github.com/instill-ai/component@v0.16.0-beta/pkg/connector/pinecone/v0/README.mdx (about) 1 --- 2 title: "Pinecone" 3 lang: "en-US" 4 draft: false 5 description: "Learn about how to set up a VDP Pinecone connector https://github.com/instill-ai/instill-core" 6 --- 7 8 The Pinecone component is a data connector that allows users to build and search vector datasets. 9 It can carry out the following tasks: 10 11 - [Query](#query) 12 - [Upsert](#upsert) 13 14 ## Release Stage 15 16 `Alpha` 17 18 ## Configuration 19 20 The component configuration is defined and maintained [here](https://github.com/instill-ai/component/blob/main/pkg/connector/pinecone/v0/config/definition.json). 21 22 ## Connection 23 24 | Field | Field ID | Type | Note | 25 | :--- | :--- | :--- | :--- | 26 | API Key (required) | `api_key` | string | Fill your Pinecone AI API key. You can create a api key in [Pinecone Console](https://app.pinecone.io/) | 27 | Pinecone Base URL (required) | `url` | string | Fill in your Pinecone base URL. It is in the form [https://index_name-project_id.svc.environment.pinecone.io] | 28 29 ## Supported Tasks 30 31 ### Query 32 33 Retrieve the ids of the most similar items in a namespace, along with their similarity scores. 34 35 | Input | ID | Type | Description | 36 | :--- | :--- | :--- | :--- | 37 | Task ID (required) | `task` | string | `TASK_QUERY` | 38 | ID | `id` | string | The unique ID of the vector to be used as a query vector. If present, the vector parameter will be ignored. | 39 | Vector (required) | `vector` | array[number] | An array of dimensions for the query vector. | 40 | Top K (required) | `top_k` | integer | The number of results to return for each query | 41 | Namespace | `namespace` | string | The namespace to query | 42 | Filter | `filter` | object | The filter to apply. You can use vector metadata to limit your search. See https://www.pinecone.io/docs/metadata-filtering/. | 43 | Minimum Score | `min_score` | number | Exclude results whose score is below this value | 44 | Include Metadata | `include_metadata` | boolean | Indicates whether metadata is included in the response as well as the IDs | 45 | Include Values | `include_values` | boolean | Indicates whether vector values are included in the response | 46 47 | Output | ID | Type | Description | 48 | :--- | :--- | :--- | :--- | 49 | Namespace | `namespace` | string | The namespace of the query | 50 | Matches | `matches` | array[object] | The matches returned for the query | 51 52 ### Upsert 53 54 Writes vectors into a namespace. If a new value is upserted for an existing vector id, it will overwrite the previous value. 55 56 | Input | ID | Type | Description | 57 | :--- | :--- | :--- | :--- | 58 | Task ID (required) | `task` | string | `TASK_UPSERT` | 59 | ID (required) | `id` | string | This is the vector's unique id | 60 | Values (required) | `values` | array[number] | An array of dimensions for the vector to be saved | 61 | Namespace | `namespace` | string | The namespace to query | 62 | Metadata | `metadata` | object | The vector metadata | 63 64 | Output | ID | Type | Description | 65 | :--- | :--- | :--- | :--- | 66 | Upserted Count | `upserted_count` | integer | Number of records modified or added |