github.com/integration-system/go-cmp@v0.0.0-20190131081942-ac5582987a2f/cmp/internal/diff/diff.go (about)

     1  // Copyright 2017, The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE.md file.
     4  
     5  // Package diff implements an algorithm for producing edit-scripts.
     6  // The edit-script is a sequence of operations needed to transform one list
     7  // of symbols into another (or vice-versa). The edits allowed are insertions,
     8  // deletions, and modifications. The summation of all edits is called the
     9  // Levenshtein distance as this problem is well-known in computer science.
    10  //
    11  // This package prioritizes performance over accuracy. That is, the run time
    12  // is more important than obtaining a minimal Levenshtein distance.
    13  package diff
    14  
    15  // EditType represents a single operation within an edit-script.
    16  type EditType uint8
    17  
    18  const (
    19  	// Identity indicates that a symbol pair is identical in both list X and Y.
    20  	Identity EditType = iota
    21  	// UniqueX indicates that a symbol only exists in X and not Y.
    22  	UniqueX
    23  	// UniqueY indicates that a symbol only exists in Y and not X.
    24  	UniqueY
    25  	// Modified indicates that a symbol pair is a modification of each other.
    26  	Modified
    27  )
    28  
    29  // EditScript represents the series of differences between two lists.
    30  type EditScript []EditType
    31  
    32  // String returns a human-readable string representing the edit-script where
    33  // Identity, UniqueX, UniqueY, and Modified are represented by the
    34  // '.', 'X', 'Y', and 'M' characters, respectively.
    35  func (es EditScript) String() string {
    36  	b := make([]byte, len(es))
    37  	for i, e := range es {
    38  		switch e {
    39  		case Identity:
    40  			b[i] = '.'
    41  		case UniqueX:
    42  			b[i] = 'X'
    43  		case UniqueY:
    44  			b[i] = 'Y'
    45  		case Modified:
    46  			b[i] = 'M'
    47  		default:
    48  			panic("invalid edit-type")
    49  		}
    50  	}
    51  	return string(b)
    52  }
    53  
    54  // stats returns a histogram of the number of each type of edit operation.
    55  func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
    56  	for _, e := range es {
    57  		switch e {
    58  		case Identity:
    59  			s.NI++
    60  		case UniqueX:
    61  			s.NX++
    62  		case UniqueY:
    63  			s.NY++
    64  		case Modified:
    65  			s.NM++
    66  		default:
    67  			panic("invalid edit-type")
    68  		}
    69  	}
    70  	return
    71  }
    72  
    73  // Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
    74  // lists X and Y are equal.
    75  func (es EditScript) Dist() int { return len(es) - es.stats().NI }
    76  
    77  // LenX is the length of the X list.
    78  func (es EditScript) LenX() int { return len(es) - es.stats().NY }
    79  
    80  // LenY is the length of the Y list.
    81  func (es EditScript) LenY() int { return len(es) - es.stats().NX }
    82  
    83  // EqualFunc reports whether the symbols at indexes ix and iy are equal.
    84  // When called by Difference, the index is guaranteed to be within nx and ny.
    85  type EqualFunc func(ix int, iy int) Result
    86  
    87  // Result is the result of comparison.
    88  // NSame is the number of sub-elements that are equal.
    89  // NDiff is the number of sub-elements that are not equal.
    90  type Result struct{ NSame, NDiff int }
    91  
    92  // Equal indicates whether the symbols are equal. Two symbols are equal
    93  // if and only if NDiff == 0. If Equal, then they are also Similar.
    94  func (r Result) Equal() bool { return r.NDiff == 0 }
    95  
    96  // Similar indicates whether two symbols are similar and may be represented
    97  // by using the Modified type. As a special case, we consider binary comparisons
    98  // (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
    99  //
   100  // The exact ratio of NSame to NDiff to determine similarity may change.
   101  func (r Result) Similar() bool {
   102  	// Use NSame+1 to offset NSame so that binary comparisons are similar.
   103  	return r.NSame+1 >= r.NDiff
   104  }
   105  
   106  // Difference reports whether two lists of lengths nx and ny are equal
   107  // given the definition of equality provided as f.
   108  //
   109  // This function returns an edit-script, which is a sequence of operations
   110  // needed to convert one list into the other. The following invariants for
   111  // the edit-script are maintained:
   112  //	• eq == (es.Dist()==0)
   113  //	• nx == es.LenX()
   114  //	• ny == es.LenY()
   115  //
   116  // This algorithm is not guaranteed to be an optimal solution (i.e., one that
   117  // produces an edit-script with a minimal Levenshtein distance). This algorithm
   118  // favors performance over optimality. The exact output is not guaranteed to
   119  // be stable and may change over time.
   120  func Difference(nx, ny int, f EqualFunc) (es EditScript) {
   121  	// This algorithm is based on traversing what is known as an "edit-graph".
