github.com/intfoundation/intchain@v0.0.0-20220727031208-4316ad31ca73/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "github.com/intfoundation/intchain/crypto/blake2b" 24 "math/big" 25 26 "github.com/intfoundation/intchain/common" 27 "github.com/intfoundation/intchain/common/math" 28 "github.com/intfoundation/intchain/crypto" 29 "github.com/intfoundation/intchain/crypto/bn256" 30 "github.com/intfoundation/intchain/params" 31 "golang.org/x/crypto/ripemd160" 32 ) 33 34 // PrecompiledContract is the basic interface for native Go contracts. The implementation 35 // requires a deterministic gas count based on the input size of the Run method of the 36 // contract. 37 type PrecompiledContract interface { 38 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 39 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 40 } 41 42 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 43 // contracts used in the Frontier and Homestead releases. 44 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 45 common.BytesToAddress([]byte{1}): &ecrecover{}, 46 common.BytesToAddress([]byte{2}): &sha256hash{}, 47 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 48 common.BytesToAddress([]byte{4}): &dataCopy{}, 49 } 50 51 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 52 // contracts used in the Byzantium release. 53 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 54 common.BytesToAddress([]byte{1}): &ecrecover{}, 55 common.BytesToAddress([]byte{2}): &sha256hash{}, 56 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 57 common.BytesToAddress([]byte{4}): &dataCopy{}, 58 common.BytesToAddress([]byte{5}): &bigModExp{}, 59 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 60 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 61 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 62 } 63 64 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 65 // contracts used in the Istanbul release. 66 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 67 common.BytesToAddress([]byte{1}): &ecrecover{}, 68 common.BytesToAddress([]byte{2}): &sha256hash{}, 69 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 70 common.BytesToAddress([]byte{4}): &dataCopy{}, 71 common.BytesToAddress([]byte{5}): &bigModExp{}, 72 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 73 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 74 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 75 common.BytesToAddress([]byte{9}): &blake2F{}, 76 } 77 78 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 79 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 80 gas := p.RequiredGas(input) 81 if contract.UseGas(gas) { 82 return p.Run(input) 83 } 84 return nil, ErrOutOfGas 85 } 86 87 // ECRECOVER implemented as a native contract. 88 type ecrecover struct{} 89 90 func (c *ecrecover) RequiredGas(input []byte) uint64 { 91 return params.EcrecoverGas 92 } 93 94 func (c *ecrecover) Run(input []byte) ([]byte, error) { 95 const ecRecoverInputLength = 128 96 97 input = common.RightPadBytes(input, ecRecoverInputLength) 98 // "input" is (hash, v, r, s), each 32 bytes 99 // but for ecrecover we want (r, s, v) 100 101 r := new(big.Int).SetBytes(input[64:96]) 102 s := new(big.Int).SetBytes(input[96:128]) 103 v := input[63] - 27 104 105 // tighter sig s values input homestead only apply to tx sigs 106 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 107 return nil, nil 108 } 109 110 // We must make sure not to modify the 'input', so placing the 'v' along with 111 // the signature needs to be done on a new allocation 112 sig := make([]byte, 65) 113 copy(sig, input[64:128]) 114 sig[64] = v 115 // v needs to be at the end for libsecp256k1 116 pubKey, err := crypto.Ecrecover(input[:32], sig) 117 // make sure the public key is a valid one 118 if err != nil { 119 return nil, nil 120 } 121 122 // the first byte of pubkey is bitcoin heritage 123 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 124 } 125 126 // SHA256 implemented as a native contract. 127 type sha256hash struct{} 128 129 // RequiredGas returns the gas required to execute the pre-compiled contract. 130 // 131 // This method does not require any overflow checking as the input size gas costs 132 // required for anything significant is so high it's impossible to pay for. 133 func (c *sha256hash) RequiredGas(input []byte) uint64 { 134 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 135 } 136 func (c *sha256hash) Run(input []byte) ([]byte, error) { 137 h := sha256.Sum256(input) 138 return h[:], nil 139 } 140 141 // RIPEMD160 implemented as a native contract. 142 type ripemd160hash struct{} 143 144 // RequiredGas returns the gas required to execute the pre-compiled contract. 145 // 146 // This method does not require any overflow checking as the input size gas costs 147 // required for anything significant is so high it's impossible to pay for. 148 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 149 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 150 } 151 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 152 ripemd := ripemd160.New() 153 ripemd.Write(input) 154 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 155 } 156 157 // data copy implemented as a native contract. 158 type dataCopy struct{} 159 160 // RequiredGas returns the gas required to execute the pre-compiled contract. 