 849 return false 850 } 851 } 852 853 return true 854 } 855 856 // toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use 857 // an explicitly ASCII function to avoid any sharp corners resulting from 858 // performing Unicode operations on DNS labels. 859 func toLowerCaseASCII(in string) string { 860 // If the string is already lower-case then there's nothing to do. 861 isAlreadyLowerCase := true 862 for _, c := range in { 863 if c == utf8.RuneError { 864 // If we get a UTF-8 error then there might be 865 // upper-case ASCII bytes in the invalid sequence. 866 isAlreadyLowerCase = false 867 break 868 } 869 if 'A' <= c && c <= 'Z' { 870 isAlreadyLowerCase = false 871 break 872 } 873 } 874 875 if isAlreadyLowerCase { 876 return in 877 } 878 879 out := []byte(in) 880 for i, c := range out { 881 if 'A' <= c && c <= 'Z' { 882 out[i] += 'a' - 'A' 883 } 884 } 885 return string(out) 886 } 887 888 // VerifyHostname returns nil if c is a valid certificate for the named host. 889 // Otherwise it returns an error describing the mismatch. 890 func (c *Certificate) VerifyHostname(h string) error { 891 // IP addresses may be written in [ ]. 892 candidateIP := h 893 if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' { 894 candidateIP = h[1 : len(h)-1] 895 } 896 if ip := net.ParseIP(candidateIP); ip != nil { 897 // We only match IP addresses against IP SANs. 898 // https://tools.ietf.org/html/rfc6125#appendix-B.2 899 for _, candidate := range c.IPAddresses { 900 if ip.Equal(candidate) { 901 return nil 902 } 903 } 904 return HostnameError{c, candidateIP} 905 } 906 907 lowered := toLowerCaseASCII(h) 908 909 if c.commonNameAsHostname() { 910 if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) { 911 return nil 912 } 913 } else { 914 for _, match := range c.DNSNames { 915 if matchHostnames(toLowerCaseASCII(match), lowered) { 916 return nil 917 } 918 } 919 } 920 921 return HostnameError{c, h} 922 } 923 924 func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool { 925 usages := make([]ExtKeyUsage, len(keyUsages)) 926 copy(usages, keyUsages) 927 928 if len(chain) == 0 { 929 return false 930 } 931 932 usagesRemaining := len(usages) 933 934 // We walk down the list and cross out any usages that aren't supported 935 // by each certificate. If we cross out all the usages, then the chain 936 // is unacceptable. 937 938 NextCert: 939 for i := len(chain) - 1; i >= 0; i-- { 940 cert := chain[i] 941 if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 { 942 // The certificate doesn't have any extended key usage specified. 943 continue 944 } 945 946 for _, usage := range cert.ExtKeyUsage { 947 if usage == ExtKeyUsageAny { 948 // The certificate is explicitly good for any usage. 949 continue NextCert 950 } 951 } 952 953 const invalidUsage ExtKeyUsage = -1 954 955 NextRequestedUsage: 956 for i, requestedUsage := range usages { 957 if requestedUsage == invalidUsage { 958 continue 959 } 960 961 for _, usage := range cert.ExtKeyUsage { 962 if requestedUsage == usage { 963 continue NextRequestedUsage 964 } else if requestedUsage == ExtKeyUsageServerAuth && 965 (usage == ExtKeyUsageNetscapeServerGatedCrypto || 966 usage == ExtKeyUsageMicrosoftServerGatedCrypto) { 967 // In order to support COMODO 968 // certificate chains, we have to 969 // accept Netscape or Microsoft SGC 970 // usages as equal to ServerAuth. 971 continue NextRequestedUsage 972 } 973 } 974 975 usages[i] = invalidUsage 976 usagesRemaining-- 977 if usagesRemaining == 0 { 978 return false 979 } 980 } 981 } 982 983 return true 984 }