   122  	// See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
   123  	// by Eugene W. Myers. Since D can be as large as N itself, this is
   124  	// effectively O(N^2). Unlike the algorithm from that paper, we are not
   125  	// interested in the optimal path, but at least some "decent" path.
   126  	//
   127  	// For example, let X and Y be lists of symbols:
   128  	//	X = [A B C A B B A]
   129  	//	Y = [C B A B A C]
   130  	//
   131  	// The edit-graph can be drawn as the following:
   132  	//	   A B C A B B A
   133  	//	  ┌─────────────┐
   134  	//	C │_|_|\|_|_|_|_│ 0
   135  	//	B │_|\|_|_|\|\|_│ 1
   136  	//	A │\|_|_|\|_|_|\│ 2
   137  	//	B │_|\|_|_|\|\|_│ 3
   138  	//	A │\|_|_|\|_|_|\│ 4
   139  	//	C │ | |\| | | | │ 5
   140  	//	  └─────────────┘ 6
   141  	//	   0 1 2 3 4 5 6 7
   142  	//
   143  	// List X is written along the horizontal axis, while list Y is written
   144  	// along the vertical axis. At any point on this grid, if the symbol in
   145  	// list X matches the corresponding symbol in list Y, then a '\' is drawn.
   146  	// The goal of any minimal edit-script algorithm is to find a path from the
   147  	// top-left corner to the bottom-right corner, while traveling through the
   148  	// fewest horizontal or vertical edges.
   149  	// A horizontal edge is equivalent to inserting a symbol from list X.
   150  	// A vertical edge is equivalent to inserting a symbol from list Y.
   151  	// A diagonal edge is equivalent to a matching symbol between both X and Y.
   152  
   153  	// Invariants:
   154  	//	• 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
   155  	//	• 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
   156  	//
   157  	// In general:
   158  	//	• fwdFrontier.X < revFrontier.X
   159  	//	• fwdFrontier.Y < revFrontier.Y
   160  	// Unless, it is time for the algorithm to terminate.
   161  	fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
   162  	revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
   163  	fwdFrontier := fwdPath.point // Forward search frontier
   164  	revFrontier := revPath.point // Reverse search frontier
   165  
   166  	// Search budget bounds the cost of searching for better paths.
   167  	// The longest sequence of non-matching symbols that can be tolerated is
   168  	// approximately the square-root of the search budget.
   169  	searchBudget := 4 * (nx + ny) // O(n)
   170  
   171  	// The algorithm below is a greedy, meet-in-the-middle algorithm for
   172  	// computing sub-optimal edit-scripts between two lists.
   173  	//
   174  	// The algorithm is approximately as follows:
   175  	//	• Searching for differences switches back-and-forth between
   176  	//	a search that starts at the beginning (the top-left corner), and
   177  	//	a search that starts at the end (the bottom-right corner). The goal of
   178  	//	the search is connect with the search from the opposite corner.
   179  	//	• As we search, we build a path in a greedy manner, where the first
   180  	//	match seen is added to the path (this is sub-optimal, but provides a
   181  	//	decent result in practice). When matches are found, we try the next pair
   182  	//	of symbols in the lists and follow all matches as far as possible.
   183  	//	• When searching for matches, we search along a diagonal going through
   184  	//	through the "frontier" point. If no matches are found, we advance the
   185  	//	frontier towards the opposite corner.
   186  	//	• This algorithm terminates when either the X coordinates or the
   187  	//	Y coordinates of the forward and reverse frontier points ever intersect.
   188  	//
   189  	// This algorithm is correct even if searching only in the forward direction
   190  	// or in the reverse direction. We do both because it is commonly observed
   191  	// that two lists commonly differ because elements were added to the front
   192  	// or end of the other list.
   193  	//
   194  	// Running the tests with the "debug" build tag prints a visualization of
   195  	// the algorithm running in real-time. This is educational for understanding
   196  	// how the algorithm works. See debug_enable.go.
   197  	f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
   198  	for {
   199  		// Forward search from the beginning.
   200  		if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
   201  			break
   202  		}
   203  		for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
   204  			// Search in a diagonal pattern for a match.
   205  			z := zigzag(i)
   206  			p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
   207  			switch {
   208  			case p.X >= revPath.X || p.Y < fwdPath.Y:
   209  				stop1 = true // Hit top-right corner
   210  			case p.Y >= revPath.Y || p.X < fwdPath.X:
   211  				stop2 = true // Hit bottom-left corner
   212  			case f(p.X, p.Y).Equal():
   213  				// Match found, so connect the path to this point.
   214  				fwdPath.connect(p, f)
   215  				fwdPath.append(Identity)
   216  				// Follow sequence of matches as far as possible.