161 // 162 // This method does not require any overflow checking as the input size gas costs 163 // required for anything significant is so high it's impossible to pay for. 164 func (c *dataCopy) RequiredGas(input []byte) uint64 { 165 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 166 } 167 func (c *dataCopy) Run(in []byte) ([]byte, error) { 168 return in, nil 169 } 170 171 // bigModExp implements a native big integer exponential modular operation. 172 type bigModExp struct{} 173 174 var ( 175 big1 = big.NewInt(1) 176 big4 = big.NewInt(4) 177 big8 = big.NewInt(8) 178 big16 = big.NewInt(16) 179 big32 = big.NewInt(32) 180 big64 = big.NewInt(64) 181 big96 = big.NewInt(96) 182 big480 = big.NewInt(480) 183 big1024 = big.NewInt(1024) 184 big3072 = big.NewInt(3072) 185 big199680 = big.NewInt(199680) 186 ) 187 188 // RequiredGas returns the gas required to execute the pre-compiled contract. 189 func (c *bigModExp) RequiredGas(input []byte) uint64 { 190 var ( 191 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 192 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 193 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 194 ) 195 if len(input) > 96 { 196 input = input[96:] 197 } else { 198 input = input[:0] 199 } 200 // Retrieve the head 32 bytes of exp for the adjusted exponent length 201 var expHead *big.Int 202 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 203 expHead = new(big.Int) 204 } else { 205 if expLen.Cmp(big32) > 0 { 206 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 207 } else { 208 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 209 } 210 } 211 // Calculate the adjusted exponent length 212 var msb int 213 if bitlen := expHead.BitLen(); bitlen > 0 { 214 msb = bitlen - 1 215 } 216 adjExpLen := new(big.Int) 217 if expLen.Cmp(big32) > 0 { 218 adjExpLen.Sub(expLen, big32) 219 adjExpLen.Mul(big8, adjExpLen) 220 } 221 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 222 223 // Calculate the gas cost of the operation 224 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 225 switch { 226 case gas.Cmp(big64) <= 0: 227 gas.Mul(gas, gas) 228 case gas.Cmp(big1024) <= 0: 229 gas = new(big.Int).Add( 230 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 231 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 232 ) 233 default: 234 gas = new(big.Int).Add( 235 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 236 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 237 ) 238 } 239 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 240 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 241 242 if gas.BitLen() > 64 { 243 return math.MaxUint64 244 } 245 return gas.Uint64() 246 } 247 248 func (c *bigModExp) Run(input []byte) ([]byte, error) { 249 var ( 250 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 251 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 252 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 253 ) 254 if len(input) > 96 { 255 input = input[96:] 256 } else { 257 input = input[:0] 258 } 259 // Handle a special case when both the base and mod length is zero 260 if baseLen == 0 && modLen == 0 { 261 return []byte{}, nil 262 } 263 // Retrieve the operands and execute the exponentiation 264 var ( 265 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 266 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 267 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 268 ) 269 if mod.BitLen() == 0 { 270 // Modulo 0 is undefined, return zero 271 return common.LeftPadBytes([]byte{}, int(modLen)), nil 272 } 273 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 274 } 275 276 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 277 // returning it, or an error if the point is invalid. 278 func newCurvePoint(blob []byte) (*bn256.G1, error) { 279 p := new(bn256.G1) 280 if _, err := p.Unmarshal(blob); err != nil { 281 return nil, err 282 } 283 return p, nil 284 } 285 286 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 287 // returning it, or an error if the point is invalid. 288 func newTwistPoint(blob []byte) (*bn256.G2, error) { 289 p := new(bn256.G2) 290 if _, err := p.Unmarshal(blob); err != nil { 291 return nil, err 292 } 293 return p, nil 294 } 295 296 // runBn256Add implements the Bn256Add precompile, referenced by both 297 // Byzantium and Istanbul operations. 298 func runBn256Add(input []byte) ([]byte, error) { 299 x, err := newCurvePoint(getData(input, 0, 64)) 300 if err != nil { 301 return nil, err 302 } 303 y, err := newCurvePoint(getData(input, 64, 64)) 304 if err != nil { 305 return nil, err 306 } 307 res := new(bn256.G1) 308 res.Add(x, y) 309 return res.Marshal(), nil 310 } 311 312 // bn256Add implements a native elliptic curve point addition conforming to 313 // Istanbul consensus rules. 314 type bn256AddIstanbul struct{} 315 316 // RequiredGas returns the gas required to execute the pre-compiled contract. 317 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 318 return params.Bn256AddGasIstanbul 319 } 320 321 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 322 return runBn256Add(input) 323 } 324 325 // bn256AddByzantium implements a native elliptic curve point addition 326 // conforming to Byzantium consensus rules. 327 type bn256AddByzantium struct{} 328 329 // RequiredGas returns the gas required to execute the pre-compiled contract. 