github.com/integration-system/go-cmp@v0.0.0-20190131081942-ac5582987a2f/cmp/internal/diff/diff.go (about) 1 // Copyright 2017, The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE.md file. 4 5 // Package diff implements an algorithm for producing edit-scripts. 6 // The edit-script is a sequence of operations needed to transform one list 7 // of symbols into another (or vice-versa). The edits allowed are insertions, 8 // deletions, and modifications. The summation of all edits is called the 9 // Levenshtein distance as this problem is well-known in computer science. 10 // 11 // This package prioritizes performance over accuracy. That is, the run time 12 // is more important than obtaining a minimal Levenshtein distance. 13 package diff 14 15 // EditType represents a single operation within an edit-script. 16 type EditType uint8 17 18 const ( 19 // Identity indicates that a symbol pair is identical in both list X and Y. 20 Identity EditType = iota 21 // UniqueX indicates that a symbol only exists in X and not Y. 22 UniqueX 23 // UniqueY indicates that a symbol only exists in Y and not X. 24 UniqueY 25 // Modified indicates that a symbol pair is a modification of each other. 26 Modified 27 ) 28 29 // EditScript represents the series of differences between two lists. 30 type EditScript []EditType 31 32 // String returns a human-readable string representing the edit-script where 33 // Identity, UniqueX, UniqueY, and Modified are represented by the 34 // '.', 'X', 'Y', and 'M' characters, respectively. 35 func (es EditScript) String() string { 36 b := make([]byte, len(es)) 37 for i, e := range es { 38 switch e { 39 case Identity: 40 b[i] = '.' 41 case UniqueX: 42 b[i] = 'X' 43 case UniqueY: 44 b[i] = 'Y' 45 case Modified: 46 b[i] = 'M' 47 default: 48 panic("invalid edit-type") 49 } 50 } 51 return string(b) 52 } 53 54 // stats returns a histogram of the number of each type of edit operation. 55 func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) { 56 for _, e := range es { 57 switch e { 58 case Identity: 59 s.NI++ 60 case UniqueX: 61 s.NX++ 62 case UniqueY: 63 s.NY++ 64 case Modified: 65 s.NM++ 66 default: 67 panic("invalid edit-type") 68 } 69 } 70 return 71 } 72 73 // Dist is the Levenshtein distance and is guaranteed to be 0 if and only if 74 // lists X and Y are equal. 75 func (es EditScript) Dist() int { return len(es) - es.stats().NI } 76 77 // LenX is the length of the X list. 78 func (es EditScript) LenX() int { return len(es) - es.stats().NY } 79 80 // LenY is the length of the Y list. 81 func (es EditScript) LenY() int { return len(es) - es.stats().NX } 82 83 // EqualFunc reports whether the symbols at indexes ix and iy are equal. 84 // When called by Difference, the index is guaranteed to be within nx and ny. 85 type EqualFunc func(ix int, iy int) Result 86 87 // Result is the result of comparison. 88 // NSame is the number of sub-elements that are equal. 89 // NDiff is the number of sub-elements that are not equal. 90 type Result struct{ NSame, NDiff int } 91 92 // Equal indicates whether the symbols are equal. Two symbols are equal 93 // if and only if NDiff == 0. If Equal, then they are also Similar. 94 func (r Result) Equal() bool { return r.NDiff == 0 } 95 96 // Similar indicates whether two symbols are similar and may be represented 97 // by using the Modified type. As a special case, we consider binary comparisons 98 // (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar. 99 // 100 // The exact ratio of NSame to NDiff to determine similarity may change. 101 func (r Result) Similar() bool { 102 // Use NSame+1 to offset NSame so that binary comparisons are similar. 103 return r.NSame+1 >= r.NDiff 104 } 105 106 // Difference reports whether two lists of lengths nx and ny are equal 107 // given the definition of equality provided as f. 108 // 109 // This function returns an edit-script, which is a sequence of operations 110 // needed to convert one list into the other. The following invariants for 111 // the edit-script are maintained: 112 // • eq == (es.Dist()==0) 113 // • nx == es.LenX() 114 // • ny == es.LenY() 115 // 116 // This algorithm is not guaranteed to be an optimal solution (i.e., one that 117 // produces an edit-script with a minimal Levenshtein distance). This algorithm 118 // favors performance over optimality. The exact output is not guaranteed to 119 // be stable and may change over time. 120 func Difference(nx, ny int, f EqualFunc) (es EditScript) { 121 // This algorithm is based on traversing what is known as an "edit-graph". 