   217  				for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
   218  					if !f(fwdPath.X, fwdPath.Y).Equal() {
   219  						break
   220  					}
   221  					fwdPath.append(Identity)
   222  				}
   223  				fwdFrontier = fwdPath.point
   224  				stop1, stop2 = true, true
   225  			default:
   226  				searchBudget-- // Match not found
   227  			}
   228  			debug.Update()
   229  		}
   230  		// Advance the frontier towards reverse point.
   231  		if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
   232  			fwdFrontier.X++
   233  		} else {
   234  			fwdFrontier.Y++
   235  		}
   236  
   237  		// Reverse search from the end.
   238  		if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
   239  			break
   240  		}
   241  		for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
   242  			// Search in a diagonal pattern for a match.
   243  			z := zigzag(i)
   244  			p := point{revFrontier.X - z, revFrontier.Y + z}
   245  			switch {
   246  			case fwdPath.X >= p.X || revPath.Y < p.Y:
   247  				stop1 = true // Hit bottom-left corner
   248  			case fwdPath.Y >= p.Y || revPath.X < p.X:
   249  				stop2 = true // Hit top-right corner
   250  			case f(p.X-1, p.Y-1).Equal():
   251  				// Match found, so connect the path to this point.
   252  				revPath.connect(p, f)
   253  				revPath.append(Identity)
   254  				// Follow sequence of matches as far as possible.
   255  				for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
   256  					if !f(revPath.X-1, revPath.Y-1).Equal() {
   257  						break
   258  					}
   259  					revPath.append(Identity)
   260  				}
   261  				revFrontier = revPath.point
   262  				stop1, stop2 = true, true
   263  			default:
   264  				searchBudget-- // Match not found
   265  			}
   266  			debug.Update()
   267  		}
   268  		// Advance the frontier towards forward point.
   269  		if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
   270  			revFrontier.X--
   271  		} else {
   272  			revFrontier.Y--
   273  		}
   274  	}
   275  
   276  	// Join the forward and reverse paths and then append the reverse path.
   277  	fwdPath.connect(revPath.point, f)
   278  	for i := len(revPath.es) - 1; i >= 0; i-- {
   279  		t := revPath.es[i]
   280  		revPath.es = revPath.es[:i]
   281  		fwdPath.append(t)
   282  	}
   283  	debug.Finish()
   284  	return fwdPath.es
   285  }
   286  
   287  type path struct {
   288  	dir   int // +1 if forward, -1 if reverse
   289  	point     // Leading point of the EditScript path
   290  	es    EditScript
   291  }
   292  
   293  // connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
   294  // to the edit-script to connect p.point to dst.
   295  func (p *path) connect(dst point, f EqualFunc) {
   296  	if p.dir > 0 {
   297  		// Connect in forward direction.
   298  		for dst.X > p.X && dst.Y > p.Y {
   299  			switch r := f(p.X, p.Y); {
   300  			case r.Equal():
   301  				p.append(Identity)
   302  			case r.Similar():
   303  				p.append(Modified)
   304  			case dst.X-p.X >= dst.Y-p.Y:
   305  				p.append(UniqueX)
   306  			default:
   307  				p.append(UniqueY)
   308  			}
   309  		}
   310  		for dst.X > p.X {
   311  			p.append(UniqueX)
   312  		}
   313  		for dst.Y > p.Y {
   314  			p.append(UniqueY)
   315  		}
   316  	} else {
   317  		// Connect in reverse direction.
   318  		for p.X > dst.X && p.Y > dst.Y {
   319  			switch r := f(p.X-1, p.Y-1); {
   320  			case r.Equal():
   321  				p.append(Identity)
   322  			case r.Similar():
   323  				p.append(Modified)
   324  			case p.Y-dst.Y >= p.X-dst.X:
   325  				p.append(UniqueY)
   326  			default:
   327  				p.append(UniqueX)
   328  			}
   329  		}
   330  		for p.X > dst.X {
   331  			p.append(UniqueX)
   332  		}
   333  		for p.Y > dst.Y {
   334  			p.append(UniqueY)
   335  		}
   336  	}
   337  }
   338  
   339  func (p *path) append(t EditType) {
   340  	p.es = append(p.es, t)
   341  	switch t {
   342  	case Identity, Modified:
   343  		p.add(p.dir, p.dir)
   344  	case UniqueX:
   345  		p.add(p.dir, 0)
   346  	case UniqueY:
   347  		p.add(0, p.dir)
   348  	}
   349  	debug.Update()
   350  }
   351  
   352  type point struct{ X, Y int }
   353  
   354  func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
   355  
   356  // zigzag maps a consecutive sequence of integers to a zig-zag sequence.
   357  //	[0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
   358  func zigzag(x int) int {
   359  	if x&1 != 0 {
   360  		x = ^x
   361  	}
   362  	return x >> 1
   363  }