330 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 331 return params.Bn256AddGasByzantium 332 } 333 334 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 335 return runBn256Add(input) 336 } 337 338 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 339 // both Byzantium and Istanbul operations. 340 func runBn256ScalarMul(input []byte) ([]byte, error) { 341 p, err := newCurvePoint(getData(input, 0, 64)) 342 if err != nil { 343 return nil, err 344 } 345 res := new(bn256.G1) 346 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 347 return res.Marshal(), nil 348 } 349 350 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 351 // multiplication conforming to Istanbul consensus rules. 352 type bn256ScalarMulIstanbul struct{} 353 354 // RequiredGas returns the gas required to execute the pre-compiled contract. 355 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 356 return params.Bn256ScalarMulGasIstanbul 357 } 358 359 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 360 return runBn256ScalarMul(input) 361 } 362 363 // bn256ScalarMulByzantium implements a native elliptic curve scalar 364 // multiplication conforming to Byzantium consensus rules. 365 type bn256ScalarMulByzantium struct{} 366 367 // RequiredGas returns the gas required to execute the pre-compiled contract. 368 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 369 return params.Bn256ScalarMulGasByzantium 370 } 371 372 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 373 return runBn256ScalarMul(input) 374 } 375 376 var ( 377 // true32Byte is returned if the bn256 pairing check succeeds. 378 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 379 380 // false32Byte is returned if the bn256 pairing check fails. 381 false32Byte = make([]byte, 32) 382 383 // errBadPairingInput is returned if the bn256 pairing input is invalid. 384 errBadPairingInput = errors.New("bad elliptic curve pairing size") 385 ) 386 387 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 388 // Byzantium and Istanbul operations. 389 func runBn256Pairing(input []byte) ([]byte, error) { 390 // Handle some corner cases cheaply 391 if len(input)%192 > 0 { 392 return nil, errBadPairingInput 393 } 394 // Convert the input into a set of coordinates 395 var ( 396 cs []*bn256.G1 397 ts []*bn256.G2 398 ) 399 for i := 0; i < len(input); i += 192 { 400 c, err := newCurvePoint(input[i : i+64]) 401 if err != nil { 402 return nil, err 403 } 404 t, err := newTwistPoint(input[i+64 : i+192]) 405 if err != nil { 406 return nil, err 407 } 408 cs = append(cs, c) 409 ts = append(ts, t) 410 } 411 // Execute the pairing checks and return the results 412 if bn256.PairingCheck(cs, ts) { 413 return true32Byte, nil 414 } 415 return false32Byte, nil 416 } 417 418 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 419 // conforming to Istanbul consensus rules. 420 type bn256PairingIstanbul struct{} 421 422 // RequiredGas returns the gas required to execute the pre-compiled contract. 423 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 424 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 425 } 426 427 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 428 return runBn256Pairing(input) 429 } 430 431 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 432 // conforming to Byzantium consensus rules. 433 type bn256PairingByzantium struct{} 434 435 // RequiredGas returns the gas required to execute the pre-compiled contract. 436 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 437 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 438 } 439 440 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 441 return runBn256Pairing(input) 442 } 443 444 type blake2F struct{} 445 446 func (c *blake2F) RequiredGas(input []byte) uint64 { 447 // If the input is malformed, we can't calculate the gas, return 0 and let the 448 // actual call choke and fault. 449 if len(input) != blake2FInputLength { 450 return 0 451 } 452 return uint64(binary.BigEndian.Uint32(input[0:4])) 453 } 454 455 const ( 456 blake2FInputLength = 213 457 blake2FFinalBlockBytes = byte(1) 458 blake2FNonFinalBlockBytes = byte(0) 459 ) 460 461 var ( 462 errBlake2FInvalidInputLength = errors.New("invalid input length") 463 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 464 ) 465 466 func (c *blake2F) Run(input []byte) ([]byte, error) { 467 // Make sure the input is valid (correct lenth and final flag) 468 if len(input) != blake2FInputLength { 469 return nil, errBlake2FInvalidInputLength 470 } 471 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 472 return nil, errBlake2FInvalidFinalFlag 473 } 474 // Parse the input into the Blake2b call parameters 475 var ( 476 rounds = binary.BigEndian.Uint32(input[0:4]) 477 final = (input[212] == blake2FFinalBlockBytes) 478 479 h [8]uint64 480 m [16]uint64 481 t [2]uint64 482 ) 483 for i := 0; i < 8; i++ { 484 offset := 4 + i*8 485 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 486 } 487 for i := 0; i < 16; i++ { 488 offset := 68 + i*8 489 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 490 } 491 t[0] = binary.LittleEndian.Uint64(input[196:204]) 492 t[1] = binary.LittleEndian.Uint64(input[204:212]) 493 494 // Execute the compression function, extract and return the result 495 blake2b.F(&h, m, t, final, rounds) 496 497 output := make([]byte, 64) 498 for i := 0; i < 8; i++ { 499 offset := i * 8 500 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 501 } 502 return output, nil 503 }