122 // See Figure 1 from "An O(ND) Difference Algorithm and Its Variations" 123 // by Eugene W. Myers. Since D can be as large as N itself, this is 124 // effectively O(N^2). Unlike the algorithm from that paper, we are not 125 // interested in the optimal path, but at least some "decent" path. 126 // 127 // For example, let X and Y be lists of symbols: 128 // X = [A B C A B B A] 129 // Y = [C B A B A C] 130 // 131 // The edit-graph can be drawn as the following: 132 // A B C A B B A 133 // ┌─────────────┐ 134 // C │_|_|\|_|_|_|_│ 0 135 // B │_|\|_|_|\|\|_│ 1 136 // A │\|_|_|\|_|_|\│ 2 137 // B │_|\|_|_|\|\|_│ 3 138 // A │\|_|_|\|_|_|\│ 4 139 // C │ | |\| | | | │ 5 140 // └─────────────┘ 6 141 // 0 1 2 3 4 5 6 7 142 // 143 // List X is written along the horizontal axis, while list Y is written 144 // along the vertical axis. At any point on this grid, if the symbol in 145 // list X matches the corresponding symbol in list Y, then a '\' is drawn. 146 // The goal of any minimal edit-script algorithm is to find a path from the 147 // top-left corner to the bottom-right corner, while traveling through the 148 // fewest horizontal or vertical edges. 149 // A horizontal edge is equivalent to inserting a symbol from list X. 150 // A vertical edge is equivalent to inserting a symbol from list Y. 151 // A diagonal edge is equivalent to a matching symbol between both X and Y. 152 153 // Invariants: 154 // • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx 155 // • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny 156 // 157 // In general: 158 // • fwdFrontier.X < revFrontier.X 159 // • fwdFrontier.Y < revFrontier.Y 160 // Unless, it is time for the algorithm to terminate. 161 fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)} 162 revPath := path{-1, point{nx, ny}, make(EditScript, 0)} 163 fwdFrontier := fwdPath.point // Forward search frontier 164 revFrontier := revPath.point // Reverse search frontier 165 166 // Search budget bounds the cost of searching for better paths. 167 // The longest sequence of non-matching symbols that can be tolerated is 168 // approximately the square-root of the search budget. 169 searchBudget := 4 * (nx + ny) // O(n) 170 171 // The algorithm below is a greedy, meet-in-the-middle algorithm for 172 // computing sub-optimal edit-scripts between two lists. 173 // 174 // The algorithm is approximately as follows: 175 // • Searching for differences switches back-and-forth between 176 // a search that starts at the beginning (the top-left corner), and 177 // a search that starts at the end (the bottom-right corner). The goal of 178 // the search is connect with the search from the opposite corner. 179 // • As we search, we build a path in a greedy manner, where the first 180 // match seen is added to the path (this is sub-optimal, but provides a 181 // decent result in practice). When matches are found, we try the next pair 182 // of symbols in the lists and follow all matches as far as possible. 183 // • When searching for matches, we search along a diagonal going through 184 // through the "frontier" point. If no matches are found, we advance the 185 // frontier towards the opposite corner. 186 // • This algorithm terminates when either the X coordinates or the 187 // Y coordinates of the forward and reverse frontier points ever intersect. 188 // 189 // This algorithm is correct even if searching only in the forward direction 190 // or in the reverse direction. We do both because it is commonly observed 191 // that two lists commonly differ because elements were added to the front 192 // or end of the other list. 193 // 194 // Running the tests with the "debug" build tag prints a visualization of 195 // the algorithm running in real-time. This is educational for understanding 196 // how the algorithm works. See debug_enable.go. 197 f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es) 198 for { 199 // Forward search from the beginning. 200 if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { 201 break 202 } 203 for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { 204 // Search in a diagonal pattern for a match. 205 z := zigzag(i) 206 p := point{fwdFrontier.X + z, fwdFrontier.Y - z} 207 switch { 208 case p.X >= revPath.X || p.Y < fwdPath.Y: 209 stop1 = true // Hit top-right corner 210 case p.Y >= revPath.Y || p.X < fwdPath.X: 211 stop2 = true // Hit bottom-left corner 212 case f(p.X, p.Y).Equal(): 213 // Match found, so connect the path to this point. 214 fwdPath.connect(p, f) 215 fwdPath.append(Identity) 216 // Follow sequence of matches as far as possible. 217 for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { 218 if !f(fwdPath.X, fwdPath.Y).Equal() { 219 break 220 } 221 fwdPath.append(Identity) 222 } 223 fwdFrontier = fwdPath.point 224 stop1, stop2 = true, true 225 default: 226 searchBudget-- // Match not found 227 } 228 debug.Update() 229 } 230 // Advance the frontier towards reverse point. 231 if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y { 232 fwdFrontier.X++ 233 } else { 234 fwdFrontier.Y++ 235 } 236 237 // Reverse search from the end. 238 if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { 239 break 240 } 241 for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { 242 // Search in a diagonal pattern for a match. 243 z := zigzag(i) 244 p := point{revFrontier.X - z, revFrontier.Y + z} 245 switch { 246 case fwdPath.X >= p.X || revPath.Y < p.Y: 247 stop1 = true // Hit bottom-left corner 248 case fwdPath.Y >= p.Y || revPath.X < p.X: 249 stop2 = true // Hit top-right corner 250 case f(p.X-1, p.Y-1).Equal(): 251 // Match found, so connect the path to this point. 252 revPath.connect(p, f) 253 revPath.append(Identity) 254 // Follow sequence of matches as far as possible. 255 for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { 256 if !f(revPath.X-1, revPath.Y-1).Equal() { 257 break 258 } 259 revPath.append(Identity) 260 } 261 revFrontier = revPath.point 262 stop1, stop2 = true, true 263 default: 264 searchBudget-- // Match not found 265 } 266 debug.Update() 267 } 268 // Advance the frontier towards forward point. 269 if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y { 270 revFrontier.X-- 271 } else { 272 revFrontier.Y-- 273 } 274 } 275 276 // Join the forward and reverse paths and then append the reverse path. 277 fwdPath.connect(revPath.point, f) 278 for i := len(revPath.es) - 1; i >= 0; i-- { 279 t := revPath.es[i] 280 revPath.es = revPath.es[:i] 281 fwdPath.append(t) 282 } 283 debug.Finish() 284 return fwdPath.es 285 } 286 287 type path struct { 288 dir int // +1 if forward, -1 if reverse 289 point // Leading point of the EditScript path 290 es EditScript 291 } 292 293 // connect appends any necessary Identity, Modified, UniqueX, or UniqueY types 294 // to the edit-script to connect p.point to dst. 295 func (p *path) connect(dst point, f EqualFunc) { 296 if p.dir > 0 { 297 // Connect in forward direction. 298 for dst.X > p.X && dst.Y > p.Y { 299 switch r := f(p.X, p.Y); { 300 case r.Equal(): 301 p.append(Identity) 302 case r.Similar(): 303 p.append(Modified) 304 case dst.X-p.X >= dst.Y-p.Y: 305 p.append(UniqueX) 306 default: 307 p.append(UniqueY) 308 } 309 } 310 for dst.X > p.X { 311 p.append(UniqueX) 312 } 313 for dst.Y > p.Y { 314 p.append(UniqueY) 315 } 316 } else { 317 // Connect in reverse direction. 318 for p.X > dst.X && p.Y > dst.Y { 319 switch r := f(p.X-1, p.Y-1); { 320 case r.Equal(): 321 p.append(Identity) 322 case r.Similar(): 323 p.append(Modified) 324 case p.Y-dst.Y >= p.X-dst.X: 325 p.append(UniqueY) 326 default: 327 p.append(UniqueX) 328 } 329 } 330 for p.X > dst.X { 331 p.append(UniqueX) 332 } 333 for p.Y > dst.Y { 334 p.append(UniqueY) 335 } 336 } 337 } 338 339 func (p *path) append(t EditType) { 340 p.es = append(p.es, t) 341 switch t { 342 case Identity, Modified: 343 p.add(p.dir, p.dir) 344 case UniqueX: 345 p.add(p.dir, 0) 346 case UniqueY: 347 p.add(0, p.dir) 348 } 349 debug.Update() 350 } 351 352 type point struct{ X, Y int } 353 354 func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy } 355 356 // zigzag maps a consecutive sequence of integers to a zig-zag sequence. 357 // [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...] 358 func zigzag(x int) int { 359 if x&1 != 0 { 360 x = ^x 361 } 362 return x >> 1 363 }